用户名: 密码: 验证码:
玉米耐盐碱鉴定技术体系构建与耐盐碱种质筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球盐碱化进程的加快加重了盐碱对人类的威胁,它给农业生产造成的损失仅次于干旱。吉林省是我国粮食主产区,其西部地区土地盐碱化严重,并已对该区的生态环境与经济发展构成严重威胁。快速开发和有效利用西部地区盐碱化土壤,不仅直接关系到西部生态环境的恢复和改善,更牵系如何更好地确保吉林省保障国家粮食安全的重大战略问题。
     本研究以玉米杂交种郑单958及其双亲自交系为材料,在4个浓度水平的Na_2CO_3溶液(12.5、25、37.5、50 mmol/L)胁迫下和4个浓度水平的NaCl溶液(50、100、150、200 mmol/L)胁迫下,进行种子萌发和幼苗胁迫试验,分别测定发芽率、相对电导率、脯氨酸(Pro)含量、超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量等生理生化指标,比较杂交种与双亲自交系之间的耐盐碱差异,在此基础上构建玉米耐盐碱鉴定技术体系。然后利用已构建的玉米耐盐碱鉴定技术体系对吉林省农科院主推的29份玉米杂交种进行苗期耐盐碱性分析,将部分杂交种种植在院洮南综合试验站和院公主岭院区试验地进行大田产比分析,验证已构建的玉米耐盐碱鉴定技术体系的有效性。同时,利用玉米回交群体BC_2F_2进行苗期胁迫和大田胁迫,进行耐盐碱一致性分析,对苗期胁迫后的部分回交群体幼苗进行SSR标记分析,进而筛选获得耐盐碱玉米回交导入系。研究结果将为揭示玉米耐盐碱生理机制、挖掘玉米耐盐碱种质奠定实验基础,为玉米杂交种的区域布局提供参考依据。主要研究结果如下:
     (1)玉米耐盐碱筛选的适宜浓度为25 mmol/L的Na_2CO_3溶液与100 mmol/L的NaCl溶液,种子发芽率、相对电导率、SOD活性、MDA含量以及Pro含量是玉米耐盐碱筛选的适宜生理生化指标;
     (2)通过对29份吉林省农科院主推玉米杂交种进行苗期耐盐碱性分析筛到极耐盐碱玉米杂交种3份;通过14份玉米杂交种公主岭(非胁迫对照)和洮南(胁迫区)两地大田减产率的比较分析表明,苗期筛选的结果简单有效,能够比较客观地反映玉米杂交种的耐盐碱性;
     (3)通过对6个玉米回交群体BC_2F_2实验室苗期胁迫和洮南大田胁迫的比较分析,结果表明苗期筛选结果与大田筛选结果一致,以郑58为背景的回交群体整体耐盐碱性较好;通过对玉米回交群体BC_2F_2【(郑58×吉4112)×郑58】进行SSR标记分析,针对找到导入供体亲本片段较多且耐盐等级在1、2级的玉米12株自交授粉,获得耐盐碱回交导入系BC_2F_3。
Salt soil was widely distributed in the world and could affect normal growth of crops. As the global salinity accelerated, it increased the threat to humanity and became one of the ecological crisis to humanity. Salinity was inferior to drought in causing the loss of agricultural production. Jilin Province was one of corn main production areas in China. The western region of Jilin province is the salinization severity area. The salinization poses a grave threat to the development of ecological environment and economic in this region. So rapid development and effective use of saline soil is important and have practical significance to the economic benefits, environmental protection and sustainable development in Jilin Province.
     Under 4 alkali-stress conditions (Na2CO3 solution) and 4 salt-stress conditions (NaCl solution), maize hybrid Zhengdan958 and their parents were cultivated by sand culture. The concentration of Na2CO3 is 12.5, 25, 37.5 and 50 mmol/L, respectively. The concentration of NaCl is 50, 100, 150 and 200 mmol/L, respectively. Some physiological and biochemical indicies were tested and used to evaluate salt-alkali tolerances of hybrids and their parents, which included germination percentage, relative conductivity, SOD activity, MDA content and proline content, etc. Based on the differences between salt-alkali tolerances of hybrids and their parents the screening system of salt or alkali-stress tolerance in maize seedling were established. Salt-alkali tolerance in seedling stage among twenty-nine maize hybrids used predominantly in Jilin Province was analysised and part of these hybrids were planted in Taonan Research Center and the other in Gongzhuling Research Center. Reduction percentage analysis were carried out among fourteen hybrids so as to terrify the screening system of maize salinity we building previously. Based on the consensus analysis of Salt-alkali tolerance in lab and field for maize BC_2F_2 population, the survival seedling was marked by SSR makers and elite maize germplasm was further acquired.
     The main results were summarized as followed: (1) The appropriate concentration applied in germplasm screening were 25 mmol/L Na_2CO_3 and 100 mmol/L NaCl and germination percentage, relative conductivity, SOD activity, MDA content and proline content were the appropriate physiological and biochemical indices; (2) Three elite hybrids were screened ou of twenty-nine maize hybrids used predominantly in Jilin Province. The evaluation system of salt or alkali-stress tolerance in maize seedling was verified simply and effectively and could reflect the salinity of maize hybrids correctly. (3) Through agronomic investigation of six BC_2F_2 populations of maize, the results indicated that the analysis between seedling and field were consistent. Twelve BC_2F_2 lines were self-pollinated, whose recurrent parent was zheng58. Based on SSR marker, We screened the elite maize germplasm successfully.
     The results would lay a foundation for revealing the physiological mechanism of maize salt-alkali tolerant and screening elite maize germplasm, and provide reference for regional distribution of maize hybrids.
引文
常红军,马灿玲. 2006.盐胁迫对4个玉米品种的萌发及生长的影响.安徽农业科学. 34(17): 4273-4274.
    陈洁,林栖凤. 2003.植物耐盐生理及耐盐机理研究进展.海南大学学报自然科学版. 21(2): 177-182.
    陈秀兰,赵可夫. 1996. NaCl胁迫对玉米种子萌发的抑制及外源Ca2+的缓解效应.华北农学报. 11(4): 89-92.
    崔美燕,高树仁,付艳,等. 2009.玉米苗期耐碱性鉴定方法研究.黑龙江八一农垦大学学报, 20(5): 12-16.
    段德玉,刘小京,冯凤莲,等. 2003.不同盐分胁迫对盐地碱蓬种子萌发的效应.土壤肥料科学. 19(6): 168-172.
    付凤玲,潘光堂. 2001.我国主要玉米自交系和杂交种苗期耐旱性鉴定.中国种业. 3: 26.
    付艳,高树仁,王振华. 2009.玉米种质苗期耐盐性的评价.玉米科学. 17(1): 36-39.
    高树仁,崔美燕. 2009.玉米苗期耐盐性的遗传分析.黑龙江八一农垦大学学报. 21(6): 1-3.
    郭房庆,汤章城. 1999. NaCl胁迫下抗盐突变体和野生型小麦Na+、K+累积的差异分析.植物学报. 41(5): 515-518.
    郭丽红,陈善娜,龚明. 2004.钙对玉米幼苗热激诱导抗盐性的影响.植物生理学通讯. 40(1): 19-21.
    韩燕燕,鲁艳,吕光辉. 2007.植物耐盐的生理机制及基因工程新进展.生物技术通报. 4:10-18.
    郝再彬,苍晶,徐仲. 2002.植物生理实验技术.哈尔滨出版社.
    何丹,林承勇,王秀全,等. 1999.玉米苗期抗旱性鉴定研究.绵阳经济技术高等专科学校学报. 16(3): 20-23.
    侯建华,张建华,陈静. 1996.玉米不同生育时期抗旱鉴定指标的研究.内蒙古农牧学院学报. 17(4): 19-22.
    霍仕平,晏庆九,宋英光,等. 1995.玉米抗旱鉴定的形态和生理生化指标研究进展.干旱地区农业研究. 13(3): 67-72.
    兰巨生. 1994.农作物综合抗旱性的评价.中国农学通报. 10(5): 34-35.
    梁云媚,李燕,多立安,等. 1998.不同盐分胁迫对苜蓿种子萌发的影响.草业科学. 15(6): 21-25.
    刘家栋. 2001.植物抗盐机理的研究.农业与技术. 21(1): 26-29.
    刘俊君. 1995.高度耐盐双价转基因烟草的研究.生物工程学报. 1(4): 381-384.
    刘巍,于志水,纪纯阳,等. 2008.植物盐胁迫研究进展.防护林科技. 1(82):57-61.
    刘志伟,黄冠华. 2004.氯化钠不同浓度对夏玉米生长和吸氮的影响.植物营养与肥料学报. 10(2): 132-136.
    刘志伟,黄冠华. 2004.氯化钠不同浓度对夏玉米生长和吸氮的影响.植物营养与肥料学报. 10(2): 132-136.
    卢青. 2000.植物耐盐性的分子生物学研究进展.生物学杂志. 1(4): 9-11.
    吕慧颖,李银心,孔凡江. 2003.植物Na+/H+逆向转运蛋白的研究进展.植物学通报. 20(3): 363-369.
    毛桂莲,许兴,徐兆桢. 2004.对盐生理生化研究进展.中国生态农业学报. 12(1): 43-46.
    孟义江,宋占权,魏俊杰,池书敏. 2000.玉米耐盐基因型的筛选.河北农业科学. 4(4): 22-25.
    彭兰华,丁梁斌,胡长效. 2006.一氧化氮对玉米幼苗抗盐性的影响.江西农业学报. 18(5): 6-8.
    齐冰洁,易津. 2001.赖草属牧草种子及幼苗耐盐性生理基础的研究.干旱区资源与环境. 15(5):41-46.
    秦雪峰,高扬帆,张育平. 2006.盐胁迫对玉米种子萌发和幼苗生长的影响.安徽农业科学. 34(22): 5782-5783.
    曲元刚,赵可夫. 2004. NaCl和Na2CO3对玉米生长和生理胁迫效应的比较研究.作物学报. 30(4): 334-341.
    沙伟,滕兆岩,王岩,等. 2007.星星草耐盐性研究进展.齐齐哈尔大学学报. 23(2): 93-99.
    商丽威,王庆祥,王玉凤. 2008. NaCl和Na2SO4胁迫对玉米杂交种子萌发的影响.杂粮作物. 28(1): 20-22.
    斯琴巴特尔,吴红英. 2002.土壤的盐碱化对玉米的胁迫作用.内蒙古农大学报(自然科学版). 33(3): 309-312.
    宋凤斌,徐世昌. 2004.玉米抗旱性鉴定指标的研究.中国生态学报. 12(1): 127-129.
    陶晶,李铁,孙长彬,等. 2003.植物盐胁迫研究进展.吉林林业科技. 32(5): 1-7.
    王宝山,赵可夫,邹琦. 1997.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报. 14: 25-30.
    王宝山,赵可夫. 1997. NaCl胁迫下玉米黄化苗质外体和共质体Na、Ca浓度的变化.作物学报. 23(1): 27-33.
    王春英,张秀清,潘月胜,巩东营. 2000.抗盐耐旱优良玉米杂交种--鲁单850.山东农业科学. 3: 47.
    王广印,周秀梅,张建伟,等. 2004.不同黄瓜品种种子萌发期的耐盐性研究.植物遗传资源学报. 5(3): 299-303.
    王君,曹敏建,王宁,曹娜. 2007. NaCl胁迫对玉米自交系种子萌发的影响.杂粮作物. 27(1): 28-32.
    王丽燕,赵可夫. 2005.玉米幼苗对盐胁迫的生理响应.作物学报. 31(2): 264-266.
    王宁,曹敏建,于佳林. 2009. NaCl胁迫对玉米幼苗有机渗透调节物质的影响.玉米科学.17(4): 61-65.
    王弋博,李勃,未丽,等. 2005.外源甜菜碱对两种玉米耐盐性影响的研究.兰州大学学报. 2: 34-37.
    王弋博,李勃,未丽,杨亚军,李三相,王建平. 2005.外源甜菜碱对两种玉米耐盐性影响的研究.兰州大学学报(自然科学版), 2: 34-37.
    王玉成,杨传平,刘桂丰,等. 2005.差异显示技术研究NaHCO3胁迫下星星草基因表达.植物学通报. 22(3):307-312.
    王志春,杨福,陈渊,梁正伟. 2008.苏打盐碱胁迫下水稻体内的Na+、K+响应.生态环境. 17(3): 1198-1203.
    王遵亲等. 1993.中国盐渍土.北京:科学出版社.
    徐建龙,高用明,傅彬英,黎志康. 2005.回交导入后代水稻种质有利基因的鉴定与筛选研究.分子植物育种. 3(5): 619-628.
    许祥明,叶和春,李国凤. 2000.植物抗盐机理的研究进展.应用与环境生物学报. 6(4): 379-387.
    薛应龙. 1985.植物学实验手册.上海科学技术出版社.
    杨劲松,陈德明,沈其荣.作物抗盐机制研究Ⅱ小麦对盐分离子的吸收与运移.土壤学报. 2002, 39 (15):759-762.
    杨敏生,李艳华,梁海永,等. 2003.盐胁迫下白杨无性系苗木体内离子分配及比较.生态学报. 23(2): 271-277.
    杨素欣,王振镒. 1999.盐胁迫下小麦愈伤组织生理生化特性的变化.西北农业大学学报. 27(2): 48-51.
    姚正培,孟君,李冠. 2007.玉米自交系芽苗期耐盐性的鉴定与筛选.华北农学报, 22(5): 27-30.
    余叔文,章城. 1998.植物生理与分子生物学.科学出版社. 54.
    俞仁培,陈德明. 1999.我国盐渍土资源及其开发利用.土壤通报. 30(4): 158- 159 .
    翟云龙,章建新,李宁,等. 2004. NaCl胁迫对奶花芸豆种子萌发及幼苗生长的影响.新疆农业大学学报. 27(3): 30-33.
    张宝泽,赵可夫. 1996. CaCl2和Ca(NO3)2对降低玉米幼苗质膜透性的作用.山东师大学报(自然科学版). 11(1): 74-77.
    张福锁. 1993.植物营养生态生理学和遗传学.北京:中国科技出版社.
    张俊莲,张金文. 2005.植物Na+/H+逆向转运蛋白与植物耐盐性的研究进展.草原与草坪. 11(4): 3-8.
    张乃华,高辉远,邹琦. 2005. Ca2+缓解NaCl胁迫引起的玉米光合能力下降的作用.植物生态学报. 29(2): 324-33.
    张永峰,殷波. 2008.玉米耐盐研究进展.玉米科学. 16(6): 83-85.
    张永峰,殷波. 2009.混合盐碱胁迫对苗期紫花苜蓿抗氧化酶活性及丙二醛含量的影响. 草业学报. 18(1): 46-50.
    赵可夫,范海. 1995.盐胁迫下外源ABA对玉米幼苗耐盐性的影响.植物学报. 37(4): 295-300.
    郑国琦,许兴,徐兆祯. 2002.耐盐分胁迫的生物学机理及其基因工程研究进展.生命科学研究学报. 23(1):22- 23.
    Ali A.J., Xu J.L., Ismail A.M., Fu B.Y., Vijaykumar C.H.M., Gao Y.M., Domingo J., Maghirang R., Yu S.B., Gregorio G., Yanagihara S., Cohen M., Mackill D., and Li Z.K. 2006.
    Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crop Res. 97(1): 66-76.
    Almodares A, Hadi M R, Dosti B. 2007. Effects of Salt Stress on Germination Percentage and Seedling Growth in Sweet Sorghum Cultivars. Journal of Biological Sciences. 7(8): 1492-1495.
    Bernstein L. 1991. Osmotic adjustment of plants to saline media. Amer J Bot. 48:909-918.
    Bohnert H J, Ayoubi P, Borchert C. 2001. A genomics approach towards salt stress tolerance [J]. Plant Physiol Biochem. 39:295-311.
    Burdon R H, O Kane D, Fadzillah N. 1996. Oxidative stress and responses in Arabidopsis thaliana and Oryza sativa subjected to chilling and salinity stress. Biochem Soc Trans. 24:469-472.
    Chen Yao, Zheng Hai lei, Xiao Qiang. 2005. Effects of Salinity on Oxidative and Antioxidative System of Spartina alterni flora. Journal of Xiamen University (Natural Science). 44(4): 576-579.
    Cramer G R, Epstein E,Lauchli. 1991. Effects of sodium,potassium and calcium on salt-stressed barley. Physiologia Plantarum. (81): 197-202.
    Foolad M R, Jones R A. 1993. Mapping salt-tolerance genes in tomato using trait-based marker analysis. Theor Appl Genet. 87: 184-192.
    Godfrey W N, John C O, Erwin B. 2004. Gas Exchange and Chlorophyll Fluorescence of Sorghum under Salt Stress. Crop Science. 44(3): 806-811.
    Godfrey W N, John C O, Erwin B. 2004. Response of Growth, Water Relations, and Ion Accumulation to NaCl Salinity. Crop Science. 44(3): 797-805.
    Grieve C M, Lesch S M, Maas E V, Francois L E. 1993. Leaf and spikelet primordial initiation in salt-stressed wheat. Crop Science. 33: 1286-1292.
    Guo Fangqing, Bang zhangcheng. 1999. Enhanced H+transport activity of tonplast vesicles isolated from roots of salt-tolerant multanto. Chinese Science Bulltein. 4(13): 1198.
    Haro R, Baneulosma, Quintero F J, et al. 1999.Genetec basis of sodium exclusion and sodium tolerance in yeast A model for plants. Physilol Plant. 89: 868- 874.
    Kasuga M, Liu Q, Miura S,et al. 1999. Improving plant drought,salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol. 17(3): 287-291.
    Li Z K, Fu BY, Gao Y M, Xu J L, Ali J, Lafitte R, Jiang Y Z, Domingo R J, Vijayakumar C.H.M., Maghirang R, Zheng T Q, Zhu L H. 2005. Genome-wide introgression lines and a forward genetics strategy for functional genomic research of complex phenotypes in rice(Oryza sativa L.).Plant Molecular Biology. 59: 33-52.
    Lin Z-F(林植芳), Li S-Q(李双全), Lin G-Z(林桂珠), et al. 1984. Super oxide dismutase activity and lipid peroxidetion in relation to senescence of rice leaves.Acta Botanica Sinica(植物学报). 26(6): 605-615.
    Maslenkora L T. 1993. Adaptation to salinity as monitored by PSⅡoxygen evolving reactions in barley thylakoids. Plant Physiol. 142: 629-634.
    Michelet B, Boutr Y M. 1995. The plasma membrane H+-ATPase. Ahighly regulated enzyme with multiple physiological functions. Plant Physiol. 108: 1-6.
    Morabito D, Jolivet Y, Prat D. 1996. Differences in the physiological responses of two clones of Eucalyptus Microtheca selected for their salt tolerance.Plant Science. 114(2): 129-139.
    Muller M, Santarius K A. 1978. Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity. Plant Physiol. 62: 326-333.
    Mumtaz S S, Maqvi S M, Shereen A, et al. 1995. Proline accumulation in wheat seedlings subjected to various stress. Acta Plant. 17: 17-20.
    Neumman P M. 1995. The of the sell wall adjustment in plant resistance to water deficit [J]. Crop. 35: 1258-1266.
    Overtli T J. 1968. Extrcellular salt accumulation, a possible mechanism of salt injury in plants. Agrochimica. 12: 461-469.
    Petrusa L M, W inicolL. 1997. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl[ J]. Plant Physiol Biochem. 35: 303-310.
    Rana Munns, Mark Tester, 2008. Mechanisms of Salinity Toleranc. Plant Boil. 59: 651-681.
    Richard D, Bliss K A, Platt-Aloia,Thomson W W. 1984. Changes in plasma lemma organization in cow pea radicle during imbition in water and NaCl solutions.Plant Cell and Environment. 7: 601-606.
    Rygol J, Zimmermann U. 1990. Radial and axial turgor pressure measure ments in individual root cells of Msembryanthemun crystalliuum grown under various saline conditions.Plant Cell Environ. 13: 15-26.
    Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. 81: 8014-8018.
    Shen B, Jensen R G, Bohnert H. 1997. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts.Plant Physiol. 113:1177-1183.
    Shinozaki K,Yamaguchi-Shinozaki K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327-334.
    Szabolcs I. 1989.Salt-Affected soils. Florida: CRC Press Inc Boca Raton.
    Walker R R, Blackmore D H, Sung Qing. 1993. Carbon Dioside Assimilation and Foliar Ion Concentrations in Leaves of Lemon(Citrus Limon L)Trees Irrigated with NaCl or Na2SO4. Aust JPlant Physiol. 20: 73-85.
    ZhangJ-F, FangY-F, MakeschinF, LiX-F, QinG-H. 2002. A-groforestry and its application in amelioration of saline soils in eastern China coastal region. In the Proceedings of the Second International Conference on Sustainable Agriculture for Food,Energy and Industry(inpress).
    Zhu G-L(朱广廉), Zhong H-W(钟诲文), Zhang A-Q(张爱琴). 1990. Experiments of Plant Physiology(植物生理学实验). Beijing: Peking University Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700