用户名: 密码: 验证码:
中国西北地区表土岩石磁学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土沉积物分布广泛、沉积连续,是全球的记录古气候信息的三大载体之一。环境磁学是解译黄土高原所记录古气候信息的主要手段,黄土表土磁化率与降水量呈良好的正相关性,是定量反演黄土古土壤序列第四纪时期降水量变化的理论基础。然而,至今人们对黄土古土壤磁化率增强机制仍没有一个统一的认识,极大的限制了环境磁学在古气候重建方面的深入应用。
     本文展开对我国西北地区表土的取样调查,对研究区表土进行系统的环境磁学参数测试,结合环境气候信息,深入研究磁学参数与气候信息之间的关系,以探讨黄土表土磁学参数的环境意义。
     通过对西北戈壁沙漠—黄土高原表土磁化率研究,发现表土磁化率与降水量的正相关关系出现在一定的降水范围内。其下界限是年平均降水量200-300mm,高于这一界限,表土的磁化率、频率磁化率、百分比频率磁化率与降水量、相对湿度均呈现良好的正相关关系;低于这一界限,磁学参数与气候之间的相关性明显减弱,或者变得不明显。这是因为干旱半干旱气候条件下,1)风化弱,成土组分贡献小,同时2)风积磁颗粒粒径粗,对磁化率影响较大的缘故。
     对表土进行多种磁学参数分析发现:磁化率在研究本区表土时,不存在与气象要素之间单一的线性关系。与之相比,频率磁化率、非磁滞剩磁,及一些比值参数与年平均降水量有很好的相关性。其中非磁滞剩磁磁化率(χARM),在本区研究中与年平均降水量成正相关关系,作为气候的代用指标具有明显的优势。进一步研究发现:来自于在干旱和半干旱区域样品中多畴MD磁性颗粒与PSD颗粒含量较多,伴随着降水量的增加PSD和SSD含量也逐渐增加,同时SP颗粒逐渐增加,说明样品中MD颗粒在逐渐转化为其他颗粒。随着降水的进一步增加,磁性颗粒逐渐变细,SSD颗粒并对SIRM与χARM起主导作用。
     对典型区域(腾格里沙漠边缘表土)进行岩石磁学的分析发现,样品中的强磁性矿物为磁铁矿,颗粒以多畴和准单畴为主,这些磁性粗颗粒对磁化率等磁学特征贡献较大。而局域地形地貌(雅布赖山)是造成磁化率升高的主要原因。区域内表土无明显成土过程发生,磁学矿物种类相似,它们的磁化率增强机制与黄土高原不同,主要反映了磁颗粒粒级大小,或者磁性颗粒搬运的结果。
The magnetic susceptibility variation of loess-paleosol sequences in Chinese Loess Plateau (CLP) coincides with paleoclimatic changes and hence is widely used for climate reconstruction. Previous studies indicate the existence of a linear relationship between precipitation and magnetic susceptibility of topsoil, which is, however, speculated more complicated.
     Here we study topsoil (170samples and together with other61published) including Gobi and CLP in northwest of China, spanning96°E-110°E,33°N to43°N, with precipitation50-700mm/a. Low field magnetic susceptibility χ1f and frequency dependent susceptibility (xfd and χfd%.) have been obtained using Bartington MS2. The precipitation, ranging from1971-2000, at each sample site is simulated and determined with GIS methods.
     The correlation between magnetic susceptibility and precipitation presented in this study indicates that:linear relationship between susceptibility and precipitation only occurs to a high precipitation larger than200mm/a and300mm/a. Below this threshold, the relationship is unintelligible. This relation boundary likely attributes to different pedogenic degree over this area. Superparamagnetic (SP) particles bearing very high susceptibility form during the strong pedogenesis in humid area; while in arid area due to weak pedogenic process, the contribution of SP particles of pedogenic origin is limited.
     Based on systematical analysis on rock magnetism, this paper studies the topsoil from the edge of Tengger Desert in the northwestern China. The measured magnetic parameters indicate that main magnetic minerals of those topsoil is magnetite, the other may have maghemite and hematite. The grain size of magnetic minerals is coarse, mostly within range of multi-domain. The magnetic susceptibility has little relation with the pedogenesis but closely relates with landform and parent materials. The topsoil from such arid area or aeolian dust, show similar magnetic mineralogy between them, and do not undergo clearly pedogenesis. Their enhancement mechnism of magnetic susceptibility differs from that in the Loess Plateau. The magnetic susceptibility in such dried region indicates information of grain size or wind-vigor, instead of pedogenesis.
引文
1. Day, R., Fuller, M., Schimidt, V.A. Hystersis properties of titnaomagnetites:Grain size and compositional dependence[J]. Phys, Earth Planet, Inter.1977,13:260-267.
    2. Dearing J. Environmental Magnetic Susceptibility, Using the Bartington MS2 System (second edition) [M]. Kenilworth:Chi Publish,1999.1-52
    3. Dearing, J. Magnetic susceptibility In Environmental Magnetism:A Practical Guide, Technical Guide, Walden J, Oldfield F, Smith JP(eds) [M]. London:Quaternary Research Association.1999,35-62.
    4. Dearing, J., Bird, P.M., Dann, R.J., et al., Secondary ferrimagnetic minerals in Welsh soils:a comparison of mineral magnetic detection methods and implications for mineral formation. Geophys. J. Int.1997,130:727-736.
    5. Dunlop, D.J., Ozdemir, O. Rock magnetism:Fundamentals and frontiers[M]. New York: Cambridge Univ. Press.1997.1-573.
    6. George Kukla. Loess stratigraphy in Central China [J]. Quaternary Science Reviews,1987, 6(3):191-219
    7. Heller F, Liu T S. Palaeoclimate and sedimentary history from magnetic susceptibility of loess in China [J]. Geophysical Research Letters,1986,13(11):1169-1172
    8. Heller Friedrich, Liu Tungsheng. Magnetism of Chinese loess deposits [J]. Geophysical Journal of the Royal Astronomical Society,1984,77(1):125-141
    9. Heller Friedrich, Liu Tungsheng. Magnetostratigraphical dating of loess deposits in China [J]. Nature,1982,300:431-433
    10. J.E.Beget, D.B.Hawkins. Influence of orbital parameters on Pleistocene loess deposition in central Alaska[J]. nature,1989,337(12):151-153
    11. J.E.Beget, D.B.Stone, D.B.Hawikins. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary [J]. Geology,1990,18:40-43
    12. Liu X M, Hesse P, Rolph T et al. Properties of magnetic mineralogy of Alaskan loess: Evidence for pedogenesis [J]. Quaternary International,1999,62(1):93-102
    13. Liu Xiuming, Liu Dongsheng, Paul Hesse et al. Two pedogenic models for paleoclimatic record of magnetic susceptibility from Chinese and Siberian Loess [J]. Science in China (Series D),2008,51(2):284-293
    14. Liu Xiuming, Shaw John, Liu Tungsheng et al. Magnetic mineralogy of Chinese loess and its significance [J]. Geophysical Journal International,1992,108(1):301-308
    15. Liu, Q.S., Banerjee, S.K., Jackson, M.J., et al. Inter-profile correlation of the Chinese loess/paleosol sequences during Marine Oxygen Isotope Stage 5 and indications of pedogenesis[J]. Quaternary Science Reviews.2005a,24:195-210.
    16. Liu, Q.S., Barron, V., Torrent, J., et al., Magnetism of intermediate hydromaghemite in the transformation of 2-line ferrihydrite into hematite and its paleoenvironmental implications[J]. Journal of Geophysical Research,2008,113, B01103, doi:10.1029/2007JB005207
    17. Liu, Q.S., Deng, C.L., Torrent, J., et al. Review of recent developments in mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews.2007,26(3-4):368-385.
    18. Liu, Q.S., Deng, C.L., Yu, Y.J., et al., Temperature dependence of magnetic susceptibility in an argon environment:implications for pedogenesis of Chinese loess/palaeosols[J]. Geophys. J. Int,2005b,161 (1):102-112
    19. Liu, T.S., Ding, Z.L., Yu, Z.W., et al. Susceptibility time series of the Baoji section and the bearings on paleoclimatic periodicities in the last 2.5 Ma. Quaternary International 1993,17: 33-38.
    20. Long Xiaoyong, Ji Junfeng, William Balsam. Rainfall-dependent transformations of iron oxides in a tropical saprolite transect of Hainan Island, South China:Spectral and magnetic measurements [J]. Journal of Geophysical Research,2011,116(3):1-46
    21. Maher B A, Roy Thompson. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in Chinese loess and paleosols [J]. Quaternary Research,1995, 44(3):383-391
    22. Maher, B.A. Magnetic properties of some synthetic sub-micron magnetites [J]. Geophysical Journal [J].1988,94(1):83-96.
    23. Maher, B.A., Thompson, R. Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols[J]. Quaternary Research.1992,37:155-170.
    24. Maher, B.A., Thompson, R., Liu, X.M., et al. Pedogenesis and paleoclimate:interpretation of the magnetic susceptibility record of Chinese Loess-paleosol sequences:comments[J]. Geology.1994,22:857-859.
    25. Maher, B.A., Thompson, R., Zhou, L.P. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon:a new mineral magnetic approach[J]. Earth and Planetary Science Letters.1994,125:461-471.
    26. Song Yougui, Shi Zhengtao, Fang Xiaomin et al. Comparison of loess magnetic properties between Ili and Loess Plateau [J]. Science in China (Series D),2010,40(1):61-72
    27. Thompson R, Oldfield F. Environmental Magnetism [M]. London:George Alien & Unwin, 1986:1-127
    28. Xia Dunsheng, Jia Jia, Wei Haitao et al. Magnetic properties of surface soils in the Chinese Loess Plateau and the adjacent Gobi areas, and their implication for climatic studies [J]. Journal of Arid Environments,2012,78(1):73-79
    29. Zhou L P, Oldfield F, Wintle A G et al. Partly pedogenic origin of magnetic variations in Chinese loess [J]. Nature,1990,346:737-739
    30.奥勃鲁切夫等著,乐锋,刘东生译.沙与黄土问题[M].北京:科学出版社:1958,1-278.
    31.蔡家艺.内蒙古阿拉善风物志[M].昆明:云南人民出版社,2001,1~170
    32.陈洪云,孙有斌.黄土高原风尘沉积的物质来源研究[J].回顾与展望.第四纪研究,2008,28(5):892~900
    33.陈忠、马海洲,曹广超等。黄土碳酸盐的研究[J].盐湖研究:2006,14(4):66-72
    34.陈忠、马海洲、曹广超等.关于黄土碳酸盐与气候环境关系探讨[J].云南地理环境研究,200719(3)7-10.
    35.邓成龙,袁宝印,朱日祥等.陕西交道全新世黄土-黑垆土磁化率的CBD研究[J].地球物理学报.2000,43(4):505-514.
    36.邓成龙,刘青松,潘永信等.中国黄土环境磁学[J].第四纪研究,2007,27(2):193-209
    37.丁仲礼,任剑璋,刘东生等.晚更新世季风—沙漠系统千年尺度的不规则变化及其机制问题[J].中国科学D辑,1996,,(05):385-391
    38.丁仲礼,孙继敏.刘东生.联系沙漠—黄土演变过程中祸合关系的沉积学指标[J].中国科学(D缉),1999,29(1):82-87.
    39.顾兆炎.黄土——古土壤序列碳酸盐同位素组成与古气候变化[J].科学通报:1991,10:767-770
    40.郭雪莲,刘秀铭,郭晖等.宝鸡剖面S5古土壤磁化率变化机制[J].第四纪研究,2012,32(4):785~794
    41.郭雪莲,刘秀铭,吕 镔等.天山黄土区与黄土高原表土磁性特征对比及环境意义[J].地球物理学报,2011,54(7):1854~1862
    42.韩家懋、姜文英、吕厚远等。黄土中钙结核的碳氧同位素研究(二):碳同位素及其古环境意义[J].第四纪研究:1995,4:367-377
    43.韩家懋、姜文英、吴乃琴等。黄土中钙结核的碳氧同位素研究(一):氧同位素及其古环境意义[J].第四纪研究:1995,2:130-137
    44.贾佳,夏敦胜,王博等.黄土高原与伊犁黄土磁学特征对比及启示[J].第四纪研究,2012,32(4):749~760
    45.李长安、吴金平、曹江熊.冀西北黄土钙质结核形态及其成因动力学特征与地层环境意义[J].地球科学,1995,20(5)511-514
    46.李立文、方邺森、许冀泉.南京板桥一三山矶一带下蜀组内钙质结核的研究[J].南京师范大学学报(自然科学版):1990,13(3):80-85.
    47.李立文、方邺森.南京老虎山“下蜀组”钙质结核的成因与时代的探讨[J].地层学杂志:1985,9(1)53~56.
    48.李平原,刘秀铭,刘植等.腾格里沙漠边缘表土磁学性质及其意义[J].第四纪研究,2012,32(4):771-776
    49.刘东生.黄土与干旱环境[M]].合肥:安徽科学技术出版社,2009.9~11
    50.刘东生.孙继敏,吴文祥.中国黄土研究的历史、现状和未来——一次事实与故事相结合的讨论[J].第四纪研究,2001.21(3):185~207
    51.刘东生等.黄土与环境[M].北京:科学出版社.1985.1~481
    52.刘东生等.中国的黄土堆积[M].北京:科学出版社,1965.1~241
    53.刘青松,邓成龙.磁化率及其环境意义[J].地球物理学报.2009,52(4):1041-1048.
    54.刘青松,邓成龙,潘永信.磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义[J].第四纪研究,2007,27(6):954~962
    55.刘现彬,夏敦胜,贾佳等.兰州九州台黄土磁性特征及其古气候意义研究[J].第四纪研究,2012,32(4):761~770
    56.刘秀铭,刘植,吕镔等.塞尔维亚黄土的磁学性质及其环境意义[J].科学报,2012,57(33):3173~3184
    57.刘秀铭,刘东生,Friedrich Heller等.中国黄土磁化率与第四纪古气候研究[J].地质科学,1992,12(1):279~285
    58.刘秀铭,刘东生,Heller F等.黄土频率磁化率与古气候冷暖变换[J].第四纪研究,1990,1:42~50
    59.刘秀铭,刘东生John Shaw.中国黄土磁性矿物特征及其古气候意义[J].第四纪研究,1993.3:281-287.
    60.刘秀铭,刘东生,夏敦胜等.中国与西伯利亚黄土磁化率古气候记录-氧化和还原条件下的两种成土模式分析[J].中国科学,2007a37(10):1382~1391
    61.刘秀铭,马明明,P.Hesse等.澳大利亚黄土磁学性质及环境意义[J].第四纪研究,2011,31(5):837-848
    62.刘秀铭,毛学刚,丁仲礼等,黄土古气候变化趋势与青藏高原隆升关系初探[J].第四纪研究, 2009,29(5):988~999
    63.刘秀铭,夏敦胜,刘东生等.中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨[J].第四纪研究,2007,27(2):210~220
    64.刘秀铭、郭晖、刘植等.甘肃临夏盆地红色地层磁组构特征与沉积环境分析[J].第四纪研究:2012,32(4):615~625.
    65.吕厚远,韩家懋,吴乃琴等.中国黄土现代土壤磁化率分析及其古气候意义[J].中国科学(B)辑,1994,24(12):1291~1297
    66.罗志成,王密侠等.中国干旱地区及其类型划分的研究现状[J].干旱地区农业研究,1987,2:95-115
    67.宋扬,郝青振,葛俊逸等.黄土高原表土磁化率与气候要素的定量关系研究[J].第四纪研究,2012,32(4):679~689
    68.宋友桂,史正涛,方小敏等.伊犁黄土的磁学性质及其与黄土高原对比[J].中国科学,2010,40(1):61~72
    69.孙东怀,安芷生,吴锡浩等。最近150ka黄土高原夏季风气候格局的演化[J].中国科学(D辑):1996,26(5):417~422.
    70.孙东怀,周杰,吴锡浩等.全新世气候适宜期黄土高原及黄土/沙漠过渡区年降水量的初步恢复[J].中国沙漠,1995,15(4):339~344
    71.孙继敏.中国黄土的物质来源及其粉尘的产生机制与搬运过程[J].第四纪研究.2004,24(2):175-183.
    72.滕志宏、刘荣谟、陈苓等.黄河中游黄土钙质结核及地层学意义[J].地层学杂志,1991,15(2)115~122.
    73.滕志宏、刘荣谟、陈苓等.中国黄土地层中的钙质结核研究[J].科学通报,1990,13:1008-1011.
    74.王喜生,杨振宇,Reidar L(?)vlie等.黄土高原东南缘黄土-古土壤序列的环境磁学结果及其古气候意义[J].科学通报.2006,51(13):1575-1582.
    75.王旭,马禹,陈洪武.新疆沙尘暴的天气的气候特征[J].中国沙漠,2003,23(5):540-544
    76.王勇,潘保田,管清玉等.西北干旱区黄土-古土壤磁化率变化特征[J].海洋地质与第四纪地质.2008,28(1):111-114.
    77.旺罗,刘东生,吕厚远.污染土壤的磁化率特征[J].科学通报.2000,45:1091-1094.
    78.魏海涛,夏敦胜,陈发虎等.黄土高原及其邻近地区表土磁化率与降水量的关系[J].冰川冻土,2008,30(3):433~439
    79.魏海涛,夏敦胜,陈发虎等.新疆表土磁学性质及其环境意义[J].干旱区地理,2009,35(5):677~683
    80.文启忠.中国黄土地球化学[M].北京:科学出版社,1989,1~145.
    81.夏敦胜,陈发虎,马剑英等.新疆伊犁地区典型黄土磁学特征及其环境意义初探[J].第四纪研究,2010,30(5):902~909
    82.夏敦胜,陈发虎,马剑英等.黄土高原-阿拉善高原典型断面表土磁学特征研究[J].第四纪研究,2007,27(6):1001~1108
    83.夏敦胜,魏海涛,马剑英等.中亚地区现代表土磁学特征及古环境意义[J].第四纪研究,2006,26(6):937-946
    84.谢巧勤,陈天虎,徐晓春等.西峰黄土-红粘土序列有机质记录及其对磁化率古气候意义启示[J].第四纪研究,2012.32(4):709~718
    85.徐建华.计量地理学[M].北京:高等教育出版社,2008.47~19
    86.杨建平,丁永建,陈仁升等.50a来我国干湿气候界线的空间变化分析[J].冰川冻土,2002,24(6):731-736
    87.叶玮.新疆西峰区黄土与古土壤磁化率变化特点[J].中国沙漠,2001,21(4):380~386
    88.叶玮,Yabuki,S.,Kanayama,S.中国西风区黄土常量元素地球化学行为与古环境[J].干旱区地理.2003,26(1):23-29.
    89.叶玮,靳鹤龄,赵兴有等.新疆伊犁地区黄土的粒度特征与物质来源[J].干旱区地理.1998,21(4):1-8.
    90.叶玮,桑长青,赵兴有.新疆黄土分布规律及粉尘来源[J].中国沙漠.2003,22(5):514-520.
    91.叶玮.新疆西风区黄土沉积特征与古气候[M].北京:海洋出版社.2001b.1-177.
    92.叶玮.新疆西风区黄土与古土壤磁化率变化特点[J].中国沙漠.2001a21(4):380-384.
    93.叶玮.新疆伊犁地区自然环境特点与黄土形成条件[J].干旱区地理。1999,22(3):9-16.
    94.咎金波,杨胜利,方小敏等.西昆仑山黄土的岩石磁学特征及其磁化率增强机制[J].第四纪研究.2010,30(1):46-53.
    95.张伯声.从黄土线说明黄河河道的发育[J].科学通报.1956,3
    96.张卫国.环境磁学[J].现代物理知识,2011,23(3);19~22
    97.赵国永,刘秀铭,吕镔等.全新世黄土记录的古气候演化及磁化率和粒度参数灵敏性探讨[J].第四纪研究,2012,32(4):777-784
    98.赵济主编.中国自然地理[M].北京:高等教育出版社,1995(3):283~300
    99.赵景波淀积理论与黄土高原环境演变[M].北京:科学出版社,2002:1~212。
    100.赵景波.风化淋滤带地质新理论——CaC03淀积深度理论[J].沉积学报:2000,18(1):29-35
    101.中国气象局气象信息中心.1971-2000年中国地面气候标准值[M].北京:中国气象局,2004.1-526

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700