用户名: 密码: 验证码:
液相脉冲放电效应及管线防生物附着的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液相高压脉冲放电技术采用在两个电极之间施加脉冲高压,使两电极在水中形成液相放电,放电过程同时产生强力冲击波、紫外线,各种活性自由基和强电场。前人对液相脉冲放电各种效应的研究均仅限于单方面,液相放电所产生多方面的效应还没有被综合考虑,特别是各种效应如自由基,电场,紫外线辐射,冲击波的相对贡献率,至今未得到详细的研究。本文对液相放电机理及其应用进行了详细研究,主要结论有以下几点:
     首先,采用针-板液相放电反应器,通过不同材料的小管将放电产生的各种效应进行了分离,深入调查了液相放电的多重效应如冲击波、紫外线,强电场和各种活性自由基的作用效果及其所占比例关系。在实验范围内,距放电点的距离(d)和峰值电压变化对紫外线杀菌所起作用基本没影响。与紫外线不同,随着距离d增加,冲击波对杀菌所起作用降低。实验范围内,峰值电压变化对冲击波杀菌作用比例几乎没有影响。距放电点的距离(d)对电场杀菌有着非常明显的影响。距离放电中心轴越远,电场对杀菌所起作用越小。放电中心轴处,紫外线、冲击波、电场对细菌杀灭所起作用近似值分别为30.8士4.8%、36.1士5.5、12.7士1.8%,由此推算出活性自由基所起作用约为20.4士2.5%。
     其次,设计了一个4m长管的大型水中放电装置,采用棒-棒式电极,液相中直接放电的形式,利用压力传感器测定冲击波峰值压力大小及其传播特性。冲击波在水下传播速度为1500m/s。电极间距不变,随着电压的升高,冲击波增大。在本实验范围内,经多点实验平均计算出冲击波强度经验公式为Pr=2.56E·e-0.4831r。放电电压保持不变,实验范围内当电极间距从3mm增加到7mm,冲击波峰值压力先升高后降低。峰值电流相同条件下,电极间距越大的冲击波压力值越大。主要是因为电功率对等离子体通道的击穿时间依赖于与峰值电流和通道等效电阻。电极间距增加,等离子通道的等效电阻增加。因此,电流为常量,电极间距增加,等离子体通道电功率增加。脉冲能量与冲击波峰值压力呈线性关系,能量越高,冲击波峰值压力越大。
     第三,液相放电能有效利用冲击波作用范围广的特点,以及紫外线和自由基有效扩散,最大限度地利用了能量,单次放电即可实现大范围的有效作用。利用液相高压脉冲放电产生的冲击波、紫外线联合作用远距离处理管道内污损生物紫贻贝,并对紫贻贝附着率及死亡率进行了调查,同时对紫贻贝的生物活性进行了监测,探讨了液相高压脉冲放电远距离处理污损生物的可行性。实验表明,提高脉冲峰值电压、增加输出能量、低频长时间、多次处理短时间对紫贻贝的去除均有较好的效果,反之则相反。同时,放电处理可以有效的降低贻贝的生物活性,且各组实验中,紫贻贝体内酶系统超氧化物歧化酶(SOD)活力与丙二醛(MDA)浓度呈负相关,过氧化氢酶(CAT)活力与过氧化氢(H2O2)浓度呈负相关,SOD趋势与CAT趋势近似。证明了液相高压脉冲放电可快速有效去除附着在远距离管道中的紫贻贝。
Technology of high-voltage pulse discharge in liquid occurred in liquid between two electrodes by applying high-voltage pulse, and the process of discharging can produce strong shock waves, ultraviolet, various active, free radicals and the strong electric field. Prior research is limited to single factor of various effects of pulse discharge in liquid were, and various effects produced by discharge in liquid have not been taken into account, especially the relative contribution of free radicals, electric field, ultraviolet radiation and shock waves has not been studied in detail. In this paper, the mechanism and application of the discharge in liquid are studied in detail, and the main conclusions are as follows:
     First of all, various effects of needle-plate discharge in liquid are separated by the small tubes of different materials to investigation its proportion of multiple effects such as shock wave, ultraviolet radiation, strong electric field and various active free radicals generated in pulse discharge in liquid. In the experiment, the change of distance (d) apart from the discharge point and peak voltage has no effect on the radiation sterilization of the ultraviolet. Unlike ultraviolet (UV), the sterilization of the shock wave decreases when increasing of distance (d). In the experiment, the change of peak voltage has no effect on the sterilization of shock wave. The distance (d) from the discharge point has very significant effect on the sterilization of electric field. The farther the distance is apart from the central axis of discharging, the smaller the sterilization of electric field is. In the center axis of discharging, the proportion of ultraviolet radiation, shock wave, the electric field on the sterilization are approximately30.8±4.8%、36.1±5.5、12.7±1.8%respectively, thus the proportion of the active free radicals on the sterilization is calculated, and the value is about20.4±2.5%。
     Secondly, a large discharge device with4m-long pipe is designed, and the type of the electrode is rod-rod. The peak pressure and propagation characteristic of shock wave are measured using pressure sensor. The propagation speed of shock wave underwater is1500m/s. When the electrode gap is constant, the shock waves increase with the increasing of voltage. the shock wave intensity is calculated by averaging many values of the experiment, and the experience formula is Pr=2.56E·e-0.4831r. In the experiment, when the voltage of discharging remains constant, and the electrode gap increases from3mm to7mm, the shock wave peak increases first and then decrease. The pressure of the shock wave increases with the increasing of electrode gap, when the current peak is under the same conditions. The reason is mainly that the electrical breakdown time of plasma channel depends on the equivalent resistance of the channels and the current peak. When the electrode gap increases, the equivalent resistance of the channels is also increases. Therefore, if the current is constant, the power of plasma channel increases with the increasing of the electrode spacing. Pulse energy has a linear relation with the peak pressure of shock wave; the peak pressure of shock wave is increased when the discharge power is greater.
     Thirdly, discharge in liquid can effective use the advantage of shock wave and the effective diffusion of ultraviolet rays and free radicals, and the energy is used effectively. A single discharge can be effective in a wide range. The fouling organism Mytilus edulis Linnaeus which is in the pipe over a long distance is killed using the shock wave and the UV produced by the high-voltage pulse discharge in liquid, and the adhesion and mortality rates of Mytilus edulis Linnaeus were investigated. At the same time, the biological activity of Mytilus edulis Linnaeus was also monitored. The feasibility of treatment of fouling organisms using high voltage pulse discharge in liquid was also studied. The results showed that increasing the pulse voltage peak, increasing the total intput energy, low frequency and long time, many times dealing and short time had good effect on the eliminating of Mytilus edulis Linnaeus. At the same time, the discharge process can effectively reduce the biological activity of Mytilus edulis. In every group of experiment, the activity of enzyme system SOD in Mytilus edulis Linnaeus is negatively correlated with the concentration of MDA, and the activity of CAT is negatively correlated with the concentration of H2O2, and the trend of SOD is similar to that of CAT. It is proved that the high-voltage pulse discharge in liquid can be quickly and effectively on the remove of Mytilus edulis Linnaeus in the long-distance pipe.
引文
[1]Lange H, Sioda M, Huczko A et al. Nanocarbon production by arc discharge in water. Carbon, 2003,41(8):1617-1623.
    [2]Sano N, Charinpanitkul T, Kanki T et al. Controlled syntheis of carbon nanoparticles by arc in water method with forced convective jet. Journal of Applied Physics,2004,96(1):645-649.
    [3]Hu J J, Bultman E J, Zabinski S J. Inorganic fullerene-like nanoparticles produced by arc discharge in water with potential lubricating ability. Tribology Letters,2004,17(3):543-546.
    [4]Montoro A L, Lofrano C Z R, Rosolen M J. Synthesis of single-walled and multi-walled carbon nanotubes by arc-water method. Carbon,2005,43(1):200-203.
    [5]Bera D, Kuiry C S, McCutchen M et al, In situ synthesis of carbon nanotubes decorated with palladium nanoparticles using arc-discharge in solution method. Journal of Applied Physics,2004, 96(9):5152-5157.
    [6]Sano N. Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benzene. Materials Chemistry and Physics,2004,88(2-3):235-238.
    [7]Woloszko J, Stalder R K, Brown G I. Plasma characteristics of repetitively-pulsed electrical discharges in saline solutions used for surgical procedures. IEEE Transactions on Plasma Science, 2002,30(3):1376-1383.
    [8]Cleveland O R, Bailey R M, Fineberg N et al. Design and characterization of a research electrohydraulic lithotripter patterned after the dornier HM3. Review of Scientific Instruments,2000, 71(6):2514-2525.
    [9]Stalder R K, Woloszko J, Brown G I et al. Repetitive plasma discharges in saline solutions. Applied Physics Letters,2001,79(27):4503-4505.
    [10]Munegumi T, Shimoyama A, Harada K. Abiotic asparagine formation from simple amino acids by contact glow discharge electrolysis. Chemistry Letters,1997,26(5):393-394.
    [11]Kokufuta E, Shibasaki T, Sodeyama T et al. Simultaneously occurring hydroxylation, hydration, and hydrogenation of the C=C bond of aliphatic carboxylic acids in aqueous solution by glow discharge electrolysis. Chemistry Letters,1985,14(10):1569-1572.
    [12]Harada K, Iwasaki T. Synthesis of amino acid from aliphatic amines by contact glow discharge electrolysis. Chemistry Letters,1975,4(2):185-188.
    [13]Gambus G, Patino P, Navea J. Spectroscopic study of low-pressure water plasmas and their reactions with liquid hydrocarbons. Energy & Fuels,2002,16(1):172-176.
    [14]Malik A M, Ahmed M, Rehman et al. Synthesis of superabsorbent copolymers by pulsed corona discharges in water. Plasmas and Polymers,2003,8(4):271-279.
    [15]Sengupta K S, Sandhir U, Misra N. A study on acrylamide polymerization by anodic contact glow-discharge electrolysis: a novel tool. Journal of Polymer Science Part A: Polymer Chemistry, 2001,39(10):1584-1588.
    [16]Simor M, Krump H, Hudec I et al. Atmospheric pressure H2O plasma treatment of polyester cord threads. Acta Physica Slovaca,2004,54(1):43-48.
    [17]Fedotov A, Sheftman D, Gurovich T V et al. Spectroscopic research of underwater electrical wire explosion. Physics of Plasmas,2008,15(8):082704-1-082704-7.
    [18]Timoshkin V I, Mackersie W J, MacGregor J S. Plasma channel miniature hole drilling technology. IEEE Transactions on Plasma Science,32(5):2055-2061.
    [19]Krasik E Y, Grinenko A, Sayapin A et al. Underwater electrical wire explosion and its applications. IEEE Transactions on Plasma Science,2008,36(2):423-434.
    [20]Golovashchenko S, Mamutov V, Ilinich A. Eletro-hydraulic forming tool for forming sheet metal blank, has high voltage discharge producing shock wave in liquid that passes through membrane and through other liquid to form blank against forming surface in cavity. U.S., Al, 2008134741,12 Jun 2008
    [21]Zhang J B, Zheng Z, Zhang Y N. Low-temperature plasma-induced degradation of aqueous 2,4-dinitrophenol. Journal of Hazardous Materials,2008,154:506-512.
    [22]Hao X L, Zhou M H, Lei L C. Non-thermal plasma-induced photocatalytic degradation of 4-chloropheno in water. Journal of Hazardous Materials,2007,141:475-482.
    [23]Marotta E, Schiorlin M, Ren X W et al. Advanced oxidation process for degradation of aqueous phenol in a dielectric barrier discharge reactor. Plasma Processes and Polymers,2011,8(9):867-875.
    [24]Zhang Y Z, Sun B Y, Deng S H. Methyl orange degradation by pulsed discharge in the presence of activated carbon fibers. Chemical Engineering Journal,2010,159:47-52.
    [25]Bian W J, Song X H, Liu D Q et al. The intermediate products in the degradation of 4-chlorphenol by pulsed high voltage discharge in water. Journal of Hazardous Materials,2011, 192(3):1330-1339.
    [26]Miyazaki Y, Satoh K, Itoh H. Pulsed Discharge Purification of Water Containing Nondegradable Hazardous Substances. Electrical Engineering in Japan,2011,174(2):1-8.
    [27]Boussetta N, Vorobiev E, Deloison V et al. Valorisation of grape pomace by the extraction of phenolic antioxidants: application of high voltage electrical discharges. Food Chemistry, 2011:128(2):364-370.
    [28]Krause H, Schweiger B, Prinz E et al. Degradation of persistent pharmaceuticals in aqueous solutions by a positive dielectric barrier discharge treatment. Journal of Electrostatics,2011, 69(4):333-338.
    [29]Wang L. Aqueous organic dye discoloration induced by contact glow discharge electrolysis. Journal of Hazardous Materials,2009,171:577-581.
    [30]Subrahmanyam Ch, Magureanu M, Renken A et al. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. Applied Catalysis B:Environmental,2006,65:150-156.
    [31]Liang W J, Li J, Li J. Abatement of toluene from gas streams via ferro-electric packed bed dielectric barrier discharge plasma. Journal of hazardous material,2009,170:633-638.
    [32]Gai K. Anodic oxidation with platinum electrodes for degradation of p-xylene in aqueous solution. Journal of Electrostatics,2009,67:554-557.
    [33]Subrahmanyam Ch, Renken A, Kiwi-Minsker L. Catalytic non-thermal plasma reactor for abatement of toluene. Chemical Engineering Journal,2010,160:677-682.
    [34]Lu B, Zhang X, Yu X et al. Catalytic oxidation of benzene using DBD corona discharges. Journal of Hazardous Materials,2006, B137:633-637.
    [35]Li J H, Goh W H, Yang X C et al. Non-thermal plasma-assisted catalytic NOx storage over Pt/Ba/A12O3 at low temperatures. Applied Catalysis B:Environmental,2009,90:360-367.
    [36]Durme J V, Dewulf J, Leys C et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B:Environmental,2008,78:324-333.
    [37]Durme V J, Dewulf J, Demeestere K et al. Post-plasma catalytic technology for the removal of toluene from indoor air: Effect of humidity. Applied Catalysis B:Environmental,2009,87:78-83.
    [38]Wang T C, Lu N, Li J et al. Degradation characteristics of pentachlorophenol in soil under different plasma using pulsed electrical discharge. Intermational Journal of Plasma Environmental Science and Technology,2010,4:101-107.
    [39]Wang T C, Lu N, Li J, et al. Evaluation of the Potential of Pentachlorophenol Degradation in Soil by Pulsed Corona Discharge Plasma from Soil Characteristics. Environmental Science Technology,2010,44:3105-3110.
    [40]Wang T C, Lu N, Li J et al. Degradation of pentachlorophenol in soil by pulsed corona discharge plasma. Journal of Hazardous Materials,2010,180:436-441.
    [41]Wang C H, Wu Y, Shen X Q. A muti-wire-to-cylindrical type packed-bed plasma reactor for the inactivation of M. aeruginosa. Journal of Electrostatics,2010,68(1):31-35.
    [42]Korachi M, Turan Z, Senturk K et al. An investigation into the biocidal effect of high voltage AC/DC atmospheric corona discharges on bacteris, yeasts, fungi and algae. Journal of Electrostatics, 2009,67:678-685.
    [43]Lee C H, Kim J, Yoon J. Inactivation of MS2 bacteriophage by streamer corona discharge in water. Chemosphere,2011,82(8):1135-1140.
    [44]Izdebski T, Dors M, Mizeraczyk J. River water remediation using electrohydraulic discharges or ozonation. IEEE Transactions on Plasma Science,2011,39(3):953-959.
    [45]Shimizu K, Yamada M, Kanamori M. Basic Study of Bacteria Inactivation at Low Discharge Voltage by Using Microplasmas. IEEE Transactions on Industry Applications,2010,46(2):641-649.
    [46]赵华侨著,等离子体化学与工艺[M].中国科技大学出版社:合肥,1993.
    [47]Akiyama H. Streamer discharges in liquids and their applications. IEEE Trans.Electr.Insul., 2000,7(5):646-653.
    [48]Yan K, Hui H, Cui M et al. Corona induced non-thermal plasmas: fundamental study and industrial applications. Journal of Electrostatics,1998,44:17-39.
    [49]Sun B, Sato M, Harano A et al. Non-Uniform pulse discharge-induced radical radical production in distilled water. Journal of Electrostatics,1998,43:115-126.
    [50]Willberg D M, lang P S. Degradation of 4-chlorophenol,3,4-dichloroaniline, and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor. Environmental Science & Technology, 1966,30:2526-2534.
    [51]李胜利,向浩,李劲.实验用ns级脉冲高压电源的研制.高电压技术,2000,26(1):14-15.
    [52]赵君科,夏连胜,任先文,等.陡沿纳秒脉冲电源的研制.高电压技术,1999,25(2):44-46.
    [53]李国锋,吴彦,王宁会.脉冲电晕放电特性研究.大连理工大学学报,1999,39(6):736-740.
    [54]张纪昌,谢敏,刘云涛.10 kW脉冲电晕烟气脱硫电源.爆炸波与冲击波,1999(3):117-121.
    [55]Massimo R, Yan K. Evaluation of pulse voltage generators. IEEE,1993,1434-1441.
    [56]Lawless P A, Yamamoto T, Poteat S et al. Characteristic of a fast rise time power supply for a pulse plasma reactor. Industry Applications Society Annual Meeting. Conference Record of the IEEE,1993,1875-1881.
    [57]张纪昌,谢敏,刘云涛.10kW脉冲电晕烟气脱硫电源.爆炸波与冲击波,1999,3:117-121.
    [58]Yan K, Winands G J J, Nairl S A et al. Evalution of Pulsed Power Sources for Plasma Generation. Journal of Advanced Oxidation Technologies,2004,7(2):116-122.
    [59]Yan K, Smulders H W M, Wouters P A A F et al. A novel circuit topology for pulsed power generation. Journal of Electrostatics,2003,58:221-228.
    [60]刘志强,赵会良,翟建邦.毫秒级无火花高压脉冲电源.河北大学学报(自然科学版),16(2):66-69.
    [61]何孟兵,李劲,姚宗干.高功率脉冲放电间隙开关综述.高电压技术,2000,26(4):33-35.
    [62]Li J, Wu Y, Wang N H. Industrial-scale experiments of desulfuration of coal flue gas using a pulsed corona discharge plasma. IEEE Transactions on Plasma Science,2003,31(3):333-337.
    [63]国家环保局.大气污染防治技术研究.北京:科学出版社,1992.
    [64]李德.脉冲电晕放电特性及能量有效的利用.第二届国际应用静电会议论文集.北京,1993:1-11.
    [65]Masuda S. Pulse energization system of electrostatic precipitator for retrofitting application. IEEE Transactions on Industry Applications,1988,24(4):708-716.
    [66]Lawless P A,Yamamoto T, Shofran S et al. Characteristics of a fast rise time power supply for a pulsed plasma reactor for chemical vapor destruction. IEEE Transactions on Industry Applications, 1996,32(6):1257-1265.
    [67]Yan K, Heesch, Nair S A et al. A triggered spark-gap switch for high repetition rate high-voltage pulse generation. Journal of Electrostatics,2003,57:29-33.
    [68]Mok Y S. Efficient energy delivery condition from pulse generation circuit to corona discharge reactor. Plasma Chemistry and Plasma Processing,2000,20(3):353-364.
    [69]Sunka P. Pulse electrical discharges in water and their applications. Physics of Plasmas,2001, 8:2587-2594.
    [70]Robinson J W, Ham M, Balaster A N. Ultraviolet radiation from electrical discharges in water. Journal of Applied Physics,1973,44(1):72-75.
    [71]Jakob L, Hashem T M, Burki S et al. Vacuum-ultraviolet(VUV) photolysis of water-oxidative-degradation of 4-chlorophenol. Journal of Photochemistry and Photobiology A-chemistry,1993,75:97-103.
    [72]Coleman A J, Saunders J E, Crum L A et al. Acoustic caviation generated by an extracorporeal shock wave lithotripter. Ultrasound in Medicine and Biology,1987,13:69-76.
    [73]Martin E A. Experimental investigation of a high-Energy density, high-pressure arc plasma. Journal of Applied Physics,1960,31:255-267.
    [74]Sugiarto A T, Sato M. Pulsed plasma processing of organic compounds in aqueous solution. Thin Solid Films,2001,386:295-299.
    [75]Lukes P, Clupek M, Sunka P et al. Effect of ceramic composition on pulse discharge induced processes in water using ceramic-coated wire to cylinder electrode system. Czechoslovak Journal of Physics,2002,52:800-807.
    [76]Malik M A, Minamitani Y, Xiao S et al. Streamers in water filled wire-cylinder and packed-bed reactors. IEEE Transactions on Plasma Science,2005,33:490-491.
    [77]Lang P S, Ching W K, Willberg D M et al. Oxidative degradation of 2,4,6-Trinitroluene by ozone in an electrohydraulic discharge reactor. Environmental Science & Technology,1998, 32:3142-3148.
    [78]Willberg D M, Lang P S, Hochemer R H et al. Degradation of 4-Chlorophenol, 3,4-Dichloroaniline, and 2,4,6-Trinitrotoluene in an electroyudraulic discharge reactor. Environmental Science & Technology,1996,30:2526-2534.
    [79]Sugiarto A T, Ohshima T, Sato M. Advanced oxidation processes using pulsed streamer corona discharge in water. Thin Solid Films,2002,407:174-178.
    [80]Ohshima T, Sato K, Terauchi H, et al. Physical and chemical modifications of high-voltage pulse sterilization. Journal of Electrostatics,1997,42:159-166.
    [81]Lukes P, Appleton A, Locke B R. Hydrogen peroxide and ozone formation in hydrid gas-liquid electrical discharge reactors. IEEE Transactions on Industry Applications,2004,40:60-67.
    [82]Lukes P, Clupek M, Bavicky V et al. Generation of ozone by pulsed corona discharge over water durface in hybrid gas-liquid electrical discharge reactor. Journal of Physics D-applied Physics, 2005,38:409-416.
    [83]Lukes P, Clupek M, Bavicky V et al. Ozone formation by gaseous corona discharge generated above aqueous solution. Czechoslovak Journal of Physics,2004,54:908-914.
    [84]Sugiarto A T, Ito S, Ohshima T et al. Oxidative decoloration of dyes by pulsed discharge plasma in water. Journal of Electrostatics,2003,58(1-2):135-145.
    [85]Sun B, Sato M, Clements J S. Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution. Journal of Physics D: Applied Physics,1999,32(15):1908-1915.
    [86]Sharma A K, Locke B R, Arce P et al. A prelmiinary study of pulsed streamer corona discharge for the degradation of phenol in aqueous solution. Hazardous Waste and Hazardous Materials,1993, 10(2):209-219.
    [87]Sato M, Ohgiyama T, Clements J S. Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water. IEEE Transactions on Industry Applications,1996,32(1):106-112.
    [88]陈银生,张新胜,袁渭康.高压脉冲电晕放电等离子体降解废水中苯酚.环境科学学报,2002,22(5):567-570.
    [89]Suarasan 1, Ghizdavu L, Ghizdavu I, et al. Experimental Characterization of Multi-Point Corona Discharge Devices for Direct Ozonization of Liquids. Journal of Electrostatics,2002,54:207-215.
    [90]Zhang Y, Zhou M H, Lei L C. Novel gas-liquid hybrid discharge reactor for 4-cp containing wastewater treatment. Chinese Chemical Letters.2006,17(4):325-333.
    [91]Wang H J, Li J, Quan X. Decoloration of azo dye by a multi-needle-to-plate high-voltage pulsed corona discharge system in water. J Electrostat.2006,64:416-421.
    [92]Sato M, Yamada Y and Sugiarto A T. Decoloration of dyes in aqueous solution by pulsed discharge plasma in water through the pinhole. Transactions of Institute of Fluid-Flow Machinery, 2000,107:95-100.
    [93]Han Y. Lee and Han S. Uhm. Underwater discharge and cell destruction by Shockwaves, Journal of the Korean Physical Society,2003,42:880-884.
    [94]Brimingham J G, Hammerstro D J. Bacterial decontamination using ambient pressure nonthermal discharges. IEEE Transactions Plasma Science,2000,28(1):51-55.
    [95]Abou-Ghazala A, Katsuki S, Schoenbach K H, et al. Bacterial decontamination of water by means of pulsed-corona discharges. IEEE Transactions Plasma Science,2002,30(4):1449-1453.
    [96]Katsumi S, Akiyama H, Abou-Ghazala A, et al. Parallel streamer discharges between wire and plane electrodes in water. IEEE Transactions on Dielectrics Electrical Insulation,2002,9(4): 498-506.
    [97]Kunitomo S, Sun B. Removal of phenol in water by pulsed high voltage discharge. Pulsed Power Plasma Science,2001,2:1138-1141.
    [98]Locke B R, Sato M, Sunka P, et al. Electrohydraulic discharge and nonthermal plasma for water treatment. Industrial & Engineering Chemistry Research,2006,45(3):882-905.
    [99]Sano N, Kawashima T, Fujikawa J, et al. Decomposition of organic compounds in water by direct contact of gas corona discharge:(?) influence of discharge conditions. Industrial & Engineering Chemistry Research,2002,41(24):5906-5911.
    [100]Sano N, Fujimoto T, Kawashima T, et al. Influence of dissolved inorganic additives on decomposition of phenol and acetic acid in water by direct contact of gas corona discharge. Separation and Purification Technology,2004,37(2):169-175.
    [101]Laroussi M, Lu X, Malott C M. A non-equilibrium diffuse discharge in atmospheric pressure air. Plasma Sources Science and Technology,2003,12(1):53-56.
    [102]Velikonja J, Bergougnou M A, Castle G S P, et al. Co-generation of ozone and hydrogen peroxide by dielectric barrier AC discharge in humid oxygen. Ozone Science & Engineering,2001, 23(6):467-478.
    [103]Suarasan I, Ghizdavu L, Ghizdavu I, et al. Experimental characterization of multi-point corona discharge devices for direct ozonization of liquids. Journal of Electrostat,2002,54(2):207-214.
    [104]Ohneda H, Harano A, Sadakata M, et al. Improvement of NOx removal efficiency using atomization of fine droplets into corona discharge. Journal of Electrostatics,2002,55(3-4):321-332.
    [105]Sunka P, Babicky V, Clupek M, et al. Generation of chemically active species by electrical discharges in water. Plasma Sources Science and Technology,1999,8(2):258-265.
    [106]Lisitsyn L V, Nomiyama H, Katsuki S et al. Thermal processes in a streamer discharge in water. IEEE Transactions on Dielectrics and Electrical Insulation,1999,6(3):351-356.
    [107]白希尧,白敏冬,周晓见.羟基药剂治理赤潮研究.自然杂志,2002,24(1):26-32.
    [108]Goryachev V L, Ufimtsev A A, M Khodakovsk A. Mechanism of electrode erosion in pulsed discharges in water with a pulse energy of-1J. Technical Physics Letters,1997,23(5):386-387.
    [109]杨彬.高压脉冲放电降解染料废水的研究:(博士学位论文).杭州:浙江大学,2004.
    [110]Clements J S, Sato M, Davis R H. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high voltage discharge in water. IEEE Transactions on Industry Applications,1987,23(2):224-235.
    [111]王翠华.脉冲放电等离子体杀菌灭藻及其藻毒素去除的研究:(博士学位论文).大连:大连理工大学.2008.
    [112]Sun H Y, Zhou X Y, Jin J M et al. New prototype of underwater sound source based on the pulsed corona discharge. Journal of Electrostatics,2005,63(6-10):969-975.
    [113]Joshi A A, Locke B R, Arce P et al. Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. Journal of Hazardous Materials,1995,41(1):3-30.
    [114]Baerdemaeker F D, Simek M, Clupek M et al. Hydrogen peroxide production in Capillary underwater discharges. Czechoslovak Journal of Physics,2006,56(Supplement B):B1132-B1139.
    [115]Kirkpatrick J M, Locke R B. Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge. Industrical & Engineering Chemistry Research,2005, 44(12):4243-4248.
    [116]Sun B, Sato M, Clements J. Optical study of active species produced by a pulsed streamer corona discharge in water. Journal of Electrostatics,1997,39(3):189-202.
    [117]尤特金著.于家珊译.液电效应.北京:科学出版社,1962.
    [118]Cook J A., Gleeson A M, Roberts R M, et al. A spark-generated bubble model with semi-empirical mass transport. Journal of the Acoustical Society of America.1997,101:1908-1920.
    [119]Roberts R M, Cook J A, Gleeson A M, Griffy T. and Rogers R.. The energy partition of underwater sparks. Journal of the Acoustical Society of America.1996,99(6):3465-3475.
    [120]Kosenkov V M, Kuskova N. Development of breakdown in water. Soviet Physics Technical Physics,1987,32(10):1215-1217.
    [121]Gordeyenya E A, Matveyev A A, Effect of the Waveform of Voltage pulses on the efficiency of zone synthesis in corona discharge, Plasma Sources Science Technology,1994,3:575-583.
    [122]Zhekul V Z, Rakovskii G B. Theory of electrical discharge formation in a conducting liquid. Soviet Physics Technical Physics,1983,28:4-8.
    [123]Robinson J W. Finite-difference Simulation of an Electrical Discharge in Water, Journal of Applied Physics,1973,44(1):76-81.
    [124]Kuskova N I. Mechanisms of electrical breakdown in water. Soviet Physics Technical Physics, 1989,32(10):936-937.
    [125]孙鹞鸿,左公宁.用于井间地麓的传输式电火花震源.石油物探,2001,40(3):57-60.
    [126]左公宁.水中脉冲电晕放电的某些特性.高电压技术,2003,29(8):37-38.
    [127]Lu X P, Pan Y, Liu K. F, et al. Spark model of pulsed discharge in water. Journal of Applied Physics,2002,91:24-31.
    [128]卢新培,潘坦,刘克富,等.水中主电等离子体状态方程的理论研究.高压物理学报,2001(15):103-110.
    [129]卢新培,张寒虹.水中脉冲放电的电特性与声辐射特性研究.物理学报,2002,51:1549-1553.
    [130]卢新培,张寒虹,潘坦,等.水中脉冲放电的压力特性研究.爆炸与冲击,2001,21:282-286.
    [131]卢新培,潘坦,张寒虹.水中脉冲放电等离子体通道特性及气泡破裂过程.物理学报,2002,51:1768-1772.
    [132]Akio K, Masahiro F, Shigeru I. Underwater explosion of spherical explosives. Journal of Materials Processing Technology,1999,85:64-68.
    [133]Klaseboer E, Khoo B C, Hung K C. Dynamics of an oscillating bubble near a floating structure. Journal of Fluids and Structures,2005,21:395-412.
    [134]Ramajeyathilagam K, Vendhan C P. Deformation and rupture of thin rectangular plates subjected to underwater shock. International Journal of Impact Engineering,2004,30:699-719.
    [135]荣吉利,李健.基于DYTRAN软件的三围水下爆炸气泡运动研究.兵工学报,2008,29(3):331-336.
    [136]姚熊亮,张阿漫.简单Green函数法模拟三维水下爆炸气泡运动.力学学报,2006,38(6):749-759.
    [137]李健,荣吉利,杨荣杰,等.水中爆炸冲击波传播与气泡脉动的实验及数值模拟.兵工学报,2008,29(12):1437-1443.
    [138]Eubank P T, Patel M R, Barrufet M A, et al. Theoretical models of the electrical discharge machining process. Ⅲ. The variable mass, cylindrical plasma model. Journal of Applied Physics, 1993,73(11):7900-7909.
    [139]Madhavan S, Doiphode P M, Chaturvedi S. Modeling of shock-wave generation in wawter by electrical discharges. IEEE Transactions on Plasma Science,2000,28(5):1552-1557.
    [140]Lukes P. Water treatment by pulsed streamer corona discharge. Prague:Institute of Chemical Technology,2001.
    [141]Lang P S, Ching W K, Willberg D M et al. Oxidative degradation of 2,4,6-trinitrotoluene by ozone in an electrohydraulic discharge reactor. Environmental Science & Technology,1998, 32:3142-3148.
    [142]Sun B, Sato M. Characteristics of active species formation by pulsed high voltage discharge in water. Kagaku Kogaku Ronbunshu,1999,25:827-832.
    [143]Hemmert D, Shiraki K, Yokoyama T et al. Optical diagnostics of shock waves generated by a pulsed streamer discharge in water. Digest of Technical Papers-IEEE International Pulsed Power Conference: Dallas,2003:232-235.
    [144]Willberg D M, Lang S, Hochemer R H et al. Degradation of 4-chlorophenol, 3,4-dichloroaniline, and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor. Environmental Science & Technology,1996,30 (8):2526-2534.
    [145]Anto T S, Shunsuke I, Takayuki O et al. Oxidative decoloration of dyes by pulsed discharge plasma in water. Journal of Electrostatics,2003,58(122):135-145.
    [146]Sun B, Sato M, Clements J S. Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution. Environmental Science & Technology,2000,34(3): 509-513.
    [147]Lukes P, Clupek M, Babicky V, et al. Ultraviolet radiation from the pulsed corona discharge in water. Plasma Sources Science Technology,2008,17(2):12-24.
    [148]Chang J S, Ono S, Ukai H, et al. UV and optical emissions generated by the pulsed arc electrohydraulic discharge. International Journal of Plasma Enviroment Science Technology,2007, 1(2):130-134.
    [149]卢新培,潘坦,刘克富,等.水中放电等离子体辐射特性研究.华中科技大学学报,2000,28:85-87.
    [150]Sun B, Kunitomo S, Igarashi C. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water. Journal of Physics D:Applied Physics,2006,39(17):3814-3820.
    [151]Matin E A. Experimental investigation of a high-energy density, high-pressure arc plasma. Journal of Applied Physics,1960,31(2):225-267.
    [152]Zhang Q H, Monsalve-Gonzalez A, Barbosa-Ca'novas G V, et al. Inactivation of 5. cerevisiae in apple juice by square-wave and exponential-decay pulsed electric fields. Journal of Food Process Engineering,1994,17(4):469-478.
    [153]Zhang Q H, Monsalve-Gonzalez A, Barbosa-Ca'novas G V, et al. Inactivation of E. coli and S. cerevisiae by pulsed electric fields under controlled temperature conditions. Transactions of the ASAE,1994,37(2):581-587.
    [154]Sale A J H, Hamilton W A. Effects of high electric fields on microorganisms. I. Killing of bacteria and yeasts. Biochimica et Biophysica Acta-biomembranes,1967,148(3):781-788.
    [155]Zimmermann U. Electric breakdown.electropermeabilization and electrofusion. Reviews of physiology and biochemistry Pharmacology,1986,105:175-256.
    [156]Tsong T Y. Electroporation of cell membranes. Biophysical Journal,1991,60(2):297-306.
    [157]Gongora M M, Pedrow P D, Swanson B G, et al. Use of circuit analysis simulations in pulsed electric fields food processing. Journal of Food Process Engineering,2004,61 (3):413-420.
    [158]Aguilo-Aguayo I, Odriozola-Serrano I, Quintao-Teixeira L J et al. Inactivation of tomato juice peroxidase by high-intensity pulsed electric fields as affected by process conditions. Food Chemistry, 2008,107(2):949-955.
    [159]Min S, Evrendilek G A, Zhang H Q. Pulsed electric fields: Processing system, microbial and enzyme inhibition, and shelf life extension of foods. IEEE Transactions on Plasma Science,2007, 35(1):59-73.
    [160]Alvarez I, Raso J, Palop A et al. Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric field. International Journal of Food Microbiology,2000, 55(1-3):143-146.
    [161]Marquez V O, Mittal G S, Griffiths M W. Destruction and inhibition of bacterial spores by high voltage pulsed electric field. Journal of Food Science,1997,62(2):399-401.
    [162]Aronsson K, Lindgren M, Johansson B R et al. Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeris innocus, Leuconostoc mesenteroides and Saccharomyces cerevisiae. Innovative Food Science & Emerging Technologies,2001,2(1):41-54.
    [163]Vega-Mercado H, Martin-Belloso O, Chang F J, et al. Inactivation of Escherichia Coli and Bacillus subtilis suspended in pea soup using pulsed electric field. Journal of Food Processing and Preservation,1996,20(6):501-510.
    [164]MacGregor S J, Farish O, Fouracre R, et al. Inactivation of pathogenic and spoilage microorganisms in a test liquid using pulsed electric fields. IEEE Transactions on Plasma Science, 2000,28(1):144-149.
    [165]Ho S Y, Mittal G S, Cross J D, et al. Inactivation of Pseudomonas fluorescens by high voltage electric pulses. Journal of Food Science,1995,60(6):1337-1340.
    [166]Beveridge J R, MacGregor S J, Marsili L, et al. Comparison of the effectiveness of biphase and monophase rectuangular pulses for the inactivation of microorganisms using pulsed electric fields. IEEE Transactions on Plasma Science,2002,30(4):1525-1531.
    [167]Beveridge J R, MacGregor S J, Anderson J, et al. The influence of pulse duration on the inactivation of bacteria using monopolar and bipolar profile pulsed electric fields. IEEE Transactions on Plasma Science,2005,33(4):1287-1293.
    [168]Wouters P C, Dutreux N, Smelt J, et al. Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Applications Enviromental Microbial,1999,65(12):5364-5371.
    [169]Alvarez I, Pagan R, Raso J, et al. Environmental factors influencing the inactivation of Listeria monocytogenes by pulsed electric fields. Letters in Applied Microbiology,2002,35(6):489-493.
    [170]Jeantet R, Baron F, Nau F, et al. High intensity pulsed electric fields applied to egg white: Effect of Salmonella enteritidis inactivation and protein denaturation. Journal of Food Protect,1999, 62(12):1381-1386.
    [171]Garcia D, Gomez N, Condon S et al. Pulsed electric fields cause sublethal injury in Escherichia coil. Letters in Applied Microbiology,2003,36(3):140-144.
    [172]Alvarez I, Raso J, Sala F J et al. Inactivation of Yersinia enterocolitica by pulsed electric fields. Food Microbiol,2003,20(6):691-700.
    [173]Qin B L, Chang F J, Barbosa-Canovas G V, et al. Nonthermal inactivation of Saccharomyces cerevisiae in apple juice using pulsed electric fields. LWT-Food Science and Technology,1995, 28(6):564-568.
    [174]Qin B L, Barbosa-Canovas G V, Swanson B G, et al. Inactivating microorganisms using a pulsed electric field continuous treatment system. IEEE Transactions on Industry Applications,1998, 34(1):43-50.
    [175]Jia M, Zhang Q H, Min D B. Pulsed electric field processing effects on flavor compounds and microorganisms of orange juice. Food Chemistry,1999,65(4):445-451.
    [176]Sepulveda D R, Guerrero J A, Barbosa-Canovas G V, et al. Influence of electric current density on the bactericidal effectiveness of pulsed electric field treatments. Journal of Food Engineering,2006,76(4):656-663.
    [177]Aronsson K, Borch E, Stenlof B, et al. Growth of pulsed electric field exposed Escherichia coli in relation to inactivation and environmental factors. International Journal Food Microbial,2004, 93(1):1-10.
    [178]Perni S, Chalise P R, Shama G et al. Bacterial cells exposed to nanosecond pulsed electric fields show lethal and sublethal effects. International Journal Food Microbial,2007,120(3):311-314.
    [179]Roodenburg B, Morren J, Berg H E, et al. Metal release in a stainless stell Pulsed Electric Field(PEF) system: Part 1. Effect of different pulse shapes; theory and experimental method. Innovative Food Science & Emerging Technologies,2005,6(3):327-336.
    [180]Morren J, Roodenburg G, Haan de S W H. Electrochemical reactions and electrode corrosion in pulsed electric field(PEF) treatment chamber. Innovative Food Science & Emerging Technologies, 2003,4(3):285-295.
    [181]Toepfl S, Heinz V, Knorr D. High intensity pulsed electric fields applied for food preservation. Chemistry Emerging Technologies,2007,46(6):537-546.
    [182]Vega-Mercado H, Martin-Belloso O, Qin B L et al. Non-thermal food preservation: Pulsed electric fields. Trends in Food Science & Technology,1997,8(5):151-157.
    [183]Delius M. Medical applications and bioeffects of extracorporeal shock waves. Shock Waves, 1994,4(2):55-72.
    [184]Delius M, Hofschneider P, Lauer U, et al. Extracorporeal shock waves for gene therapy. Lancet,1995,354(8961):1377-1381.
    [185]Zuckerman H, Krasik Y E, Felsteiner J. Inactivation of microorganisms using pulsed high-current underwater discharges. Innovative Food Science & Emerging technologies,2002,3(4): 329-336.
    [186]Gavand M R, McClintock J B, Amsler C D, et al. Effects of sonication and advanced chemical oxidants on the unicellular green alga Dunaliella tertiolecta and cysts, larve and adults of the brine shrimp Artemia salina: A prospecative treatment to eradicate invasive organisms from ballast water. Marine Pollution Bulletin,2007,54(11):1777-1788.
    [187]Rassweilera J J, Knollb T, Kohrmannc K U, et al. Shock wave technology and application: an update. European Urology,2011,59(5):784-796.
    [188]Higa O, Matsubara R, Higa K, et al. Mechanism of the shock wave generation and energy efficiency by underwater discharge. International Journal of Multiphysics,2012,6(2):89-98.
    [189]Zhang M, Xu N, Li C. Micro-pore ceramic filter and UV system as ballast water treatment: preliminary study on Chlorella removal and bacteria inactivation. Journal of Advanced Oxidation Technologies,2008,11(1):125-129.
    [190]Yoon S Y, Lee S H, Hong J W, et al. Hydroxyl radical generation on bubble surface of aqua-plasma discharge. IEEE Transactions on Plasma Science,2011,39(11):2658-2659.
    [191]Sugianto A T, Sato M. Pulsed plasma processing of organic compounds in aqueous solution. Thin Solid Films,2001,386(2):295-299.
    [192]Hartmann W, Roemheld M, Rohde K D, et al. Large area pulsed corona discharge in water for disinfection and pollution control. IEEE Transactions on Dielectrics and Electrical Insulation, 2009,16(4):1061-1065.
    [193]Ohshima T, Okuyama K, Sato M. Effect of culture temperature on high-voltage pulse sterilization of Escherichia coli. Journal of Electrostatics,2002,55(3-4):227-235,.
    [194]Shiina S, Ohshima T, Sato M. Extracellular Release of Recombinant a-Amylase from Escherichia coli Using Pulsed Electric Field. Biotechnology Progress,2004,20(5):1528-1533.
    [195]Monfort S, Gayan E, Saldana G, et al. Inactivation of Salmonella Typhimurium and Staphylococcus aureus by pulsed electric fields in liquid whole egg. Innovative Food Science& Emerging technologies,2010,11(2):306-313.
    [196]Huang K, Wang J P. Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process:A review. Journal of Food Engineering,2009,95(2):227-239.
    [197]Wan J, Coventry J, Swiergon P, et al. Advances in innovative processing technologies for microbial inactivation and enhancement of food safety-pulsed electric field and low-temperature plasma. Trends Food Science & Technology,2009,20(9):414-424.
    [198]Reville B, Bell A R, Gregori G. Diffusive shock acceleration at laser driven shocks:studying cosmic-ray accelerators in the laboratory. New Journal of Physics,2012,52(35):1-14.
    [199]Kovalchuk T, Toker G, Bulatov V, et al. Laser breakdown in alcohols and water induced by λ= 1064 nm nanosecond pulses. Chemical Physics Letters,2010,500(4-6):242-250.
    [200]Loske A M, Alvarez U M, Claudia H G, et al. Bactericidal effect of under water shock waves on Escherichia coli ATCC 10536 suspensions. Innovative Food Science & Emerging Technologies, 2002,3(4):321-327.
    [201]Lee C, Kim J, Yoon J. Inactivation of MS2 bacteriophage by streamer corona discharge in water. Chemosphere,2011,82(8):1135-1140.
    [202]Doevenspeck H. Verfahren und Vorrichtung zur Gewinnung der einzelnen Phasen aus dispersen Systemen. Development,1960,1:237-541.
    [203]Sato M. Environmental and biotechnological applications of high-voltage pulsed discharge in water. Plasma Sources Science Technologies,2008,17(2):15-20.
    [204]Ohshima T, Sato M. Bacterial sterilization and intracellular protein release by a pulsed electric field. Advances in Biochemical Engineerig Biotechnology,2004,90:113-133.
    [205]Tanino T, Sato S, Oshige M, et al. Analysis of the stress response of yeast Saccharomyces cerevisiae toward pulsed electric field. Journal of Electrostatics,2012,70(2):212-216.
    [206]Lubicki P, Jayaram S. High voltage pulse application for the destruction of the gram-negative bacterium Yersinia enterocolitica. Biochimica et Biophysica Acta-Bioenergetics,1997,43(1): 135-141.
    [207]张雷,邓琦林,周锦进.液电效应除垢机理分析与试验研究.大连理工大学学报,1998,38(2):207-211.
    [208]曹文浩,严涛,刘永宏,等.海洋生物防污作用机制及应用前景.生态学杂志,2009,28(1):146-151.
    [209]张明明,赵文,于世超.我国海洋污损生物的研究概况.水产科学,2008,27(10):545-549.
    [210]郑彩璐,梁黎黎,赵卓.海洋污损防治技术研究进展.环境保护与循环经济,2009,11:48-50.
    [211]黄运涛,彭乔.海洋生物污损的防治方法及研究进展.全面腐蚀控制,2004,18(1):3-5.
    [212]梁成浩,顾谦农,吴青镐.电解海水防污处理技术.东海海洋,1997,5(1):59.65.
    [213]王丙玲,边洪村.海水消毒净化技术开发与应用,海岸工程,2001,20(3):65-68.
    [214]李长彦,张桂芳,付洪田.电解海水防污技术的发展及应用.材料开发与应用,1996,11(2):38-43.
    [215]汤理平.海船无公害防污技术探讨.交通部上海船舶运输科学研究所学报,1995,18(1):25-31.
    [216]赵晓燕.海洋天然产物防污研究进展.材料开发与应用,2001,16(4):34-37.
    [217]刘姗姗,严涛.海洋污损生物防除的现状及展望.海洋学研究,2006,24(4):53-60.
    [218]Pacheco M, Santos M A. Induction of liver EROD and erythrocyticnuclear abnormalities by cyclophosphamide and PAHs in Anguilla anguillal. Ecotoxicology and Environmental Safety,1998, 40(1-2):71-76.
    [219]杨涛,陈海刚,蔡文贵,等.菲和苯并(1))荧蒽曝露对翡翠贻贝外套膜的氧化胁迫及损伤.南方水产科学,2011,7(4):24-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700