用户名: 密码: 验证码:
新型超声造影剂的制备和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声造影剂是一种可以显著增强医学超声诊断信号的辅助诊断试剂,提高超声诊断的敏感性和特异性,在医学影像诊断方面显示出良好的应用前景。目前关于超声造影剂的研究主要集中于两个方向:一是制备性能优良的新型造影剂;二是改进现有造影剂使其具有新功能。本文主要进行了基于表面活性剂的新型微泡超声造影剂的开发工作,以及在现有造影剂基础上制备多功能诊断试剂的研究工作。
     本文通过声振空化法成功的得到了一种基于表面活性剂Span 60和Myrj 52的新型微泡超声造影剂——SM65。制备这种造影剂的材料均具有良好的生物相容性,无毒、无刺激、无致癌作用。SM65微泡造影剂浓度为(5.58±0.15)×109/mL,平均粒径为1.63±1.68μm,其中超过98.4%的微泡直径在7μm以下,符合作为临床超声造影剂的浓度和尺寸要求。此造影剂动物体内造影效果良好,平均增强时间超过5 min,满足临床诊断要求。此外,我们通过Langmuir单分子膜法研究了微泡膜层中分子的组成比例和稳定性原理,并推断了其内在稳定机制。结果显示Span 60分子和Myrj 52分子以摩尔比9:1的比例可以形成稳定的SM65微泡膜层。
     在发展多功能诊断试剂的工作中,我们采用层层自组装法将碲化镉量子点与ST68微泡复合在一起,得到了具有荧光-超声双模式成像功能的新型复合诊断剂。荧光光谱和激光共聚焦显微镜的结果证实了量子点成功组装到了微泡的外表面,同时没有破坏微泡的结构。量子点修饰之后微泡的粒径相对减小,但仍满足临床使用的要求。体外和体内超声成像结果表明,这种量子点-微泡复合物仍保持良好的造影增强能力。另外,体外实验证明量子点-微泡复合物可以通过超声靶向破坏微泡技术在特定部位释放量子点达到靶向组织荧光成像的目的。制备这种双功能复合成像剂所采用的关键技术——层层自组装是一种非常简便通用的技术,在今后的研究中可以将量子点替换为药物、基因等多种物质,得到多功能的复合诊断/治疗试剂,它们将会在生命科学研究和临床医学实践中发挥重要的作用。
Ultrasound contrast agent (UCA), which can significantly improve the imaging quality in ultrasonic diagnosis with high sensitivity and specificity,is a promising assistant agent in medical imaging. Nowadays the research of UCA is focused on two fields: (1) the development of a novel contrast agent with high imaging quality; (2) the improvement of the existent UCA to develop multi-functional agents. This thesis successfully developed a novel surfactant-based UCA and a bi-mode imaging agent.
     A novel microbubble UCA was prepared from sonication of two surfactans Span 60 and Myrj 52, and named as SM65. The materials used to prepare SM65 had good biocompatibility and no toxicity, stimulation or carcinogenesis. SM65 had its concentration of (5.58±0.15)×10 9/mL, and average size of 1.63±1.68μm with more than 98.4% of microbubbles smaller than 7μm, which met the requirement as UCA. In vivo ultrasonography confirmed the novel UCA had good contrast imaging quality and could provide contrast enhancement more than 5 min. Moreover, the Langmuir monolayer experiments gave both theoretical and practical explanation of the stability principles of SM65 microbubbles. The results showed that the surfactants Span 60 and Myrj 52 with a 9:1 molar ratio could make a stable SM65 shell.
     On the other hand, a novel bi-mode diagnostic agent was fabricated in combination of ST68 microbubbles (MBs) and cadmium telluride quantum dots (CdTe QDs) by layer-by-layer (LbL) assembly technique. The photoluminescence experiment and confocal laser scanning microscopy confirmed that CdTe nano-particles were successfully deposited on the outer surface of the MBs. The static light scattering measurements showed that size distributions of MBs before and after QD adsorption met the size requirements for clinical application. Besides, the in vitro and in vivo ultrasound imaging indicated that the QD-modified MBs still maintained good contrast enhancement properties as ST68 MBs. Finally, the in vitro ultrasound-targeted microbubble destruction (UTMD) experiment of the QD-MB composites was carried out to validate the ability of MBs to deliver QDs for fluorescent imaging. The results showed that the QD-modified MBs not only maintained the capability of ultrasound imaging, but also could be used as targeted drug controlled-release system to deliver the QDs for cell and tissue fluorescent imaging by UTMD.
引文
1 Medical Imaging - Wikipedia. http://en.wikipedia.org/wiki/Medical_imaging.
    2周海昌,超声医学(第三版),科学技术出版社,北京, 1998.
    3 M. J. K. Blomley, J. C. Cooke, E. C. Unger, M. J. Monaghan, D.O. Cosgrove. Science, Medicine, and the Future - Microbubble Contrast Agents: A New Era in Ultrasound. Br. Med. J. 2001, 322(7296): 1222~1225
    4 B. B. Goldberg, J. B. Liu, F. Forsberg. Ultrasound Contrast Agents - a Review. Ultrasound Med. Biol. 1994, 20(4): 319~333
    5 D. Cosgrove. Ultrasound Contrast Agents: An Overview. Eur. J. Radiol. 2006, 60(3): 324~330
    6 R. Lencioni, Enhancing the Role of Ultrasound with Contrast Agents, Springer, Pisa, 2006.
    7 R. Gramiak, P.M. Shah. Echocardiography of Aortic Root. Invest. Radiol. 1968, 3: 356~366
    8 M. C. Ziskin, A. Bonakdarpour, D. P. Weinstein, P. R. Lynch. Contrast Agents for Diagnostic Ultrasound. Invest. Radiol. 1972, 7(6): 500~505
    9陆林忠,陈军.超声造影剂发展简述.中国医疗器械信息. 2004, 10: 16~19
    10 M. W. Keller, W. Glasheen, S. Kaul. Albunex: A Safe and Effective Commercially Produced Agent for Myocardial Contrast Echocardiography. J. Am. Soc. Echocardiogr. 1989, 2(1): 48~52
    11 S. B. Feinstein, F. J. Ten Cate, W. Zwehl, K. Ong, G. Maurer, C. Tei, P. M. Shah, S. Meerbaum, E. Corday. Two-Dimensional Contrast Echocardiography. I. In Vitro Development and Quantitative Analysis of Echo Contrast Agents. J. Am. Coll. Cardiol. 1984, 3(1): 14~20
    12 K. Q. Schwarz, X. Chen, S. Steinmetz, D. Phillips. Harmonic Imaging with Levovist. J. Am. Soc. Echocardiogr. 1997, 10(1): 1~10
    13 R. Venezia, C. Zangara. Echohysterosalpingography: New Diagnostic Possibilities with SHU 450 Echovist. Acta Eur. Fertil. 1991, 22(5): 279~282
    14 F. Calliada, R. Campani, O. Bottinelli, A. Bozzini, M. G. Sommaruga. Ultrasound Contrast Agents - Basic Principles. Eur. J. Radiol. 1998, 27: 157~160
    15 A. Raisinghani, A. N. DeMaria. Physical Principles of Microbubble UltrasoundContrast Agents. Am. J. Cardiol. 2002, 90(10A): 3~7
    16 J. L. Cohen, J. Cheirif, D. S. Segar, L. D. Gillam, J. S. Gottdiener, E. Hausnerova, D. E. Bruns. Improved Left Ventricular Endocardial Border Delineation and Opacification with OPTISON (FS069), A New Echocardiographic Contrast Agent. Results of a Phase III Multicenter Trial. J. Am. Coll. Cardiol. 1998, 32(3): 746~752
    17 M. Schneider. SonoVue, A New Ultrasound Contrast Agent. Eur. Radiol. 1999, 9(Suppl 3): 347~348
    18 D. W. Kitzman, M. E. Goldman, L. D. Gillam, J. L. Cohen, G. P. Aurigemma, J. S. Gottdiener. Efficacy and Safety of the Novel Ultrasound Contrast Agent Perflutren (Definity) in Patients with Suboptimal Baseline Left Ventricular Echocardiographic Images. Am. J. Cardiol. 2000, 86(6): 669~674
    19 C. Marelli. Preliminary Clinical Experience in Cardiology with Sonazoid. Am. J. Cardiol. 2000, 86(4A): 10~13
    20 A. Bauer, M. Blomley, E. Leen, D. Cosgrove, R. Schlief. Liver-Specific Imaging with SHU 563A: Diagnostic Potential of A New Class of Ultrasound Contrast Media. Eur. Radiol. 1999, 9(Suppl 3): 349~352
    21张青萍等.超声声学造影剂的原理、类型及其应用研究的现状.临床医学影像杂志. 1995, 6(3): 142~146
    22 N. deJong. Improvements in Ultrasound Contrast Agents. IEEE Eng. Med. Biol. Mag. 1996, 15(6): 72~82
    23陈立新等.造影剂在声场中的表现形式与声学造影新技术.国外医学生物医学工程分册. 2004, 27(3): 188~192
    24 W. H. Wright, T. P. McCreery, E. A. Krupinski, P. J. Lund, S. H. Smyth, M. R. Baker, R. L. Hulett, E. C. Unger. Evaluation of New Thrombus-Specific Ultrasound Contrast Agent. Acad. Radiol. 1998, 5: S240~S242
    25 R. Basude, J. W. Duckworth, M. A. Wheatley. Influence of Environmental Conditions on A New Surfactant-Based Contrast Agent: ST68. Ultrasound Med. Biol. 2000, 26(4): 621~628
    26 A. M. Takalkar, A. L. Klibanov, J. J. Rychak, J. R. Lindner, K. Ley. Binding and Detachment Dynamics Of Microbubbles Targeted to P-selectin under Controlled Shear Flow. J. Control. Release. 2004, 96(3): 473~482
    27赵玉英,智光.新型多聚体超声造影剂的研究进展.中国超声医学杂志. 2003, 19(4): 318~320
    28赵应征,张彦.微泡超声造影剂的研究进展.国外医学药学分册. 2003, 30(5): 298~302
    29 K. Q. Schwarz, G. P. Bezante, X. Chen, D. Phillips, R. Schlief. Hemodynamic Effects of Microbubble Echo Contrast. J. Am. Soc. Echocardiogr. 1996, 9(6): 795~804
    30 K. Soetanto, M. Chan. Fundamental Studies on Contrast Images from Different-Sized Microbubbles: Analytical and Experimental Studies. Ultrasound Med. Biol. 2000, 26(1): 81~91
    31 E. C. Unger, T. P. McCreery, R. H. Sweitzer, V. E. Caldwell, Y. Wu. Acoustically Active Lipospheres Containing Paclitaxel: A New Therapeutic Ultrasound Contrast Agent. Invest. Radiol. 1998, 33(12): 886~892
    32 A. L. Klibanov. Targeted Delivery of Gas-Filled Microspheres, Contrast Agents for Ultrasound Imaging. Adv. Drug Delivery. Rev. 1999, 37(1~3): 139~157
    33万明习,刘凯文,李莉.包膜超声造影剂喷射雾化制备方法研究.中国生物医学工程学报. 2002, 21(3): 239~241
    34 J. R. Lindner, S. Ismail, W. D. Spotnitz, D. M. Skyba, A. R. Jayaweera, S. Kaul. Albumin Microbubble Persistence during Myocardial Contrast Echocardiography is Associated with Microvascular Endothelial Glycocalyx Damage. Circulation. 1998, 98(20): 2187~2194
    35 E. C. Unger, T. P. McCreery, R. H. Sweitzer, D. K. Shen, G. L. Wu. In Vitro Studies of a New Thrombus-Specific Ultrasound Contrast Agent. Am. J. Cardiol. 1998, 81(12A): 58~61
    36夏红梅,高云华,卞爱娜.亲血栓性靶向超声造影剂的鉴定及体外寻靶实验研究.中国超声医学杂志. 2004, 20: 321~323
    37张群霞,王志刚.靶向声学造影剂的研究进展.中国医学影像技术. 2003, 19: 1407~1409
    38 E. Unger, P. Metzger, 3rd, E. Krupinski, M. Baker, R. Hulett, D. Gabaeff, J. Mills, D. Ihnat, T. McCreery. The Use of a Thrombus-Specific Ultrasound Contrast Agent to Detect Thrombus in Arteriovenous Fistulae. Invest. Radiol. 2000, 35(1): 86~89
    39汤庆,徐辉雄,吕明德.声学造影剂增强超声辐照对血管内皮细胞膜通透性作用的研究.中国超声医学杂志. 2005, 21: 11~13
    40张萍,高云华.靶向微泡造影剂评价血管内皮功能的研究进展.高血压杂志. 2004, 12: 287~289
    41 A. A. Bogdanov, K. Licha, Molecular Imaging, Springer, Berlin, 2005.
    42 A. L. Klibanov. Ligand-Carrying Gas-Filled Microbubbles: Ultrasound Contrast Agents for Targeted Molecular Imaging. Bioconjug. Chem. 2005, 16(1): 9~17
    43 A. L. Klibanov, J. J. Rychak, W. C. Yang, S. Alikhani, B. Li, S. Acton, J. R. Lindner, K. Ley, S. Kaul. Targeted Ultrasound Contrast Agent for Molecular Imaging of Inflammation in High-Shear Flow. Contrast Media Mol. Imaging. 2006, 1(6): 259~266
    44 G. E. R. Weller, F. S. Villanueva, E. M. Tom, W. R. Wagner. Targeted Ultrasound Contrast Agents: In Vitro Assessment of Endothelial Dysfunction and Multi-Targeting to ICAM-1 and sialyl Lewis. Biotechnol. Bioeng. 2005, 92(6): 780~788
    45伍星,王志刚.靶向超声微泡造影剂与超声分子显像.中国医学影像技术. 2005, 21: 1299~1301
    46 T. R. Porter, R. F. LeVeen, R. Fox, A. Kricsfeld, F. Xie. Thrombolytic Enhancement with Perfluorocarbon-Exposed Sonicated Dextrose Albumin Microbubbles. Am. Heart J. 1996, 132(5): 964~968
    47 U. Rosenschein, V. Furman, E. Kerner, I. Fabian, J. Bernheim, Y. Eshel. Ultrasound Imaging-Guided Noninvasive Ultrasound Thrombolysis: Preclinical Results. Circulation. 2000, 102(2): 238~245
    48 W. C. Culp, E. Erdem, P. K. Roberson, M. M. Husain. Microbubble Potentiated Ultrasound as a Method of Stroke Therapy in a Pig Model: Preliminary Findings. J. Vasc. Interv. Radiol. 2003, 14(11): 1433~1436
    49 E. C. Everbach, C. W. Francis. Cavitational Mechanisms in Ultrasound-Accelerated Thrombolysis at 1 MHz. Ultrasound Med. Biol. 2000, 26(7): 1153~1160
    50 R. Bekeredjian, P. A. Grayburn, R. V. Shohet. Use of Ultrasound Contrast Agents for Gene or Drug Delivery in Cardiovascular Medicine. J. Am. Coll. Cardiol. 2005, 45(3): 329~335
    51钟文景,罗葆明.超声和超声造影剂在基因转染中的应用.国外医学内科学分册. 2006, 33: 272~274
    52 E. Stride, M. Edirisinghe. Novel Microbubble Preparation Technologies. Soft Matter. 2008, 4(12): 2350~2359
    53陈辉,强颖怀,葛长路.超声波空化及其应用.现代表面技术研究与应用. 2005, (7): 63~65
    54夏红梅,高云华.靶向超声造影剂的制备及应用研究进展.中华超声影像学杂志. 2004, 13(3): 224~226
    55 X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nat. Biotechnol. 2004, 22(8): 969~976
    56 I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nat. Mater. 2005, 4(6): 435~446
    57 G. Decher. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science. 1997, 277(5330): 1232~1237
    58 D. G. Shchukin, K. Kohler, H. Mohvald, G. B. Sukhorukov. Gas-Filled Polyelectrolyte Capsules. Angew. Chem., Int. Ed. 2005, 44(21): 3310~3314
    59 I. Lentacker, B. G. De Geest, R. E. Vandenbroucke, L. Peeters, J. Demeester, S. C. De Smedt, N. N. Sanders. Ultrasound-Responsive Polymer-Coated Microbubbles that Bind and Protect Dna. Langmuir. 2006, 22(17): 7273~7278
    60 M. A. Borden, G. Pu, G. J. Runner, M. L. Longo. Surface Phase Behavior and Microstructure of Lipid/Peg-Emulsifier Monolayer-Coated Microbubbles. Colloids Surf., B. 2004, 35(3~4): 209~223
    61 M. A. Wheatley, P. Shen, S. Singhal, B. B. Goldberg, S. Peng, Surfactant-Stabilized Microbubble Mixtures, Process for Preparing and Methods of Using the Same. WO/1994/009703.
    62 M. A. Wheatley, S. Singhal. Structural Studies on Stabilized Microbubbles - Development of a Novel Contrast Agent for Diagnostic Ultrasound. React. Polym. 1995, 25(2~3): 157~166
    63 Y. W. Yang, A. C. Wei, S. S. Shen. The Immunogenicity-Enhancing Effect of Emulsion Vaccine Adjuvants is Independent of the Dispersion Type and Antigen Release Rate-A Revisit of the Role of the Hydrophile-Lipophile Balance (HLB)Value. Vaccine. 2005, 23(20): 2665~2675
    64赵剑曦.表面活性剂胶团水溶液性质的粘度研究方法.日用化学. 2003, 33(4): 234~236
    65 I. Langmuir. The Constitution and Fundamental Properties of Solids and Liquids. II. Liquids. J. Am. Chem. Soc. 1917, 39(9): 1848~1906
    66欧阳健明. LB膜原理与应用.暨南大学出版社. 1999.
    67 W. H. Wang, C. C. Moser, M. A. Wheatley. Langmuir Trough Study of Surfactant Mixtures Used in the Production of a New Ultrasound Contrast Agent Consisting of Stabilized Microbubbles. J. Phys. Chem. 1996, 100(32): 13815~13821
    68 S. Singhal, C. C. Moser, M. A. Wheatley. Surfactant-Stabilized Microbubbles as Ultrasound Contrast Agents - Stability Study of Span-60 and Tween-80 Mixtures Using a Langmuir Trough. Langmuir. 1993, 9(9): 2426~2429
    69 M. A. Wheatley, F. Forsberg, N. Dube, M. Patel, B. E. Oeffinger. Surfactant-Stabilized Contrast Agent on the Nanoscale for Diagnostic Ultrasound Imaging. Ultrasound Med. Biol. 2006, 32(1): 83~93
    70钱梦騄.超声造影剂及其应用.声学技术. 2004, 23(3): 1~2
    71杜永峰,于铭,闫烨.微泡超声造影剂材料研究进展.功能材料. 2004, 35: 2473~2476
    72 R. J. Price, D. M. Skyba, S. Kaul, T. C. Skalak. Delivery of Colloidal, Particles and Red Blood Cells to Tissue through Microvessel Ruptures Created by Targeted Microbubble Destruction with Ultrasound. Circulation. 1998, 98(13): 1264~1267
    73 R. Bekeredjian, S. Y. Chen, P. A. Frenkel, P. A. Grayburn, R. V. Shohet. Ultrasound-Targeted Microbubble Destruction Can Repeatedly Direct Highly Specific Plasmid Expression to the Heart. Circulation. 2003, 108(8): 1022~1026
    74 J. R. Lindner. Microbubbles in Medical Imaging: Current Applications and Future Directions. Nat. Rev. Drug Discovery. 2004, 3(6): 527~532
    75 S. Hernot, A. L. Klibanov. Microbubbles in Ultrasound-Triggered Drug and Gene Delivery. Adv. Drug Delivery. Rev. 2008, 60(10): 1153~1166
    76 M. A. Borden, C. F. Caskey, E. Little, R. J. Gillies, K. W. Ferrara. DNA and Polylysine Adsorption and Multilayer Construction onto Cationic Lipid-Coated Microbubbles. Langmuir. 2007, 23(18): 9401~9408
    77 D. Y. Wang, A. L. Rogach, F. Caruso. Semiconductor Quantum Dot-LabeledMicrosphere Bioconjugates Prepared by Stepwise Self-Assembly. Nano Lett. 2002, 2(8): 857~861
    78 A. Shavel, N. Gaponik, A. Eychmuller. The Assembling of Semiconductor Nanocrystals. Eur. J. Inorg. Chem. 2005, (18): 3613~3623
    79 A. C. S. Samia, X. B. Chen, C. Burda. Semiconductor Quantum Dots for Photodynamic Therapy. J. Am. Chem. Soc. 2003, 125(51): 15736~15737
    80 R. Bakalova, H. Ohba, Z. Zhelev, T. Nagase, R. Jose, M. Ishikawa, Y. Baba. Quantum Dot Anti-CD Conjugates: Are They Potential Photosensitizers or Potentiators of Classical Photosensitizing Agents in Photodynamic Therapy of Cancer? Nano Lett. 2004, 4(9): 1567~1573
    81 A. C. S. Samia, S. Dayal, C. Burda. Quantum Dot-Based Energy Transfer: Perspectives and Potential for Applications in Photodynamic Therapy. Photochem. Photobiol. 2006, 82(3): 617~625
    82邢占文,柯亨特,刘绍琴,戴志飞,王金锐,刘吉斌.多层聚电解质膜包覆的微泡超声造影剂的制备.中国医学科学院学报. 2008, 30(1): 10~14
    83 V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, S. A. Corr, Y. K. Gun'ko. Emission Properties of Colloidal Quantum Dots on Polyelectrolyte Multilayers. Nanotechnology. 2006, 17(16): 4117~4122
    84 J. A. Feshitan, C. C. Chen, J. J. Kwan, M. A. Borden. Microbubble Size Isolation by Differential Centrifugation. J. Colloid Interface Sci. 2009, 329(2): 316~324
    85 S. Rossi, G. Waton, M. P. Krafft. Small Phospholipid-Coated Gas Bubbles Can Last Longer than Larger Ones. ChemPhysChem. 2008, 9(14): 1982~1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700