用户名: 密码: 验证码:
禽流感病毒H3N8野鸭分离株分子生物学特征研究及遗传进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年来本实验室开展了野鸟流行病学监测工作。2006年秋季,从黑龙江省三江国家级自然保护区采集了93个样品,其中分别由两只健康绿头鸭体内分离到2株具有血凝性的病毒,经本实验室确认并经国家禽流感参考实验室鉴定,确定其均为禽流感病毒H3N8亚型,并命名为A/Mallard/SanJiang/98/2006(H3N8)和A/Mallard/SanJiang/167/2006(H3N8)。本论文对这两株分离株进行了全基因组序列测定,并研究其基因特征及遗传演化关系。
     本研究采用无特定病原体(SPF)鸡胚增殖禽流感病毒野鸭源分离株MSJ98/06和MSJ167/06,从鸡胚尿囊液中提取病毒基因组总RNA,参考GeneBank已发表的H3N8亚型AIV各段基因的核苷酸序列,利用分子生物学软件设计并合成了14对特异性引物,用RT-PCR技术分别扩增MSJ98/06和MSJ167/06分离株的8个基因节段的cDNA(其中HA、PA、PB1、PB2基因均分为两段扩增)。PCR产物经回收纯化后连接到PMD18-T载体上,将连接产物转入DH5-a感受态细胞中,重组质粒经PCR鉴定为阳性后,进行序列测定。序列测定正确后,与国内外H3N8亚型的部分分离株的相应基因及其推导的氨基酸序列进行同源性比较和遗传进化分析。
     序列分析结果表明,所得到的两株AIV的8个节段均含有完整的开放阅读框架以及5′端和3′端的非编码区序列。根据测得的基因序列绘制遗传进化树发现两个分离株的大部分基因与韩国地区分离株、日本北海道分离株以及中国大陆南昌分离株的亲缘关系密切,有着相似的遗传演化过程,可能具有共同祖先。与北美和澳大利亚的禽源分离株亲缘关系较远,在地理分布上表现出明显的差异。且与所有马源分离株的核苷酸同源率仅有70%左右,说明H3N8亚型流感病毒具有明显的种属差异性。而两株H3N8亚型禽流感分离株的NA基因核苷酸同源率仅有77.3%,差异较大。NS基因分析表明,本研究的两个分离株应属于欧亚禽一马群。HA基因裂解位点处的氨基酸序列分别为~(340)PEKQTR↓SLF~(348)和~(340)PEKQTR↓GLF~(348),与低致病性禽流感的HA的裂解位点相一致,且已有的研究不支持H3N8亚型禽流感病毒对禽类具有高度致病力,可以推断分离株MSJ98/06和MSJ167/06为非高致病力毒株。
     由于从野生中分离出H3N8亚型禽流感病毒在我国尚无报道,所以本研究的两株H3N8亚型禽流感病毒全基因的克隆及序列分析结果,对于禽流感的深入研究,特别是对野生水禽禽流感病毒的携带状况和分子流行病学的研究具有重要的参考价值。
We Surveyed the epidemiology of wild birds for years.93 samples were captured in Sanjiang National Natural Reserve of Hei Longjiang province in October,2006.Two mallardorigin influenza viruses were sequenced and molecular evolutionarily analyzed in this study. The identification confirmed them as H3N8 subtype by National Influenza Reference Laboratory and our laboratory,and were named as A/Mallard/SanJiang/98/2006(H3N8) and A/Mallard/SanJiang/167/2006(H3N8) respectively.
     In this research,the isolated strains MSJ98/06&MSJ167/06 were propagated in specific pathogen free(SPF) chicken embryos.14 pairs of primers were designed and synthesized according to the relevant nucleotide sequences in GeneBank,which were used for amplifying the eight full-length genes of isolated strains MSJ98/06 and MSJ167/06.Thereinto,HA,PA, PBI and PB2 genes were divided into two fragments to amplified.The viral RNAs and mRNAs were extracted and used Reverse Transcription-Polymerase Chain Reaction(RT-PCR) to amplify the eight full-length cDNAs of the virus genes.The purified cDNAs were inserted into PMD 18-T vector,and the recombinant plasmid was transformed into competent DH5-a E.Coli, then sequenced when the PCR result was positive for amplifying the inserted gene in recombinant plasmid.The nucleotide sequences and their deduced amino acid sequences were compared and analyzed for the homology and phylogenetic relationships between the isolated strains MSJ98/06&MSJ167/06 and some other isolated strains of H3N8 subtype by the Lasergene Sequence Analysis Package.
     Sequence analysis-results showed that all of the eight segments of AIV contained completed open-reading-frames and 5'-3'-untranslated regions.Analysis of the results of homology comparison and phylogenetic relationships indicated that the strains were homology with Korea strains,Hokkaido strains and Nan Chang strains from mainland of China. Conspicuous species differences existed among different species and different areas where the virus isolated from.But the homological rates of amino acid was 77.3%for NA gene between MSJ98/06 and MSJ167/06.Analysis of NS gene indicated that they belonged to Eurasian avian-equine Group.Nucleotide sequence of HA genes pointed that there were similar cleavage sites with low pathogenic AIV HA gene which amino acid were ~(340)PEKQTR↓SLF~(348) and ~(340)PEKQTR↓GLF~(348) respectively and considered that none of the H3N8 subtype isolates have been found which were highly pathogenic strains to poultry,it should be concluded that isolated strains MSJ98/06&MSJ167/06 were not highly pathogenic avian influenza strains.
     Because it was the first time of H3N8 subtype AIV to be isolated from wild waterfowls to report in China,the results of molecular clone and analysis of the entire genes of the isolated strains MSJ98/06&MSJ167/06 will have great value for the further researches of avian influenza,especially for the researches of perpetuation status of AIV among wild waterfowls and the researches of molecular epidemiology of avian influenza.
引文
[1]程坚,刘红旗,彭大新,等.两株H9亚型禽流感病毒HA基因序列分析.江苏农业研究,2001,22(1):70-73
    [2]M.Shaw,L.Cooper,X.Xu,et al,Molecular Changes Associated with The Transmission of Avian Influenza A H5N1 and H9N2 Viruses to Humans.Journal of Medical Virology,2001,66(1):107-114
    [3]Mikhail Matrosovich,N.Zhou.The Surface Glycoproteins of H5N1 Influenza Viruses Isolated from Humans,Chickens,and Wild Aquatic Birds Have Distinguishable Properties.Journal of Virology,1999,73(2):1146-1155
    [4]V.S.Hinshaw,R.G.Webster,and B.Turner.The Perpetuation of Orthomyxoviruses and Paramyxoviruses in Canadian Waterfowl.Mierobiol,1980,26(5):622-629
    [5]A.S.Beare,R.G.Webster.Replication of Avian Influenza Viruses in Humans.Archives of Virology,1991,119(1):37-42
    [6]K.Subbarao,A.Klimov.Characterization of an Avian Influenza A(H5N1) Virus Isolated from a Child with a Fatal Respiratory Illness.Science,1998,279(5349):393-396
    [7]http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_03_11/en/index .html
    [8]易华山,常惠芸,胡永浩,等.H5N1亚型高致病性禽流感病毒的起源及演化关系探讨[J].动物医学进展,2006,27(7):24-27
    [9]George K.Hirst.The Agglutination of Red Cells by Allantoic Fluid of Chicken Embryos Infected with Influenza Virus[J].Science,1941,94(2427):22-23
    [10]Dennis J.Alexander.A Review of Avian Influenza in Different Bird Species.Veterinary Microbiology,2000,74(1):3-13
    [11]B.C.Easterday,B.Tumova,Avian in Fluenza.In M.S.Hofstad,B.W.Calnek,C.F.Helmbolt,W.M.Reid,and H.W.Yoder,Jr(eds).Disease of Poultry,6th edition.Ames,IA:Iowa State University Press,1972:670-700
    [12]Easterday BC,Trainer DO,Tumova B,et al.Evidence of Infection with Influenza Virus in Migratory Waterfowl.Nature,1968,219(5153):523-524
    [13]殷震,刘景华主编.动物病毒学第二版.北京:科学出版社,1997:704-767
    [14]J.S.Oxford.Influenza A Pandemics of the 20th Century with Special Reference to 1918:Virology,Pathology and Epidemiology.Rev Med Virol,2000,10(2):119-133
    [15]张智明.黑龙江部分地区野生鸟类AIV和NDV感染状况的初步研究.东北林业大学硕士论文.2007:3
    [16]R.Franklin,E.Wecker.Inactivation of Some Animal Viruses by Hydroxylamine and the Structure of Ribonucleic Acid.Nature,1959,184:343-345
    [17]Schafer JR,Kawaoka Y,Bean WJ,Suss J,et al.Origin of the Pandemic 1957 H2Influenza-A Virus and the Persistence of Its Possoble Progenitors in the Avian Reservoir.Viroloy,1993,194(2):781-788
    [18]苏敬良,高福.禽病学第十一版.北京:中国农业出版社,2005:65-92,147-177
    [19]Vahlenkamp TW,Harder TC.Influenza Virus Infections in Mammals.Berl Munch Tierarztl Wochenschr,2006,119(3-4):123-131
    [20]郭元吉.禽流行性感冒(禽流感).中国公共卫生,2004,20(2):254-256
    [21]Easterday B.C.,V.S.Hindshaw,D.A.Halvorson,et al.Influenza.Disease of Poultry.(eds:Culnek B.W.,Barnes H.J.,Beard C.W.et al),10th edition.Ames,IA:Iowa State University Press,1997:583-605
    [22]D.T.Cappucci,Jr.,D.C.Johnson,M.Brugh,et al.Isolation of Avian Influenza Virus (Subtype H5N2) from Chicken Eggs during A Natural Outbreak.Avian Disease,1985,29(4),1195-1200
    [23]Marcin von Grotthuss,Leszek Rychlewski.Influenza Mutation from Equine to Canine.Science,2006,311(5765):1241-1242
    [24]Weisan Chen,Paul A.Calvo.A Novel Influenza A Virus Mitochondrial Protein that Induces Cell Death.Nature Medicine,2001,7:1306-1312
    [25]E.Fodor,P Palese,George Brownlee,et al.Attenuation of Influenza A Virus mRNA Levels by Promoter Mutations.J Virol,1998,72(8):6283-6290
    [26]Ervin Fodor,Mandy Crow,Louise J.Mingay,et al.A Single Amino Acid Mutation in the PA Subunit of the Influenza Virus RNA Polymerase Inhibits Endonucleolytic Cleavage of Capped RNAs.Journal of Virology,2002,76(8),8989-9001
    [27]Atsushi Kawaguchi,Tadasuke Naito,Kyosuke Nagato.Involvement of Influenza Virus PA Subunit in Assembly of Functional RNA Polymerase Complexes.Journal of Virology,2005,79(2):732-744
    [28]Y Guan,M.Peiris,K.F.Kong,et al.H5N1 Influenza Virus Isolated from Geese in Southeastern China:Evidence for Genetic Reassortment and Interspecies Transmission to Ducks.Virology,2002(1),292:16-23
    [29]Estela Area,Jaime M B,Pablo G,et al.3D Structure of the Influenza Virus Polymerase Complex:Localization of Subunit Domains.Proc.Natl.Acad.Sci.,2004,101(1):308-313
    [30]Mei-Ling Li,Ping Rao,Robert M.K.The Active Sites of the Influenza Cap-dependent Endonuclease are on Different Polymerase Subunits.The EMBO Journal,2001,20,2078-2086
    [31]温峰琴.高致病性禽流感病毒A/Duck/GuangXi/53/02株感染性克隆构建及分子演化研究.甘肃农业大学硕士论文.2006:6-7
    [32]赵翠君.禽流感病毒基因PA、M2的克隆、表达、纯化及多克隆抗体的制备.河北农业大学硕士论文.2007:1-7
    [33]E.G.Brown,H.Liu,L.Chang Kit,et al.Pattem of Mutation in the Genome of Influenza A Virus on Adaptation to Increased Virulence in the Mouse lung:Identification of Functional Themes.Proc.Natl.Acad.Sci.,2001,98(12):6883-6888
    [34]Makoto T,George P,George P.Leser,et al.Influenza Virus Hemagglutinin Concentrates in Lipid Raft Microdomains for Efficient Viral Fusion.Proc.Natl.Acad.Sci.2003,100(25):14610-14617
    [35]David A.Steinhauer.Role of Hemagglutinin Cleavage for the Pathogenicity of Influenza Virus.Virology,1999,258(1):1-20
    [36]Klenk H.D.,Rott R.The molecular biology of influenza virus pathogenicity.Adv.Virus Res.,1988,34:247-281
    [37]Klenk H D,Garten W.Host Cell Proteases Controlling Virus Pathogenicity.Trends Microbiol,1994,2(2):39-43
    [38]Lamb R.A.,Krug R.M.,Orthomyxoviddae:The Viruses and Their Replication.Fields B N,Knipe D M,Howley P M.In "Fields Virology"[C].1983,1353-1395
    [39]Bosch FX,Garten W,Klenk HD,et al.Proteolytic Cleavage of Influenza Virus Hemagglutinins:Primary Structure of the Connecting Peptide between HA1 and HA2Determines Proteolytic Cleavability and Pathogenicity of Avian Influenza Viruses.Virology,1981,113(2):725-735
    [40]Garten W,Bosch FX,Linder D,et al.Proteolytic Activation of the Influenza Virus Hemagglutinin:The Structure of the Cleavage Site and the Enzymes Involved in Cleavage.Virology,1981,115(2):361-374
    [41]K L Desphande,V A Fried,M Ando,et al.Glycosylation Affects Cleavage of An H5N2Influenza Virus Hemagglutinin and Regulates Virulence.Proc.Natl.Aead.Sci.,1987,84(1):36-40
    [42]Karen J.Cross,Stephen A.Wharton,John J.Skehel,et al.Studies on Influenza Haemagglutinin Fusion Peptide Mutants Generated by Reverse Genetics.EMBO,2001,20:4432-4442
    [43]Y.Nakagawa,N.Kimura,T.Toyoda,et al.The RNA Polymerase PB2 Subunit is not Required for Replication of Influenza Virus Genome but is Involved in Capped mRNA Synthesis.Virol,1995,69(2):728-733
    [44]A.Endo,S.Itamura,H.Iinuma,et al.Homotypie and Heterotypic Protection Against Influenza Virus Infection in Mice by Recombinant Vaceinia Virus Expressing the Haemagglutinin or Nucleoprotein Gene of Influenza Virus.J Gen.Virol,1991,72:699-703
    [45]JP Tite,C Hughes-Jenkins,D O'Callaghan,et al.Antiviral Immunity Induced by Recombinant Nucleoprotein of Influenza A Virus.Ⅱ.Protection from Influenza Infection and Mechanism of Protection.Immunology,1990,71(2):202-207
    [46]P.M.Colman,W.G.Laver,J.N.Varghese,et al.The Three-dimensional Structure of Complex of Influenza Virus Neuraminidase and an Antibody.Nature,1987,326:358-363
    [47]Blok J,Air GM.Sequence Variation at the 3' End of the Neuraminidase Gene from 39Influenza Type A Viruses.Virology,1982,121(2),211-229
    [48]王利伟.不同源性禽流感病毒株的分离鉴定及其主要基因信息的研究.吉林农业大学博士论文.2006:20-22
    [49]Els MC,Air GM,Mufti KG,et al.An 18-Amino Acid Deletion in an Influenza Neuramindase.Virology,1985,142(2):241-247
    [50]M.R.Castrucci,Y.Kawaoka.Biologic Importance of Neuraminidase Stalk Length in Influenza A Virus.J.Virol,1993,67(2):759-764
    [51]G.Whittaker,I.Kemler,A.Helenius.Hyperphosphorylation of Mutant Influenza Virus Matrix Protein Causes its Retention in the Nucleus.J.Virol.,1995,69(1):439-445
    [52]F.Baudin,I.Petit,W.Weissenhorn,et al.In Vitro Dissection of the Membrane and RNP Binding Activities of Influenza Virus M1 Protein.Virology,2001,281(1):102-108
    [53]M.Bui,E.G.Wills,A.Helenius,et al.Role of Influenza Virus M1 Protein in Nuclear Export of Viral Ribonucleoproteins.J.Virol,2000,74(4):1781-1786
    [54]P.Gomez-Puertas,C.Albo,E.Perez-Pastrana,et al.Influenza Virus Martrix Protein Is the Major Driving Force in Virus Budding.Journal of Virology,2000,74(24):11538-11547
    [55]S L Zebedee,C D Richardson,R A Lamb.Characterization of the Influenza Virus M2Integral Membrane Protein and Expression at the Infected-cell Surface from Cloned cDNA.J.Virol,1985,56(2):502-511
    [56]S L Zebedee,R A Lamb.Influenza A Virus M2 Protein:Monoclonal Antibody Restriction of Virus Growth and Detection of M2 in Virions.J.Viro1,1988,62(8):2762-2772
    [57]Grambas S,Hay AJ,Maturation of Influenza A Virus Hemagglutinin-estimates of the pH Encountered during Transport and its Regulation by the M2 Protein.Virology,1992,190(1):11-18
    [58]Sugrue R.J.,Hay A.J.Structural Characteristics of the M2 Protein of Influenza A Viruses:Evidence that it Forms a Tetrameric Channel.Virology,1991,180(2):617-624
    [59]LH Pinto,LJ Holsinger,RA Lamb.Influenza Virus M2 Protein Has Ion Channel Activity.Cell,1992,69(3):517-528
    [60]Duff K.C.,Ashley R.H.The Transmembrane Domain of Influenza A M2 Protein Forms Amantadine-sensitive Proton Channels in Planar Lipid Bilayers.Virology,1992,190(1):485-489
    [61]Jennifer R.Henkel,Ora A.Weisz.Influenza Virus M2 Protein Slows Traffic along the Secretory Pathway.J.Biol Chem,1998,273(11):6518-6524
    [62]王启贵,李宁,邓学梅,等.鸡细胞外脂肪酸结合蛋白基因单核核苷酸多态性与腹脂性状的相关研究.自然科学进展,2002,12(4);420-422
    [63]Carmen Gianfrani,Carla Oseroff,John Sidney,et al.Human Memory CTL Response Specific for Influenza A Virus is Broad and Multispecific.Human Immunology,2000,61(5):438-452
    [64]D Greenspan,P Palese,M Krystal,et al.Two Nuclear Location Signals in the Influenza Virus NS1 Nonstructural Protein.J.Virol,1988,62(8):3020-3026
    [65]Andrej Egorov,Sabine Brandt,Sabine Sereinig,et al.Transfectant Influenza A Viruses with Long Deletions in the NS1 Protein Grow Efficiently in Vero Cells.J Virol,1998,72(8):6437-6441
    [66]傅生芳,独军政,常惠芸,等.禽流感病毒的分子生物学研究进展.动物医学进展,2005,26(5):22-24
    [67]M.Salvatore,C.F.Basler,J.P.Parisien,et al.Effects of Influenza A Virus NS1 Protein on Protein Expression:the NS1 Protein Enhance Translation An did not Required for Shutoff of Host Protein Synthesis.J Virol,2002,76(3):1206-1212
    [68]A.Garcia-Sastre,A.Egorov,D.Matassov,et al.Influenza A Virus Lacking the NS1 Gene Replicates in Interferon-Deficient Systems.Virology,1998,252(2):324-330
    [69]X.Y.Wang,C.F.Basler,Bryan R.G.Williams,et al.Functional Replacement of the Carboxy-Terminal Two-Thirds of the Influenza A Virus NS1 Protein with Short Heterologous Dimerization Domains.J Virol,2002,76(24):12951-12962
    [70]Sang Heui Seo,Erich Hoffmann,Robert G.Webster.Lethal H5N1 Influenza Viruses Escape Host Antiviral Cytokine Responses.Nature Medicine,2002,8(9):950-954
    [71]R E O'Neill,J Talon,P Palese.The Influenza Virus NEP(NS2 protein) Mediates the Nuclear Export of Viral Rebonucleoproteins.EMB0,1998,17(1):288-296
    [72]吴乃虎.基因工程原理下册.第二版.北京:科学出版社,1998:154-170
    [73]郭元吉,谢健屏等.流感病毒A/广州/333/99(H9N2)毒株基因组特性的研究.中华实验和临床病毒学杂志,2002,16(2):142-145
    [74]陈福勇,夏春.禽流感A/鸡/北京/1/96(H9N2)株核蛋白基因克隆和序列分析.中国预防兽医学报,1999,21(2):130-133
    [75]甘孟侯.禽流感.第二版.北京:中国农业出版社,2002:98-102
    [76]金元昌,李景鹏,张龙,等.禽流感病毒分子生物学研究进展.动物医学进展,2003,24(1):12-15
    [77]V.S.Hinsbaw,R.G.Webster,B.Turner.Water-Borne Transmission of Influenza Viruses?Intervirology,1979,11(1):66-68
    [78]李莉萍.禽流感病毒检测技术及广西分离株PB2基因的比较研究.广西大学硕士论文.2006:7-8
    [79]R G Webster,W J.Bean,O T Gorman,et al.Evolution and Ecology of Influenza A Viruses.Microbiol Mol Biol Rev,1992,56(1):152-179
    [80]J F Young,P Palese.Evolution of Human Influenza A Viruses in Nature:Recombination Contributes to Genetic Variation of H1N1 Strains.PNAS.1979,76(12),6547-6551
    [81]崔尚金.我国禽流感的流行病学调查.中国农业科学院研究生院博士后研究工作报告.2605:9-10
    [82]董丽波,张烨,温乐英,等.1995~2005年中国H3N2亚型人流感病毒血凝素基因变异与流行相关性研究.病毒学报,2007,24(5):339~344
    [83]崔尚金,于康震,唐秀英,等.H3亚型禽流感病毒分离株与变异株的生物学特性.中国兽医学报,2000,22(增刊):85~89
    [84]张云,刘明,倪健强,等.宠物鸟H3N8亚型流感病毒HA基因的特征性分析.中国预防兽医学报,2004,26(6):420~424
    [85]Guo Y,Wang M,Kawaoka Y,et al.Characterization of A New Avian-Like Influenza A Virus from Horses in China.Virology,1992,188(1):245-255
    [86]D.A.SENNE,B.Panigrahy,et al.Survey of the Hemagglutinin(HA) Cleavage Site Sequence of H5 and H7 Avian Influenza Viruses:Amino Acid Sequence at the HA Cleavage Site as a Maker of Pathgenieity Potential.Avian Diseases,1996,40:425-437
    [87]M.L.Perdue,J.W.Latimer,J.M.Crawford.A Novel Carbohydrate Addition Site on the Hemagglutinin Protein of a Highly Pathogenic H7 Subtype Avian Influenza Virus.Virology,1995,213(1):276-281
    [88]W.L.Chang,A.S.Dennis,A.L.Jose,et al.Characterization of Recent H5 Subtype Avian Influenza Viruses from US Poultry.Avian pathology,2004,33(3):288-297
    [89]G.N.Rogers,J.C.Paulson,R.S.Daniels,et al.Single Amino Acid Substitutions in Influenza Haemagglutinin Change Receptor Binding Specificity.Nature,1983,304:76-78
    [90]刘金华,吴清民,陈福勇,等.鸡源株与人源株H9N2流感病毒血凝素受体结合位点氨基酸比较与分析.中国预防兽医学报,2003,25(6):416-418
    [91]R.Medeiros,N.Naffakh.Binding of the Hemagglutinin from Human or Equine Influenza H3 Viruses to the Receptor is Altered by Substitutions at Residue 193.Archives of Virology,2004,149(8):1663-1671
    [92]王曲直,龙进学,胡顺林,等.神经氨酸酶茎部氨基酸缺失对H5N1亚型禽流感病毒生物学特性的影响.微生物学报,2006,46(4):542-546
    [93]J.Banks,E.S.Speidel,E.Moore,et al.Changes in the Haemagglutinin and the Neuraminidase Genes Prior to the Emergence of Highly Pathogenie H7N1 Avian Influenza Viruses in Italy.Archives of Virology,2001,146(5):963-973
    [94]张云,刘明,于康震,等.宠物鸟H3N8亚型流行性感冒病毒NA基因分子特征性分析.病毒学报,2005,21(2):145-149
    [95]龙进学,王曲直,刘秀梵.禽流感病毒NS第263-277位核苷酸缺失降低其抗干扰能力.微生物学通报,2006,33(2):34-39
    [96]Aleksander SL,Samita A,Richard JW,et al.Pathogenesis of Hong Kong H5N1 Influenza Virus NS Gene Reassortants in Mice:the Role of Cytokines and B-and T-cell responses. Journal of General Virology,2005,86:1121-1130
    [97]Peirong Jiao,Guobin Tian,Yanbing Li,et al.A Single-Amino-Acid Substitution in the NS1 Protein Changes the Pathogencity of H5N1 Avian Influenza Viruses in Mice.Journal of Virology,2008,82(3):1146-1154
    [98]Baez M,Zazra JJ,Elliott RM,Young JF,Palese P.Nucleotide Sequence of the Influenza A/duck/Alberta/60/76 Virus NS RNA:Conservation of the NS1/NS2 Overlapping Gene Structure in a Divergent Influenza Virus RNA Segment.Virology,1981,113(1):397-402
    [99]Treanor J.J.,Snyder M.H.,London W.T.,Murphy B.R.,The B Allele of the NS Gene of Avian Influenza Viruses,but not the A Allele,Attenuates a Human Influenza A Virus for Squirrel Monkeys.Virology,1989,171(1):1-9
    [100]Kyoko Shinya,Stefan Hamm,Masato Hatta,et al.PB2 Amino Acid at Position 627Affects Replicative Efficiency,but not Cell Tropism,of Hong Kong H5N1 Influenza A Viruses in Mice.Virology,2004,320(2):258-266
    [101]D.J.Hulse-Post,J.Franks,K.Boyd,et al.Molecular Changes in the Polymerase Genes (PA and PB1) Associated with High Pathogenicity of H5N1 Influenza Virus in Mallard Ducks.J Virol,2007,81(16):8515-8524
    [102]Zejun Li,Hualan Chen,Peirong Jiao,et al.Molecular Basis of Replication of Duck H5N1 Influenza Viruses in a Mammalian Mouse Model.J Virol,2005,79(18):12058-12064
    [103]Kawaoka Y,Chambers TM,Sladen WL,Webster RG.Is the Gene Pool of Influenza Viruses in Shorebirds and Gulls Different from That in Wild Ducks? Virology,1988,163(1):247-250
    [104]李敏,崔尚金.候鸟发生禽流感的警示.畜牧兽医科技信息,2005,6:7-11
    [105]卢受界,谌小平.近年全球野生鸟类禽流感病毒的监测结果分析.畜牧兽医科,2005,30(3):6-7
    [106]J.Liu,H.Xiao,F.Lei,et al.High Pathogenic H5N1 Influenza Virus Infection in Migratory Birds.Science,2005,309:1206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700