用户名: 密码: 验证码:
低Ag含量Sn-Ag-Zn系无铅焊料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前共晶Sn-Ag-Cu焊料为最常用的无铅焊料。但是由于共晶焊料中容易产生粗大的Ag3Sn金属间化合物(IMC),造成可靠性下降。此外,由于Ag的成本较高也限制了共晶Sn-Ag-Cu焊料的使用。另一方面,商业化的低Ag焊料SAC105比共晶SAC305焊料在抗冲击性能上更可靠,但是降低Ag含量会带来熔融性能降低和强度降低,以及由此引起的可靠性问题,因此SAC105焊料也未得到广泛应用。
     本文以解决低Ag含量引起的熔融性能和强度降低为目标,首先通过热力学分析确定研究对象体系。通过热力学分析发现,Sn-Ag-Zn体系焊料可以通过调整Zn含量来提高低Ag焊料的熔融性能,而其它体系焊料不具备这一性质。除此之外,相比Sn-Ag-Cu焊料,Sn-Ag-Zn焊料具有其它一些优点例如强度、抗冲击性能等等。目前业界需要一种具有良好熔融性能和力学性能的低Ag焊料,但是对于Sn-Ag-Zn焊料体系的研究主要集中在共晶成分附近,而低Ag含量Sn-Ag-Zn焊料还未见报道。因此,本文后续研究以低Ag焊料Sn-Ag-Zn三元体系作为对象。
     本文通过DSC分析、扫描电子显微镜(SEM)、X射线衍射(XRD)和室温拉伸来研究焊料合金熔融、微观组织和力学性能及其联系;然后将焊料运用于Cu和Ni/Cu基板制备成焊点,经过不同的热老化环境后,通过剪切力测试研究焊点力学性能和热老化可靠性,并对界面微观形貌和断口进行了研究以确定断裂机理;之后于三元合金体系添加第四组元来研究进一步提高焊料性能的可靠性;最后通过电化学分析来研究焊料的抗腐蚀性能。
     通过对Sn-Ag-Zn体系焊料熔融性能、微观组织和力学性能的系统研究。最后确定Sn-1.5Ag-2Zn和Sn-2Ag-2.5Zn两个优化配比及形成机理。优化的Ag、Zn配比可以有效抑制焊料中的先共晶相的形成,并在共晶族间形成连续塑性良好的β-Sn界面。因此,优化的配比不仅可以提高焊料的熔融性能和强度,还能大幅提升焊料的塑性,其熔融性能和强度超过共晶SAC305焊料,Sn-2Ag-2.5Zn焊料的塑性优于SAC105焊料。
     在回流焊接后,优化焊料制备的Sn-1.5Ag-2Zn/Cu和Sn-2Ag-2.5Zn/Cu焊点在同样具有良好的强度和韧性。研究发现,回流过后的Sn-xAg-1Zn/Cu焊点会形成脆性界面,焊点强度和塑性大幅降低。添加焊料中的Zn含量至2wt.%以上可以有效提升焊点界面强度,使得焊点由焊料内部发生断裂。由于优化配比的焊料有良好的力学性能,使得焊点的力学性能也得以提高。但是研究过程中也暴露出Sn-Ag-Zn/Cu焊料的两个缺点:Sn-Ag-Zn焊料润湿性随Ag含量降低而大幅下降;Sn-Ag-Zn/Cu焊点在150oC下长时间老化后发生严重界面反应的问题。
     150oC下Sn-Ag-Zn/Cu焊点界面反应的问题和Sn-xAg-1Zn焊点界面脆性的问题可以通过Cu焊盘镀Ni的方式来解决。回流焊接后Sn-Ag-Zn/Ni/Cu焊点的韧性要高于Sn-Ag-Zn/Cu焊点。在150oC长时间老化后Sn-Ag-Zn/Ni/Cu界面也会形成颗粒状Ag3Sn IMC。由于Sn-xAg-1Zn焊料内部存在Ag3Sn相,有利于界面Ag3Sn生长,所以Sn-xAg-1Zn/Ni/Cu焊点老化后力学性能下降比较大,而Zn含量高于2wt.%的焊点力学性能下降较小。同样优化配比的Sn-1.5Ag-2Zn/Ni/Cu和Sn-2Ag-2.5Zn/Ni/Cu焊点具有良好的强度和韧性。
     添加Cr、Cu、Ni可以有效提高Sn-Ag-Zn焊料的润湿性,可有效避免因Sn-Ag-Zn焊料润湿性不足而产生的焊接缺陷,使得焊点强度进一步提高。但是过多添加会造成成分偏析,为了避免偏析,三种元素的添加量为0.05wt.%Cr、0.1wt.%Cu、0.1wt.%Ni。其中,回流焊接后添加Cu的焊点塑性较差,从而韧性较差;而添加Cr和Ni的焊点塑性没有明显变化,韧性较好。而在250oC,4小时回流焊接后添加Cr的焊点强度和韧性明显下降,其原因可能是长时间回流使过饱和固溶的Cr析出,因此添加Cr的焊料不适用于波峰焊和浸焊。而添加Ni和Cu的焊点保持良好的韧性。
     通过电化学腐蚀分析可以看到,Sn-Ag-Zn体系焊料的抗腐蚀能力介于Sn-Ag-Cu焊料和Sn-Zn焊料之间,而Sn-Ag-Zn焊料之间抗腐蚀能力差别不大。在Sn-xAg-1Zn焊料中,Sn-2Ag-1Zn焊料抗腐蚀性能较好;而Sn-2Ag-xZn焊料中,抗腐蚀性能随Zn含量的上升而下降,但是Zn含量达到3wt.%时抗腐蚀能力改善。本次研究中,由于第四组元添加量较少,因此添加第四组元后对Sn-2Ag-2.5Zn焊料的抗腐蚀性能影响不大。
Currently, the eutectic Sn-Ag-Cu solder is the most popular lead free solder. But theeutectic Sn-Ag-Cu solder forms coarse Ag3Sn intermetallic compound (IMC), which maycause the decreasing of reliability. The high cost of Ag also limits its use. It is reportedthat the low-Ag content SAC105solder has the advantage in shock resistance comparingwith the SAC305solder. However, to reduce Ag content not only rises liquidus andenlarges pasty range, but also lowers strength and reliability under thermal fatigueconditions. Therefore, the SAC105solder has not been widely used.
     This study aims to improve melting properties and strength of low Ag content solder.The Sn-Ag-Zn ternary system was chosen by the thermodynamic analysis. The analysisresults show that the melting properties can be improved by adjusting of the third elementin the low-Ag content Sn-Ag-Zn system, while this effect cannot be obtained in otherternary system. Furthermore, the Sn-Ag-Zn system has many other advantages comparedwith Sn-Ag-Cu, such as higher strength and shock resistance. The industry needs alow-Ag content solder with better melting properties and mechanical properties. Themost researches on Sn-Ag-Zn system focus on the eutectic composition, while thelow-Ag content Sn-Ag-Zn solder is rarely reported. Therefore, the Sn-Ag-Zn ternarysystem is chosen in this study.
     In this study, the selected solders were studied by DSC, SEM and XRD analysis tounderstand their melting properties, microstructures and mechanical properties. Then, theselected solders were applied on Cu and Ni/Cu substrates to prepare solder joints. Themechanical properties of the solder joints were researched before and after the thermalaging. The microsturctures and the fracture surfaces of the solder joints were studied tounderstand the fracture mechanism. To improve wettability of Sn-Ag-Zn solders, thefourth elements were doped. At last, the electrochemical analysis was used to understandthe corrosion resistance of the selected solders.
     The results show, the Sn-1.5Ag-2Zn and the Sn-2Ag-2.5Zn solders have outstandingmelting properties and mechanical properties. The optimized solder compositions caninhibit the formation of the primary β-Sn and γ-AgZn phases, and form a continuousβ-Sn interfacial layer which has good ductility. Therefore, the optimized Sn-Ag-Znsolders not only have good melting properties and strengths, but also have goodplasticities. Their melting properties and strengths are better than the eutectic SAC305solder, and the plasticity of the Sn-2Ag-2.5Zn solder is better than the SAC105solder.
     The as-reflowed Sn-1.5Ag-2Zn/Cu and Sn-2Ag-2.5Zn/Cu solder joints also havegood strengths and toughnesses. It was found that these is a brittle Cu6Sn5+Cu5Zn8layerformed on as-reflowed Sn-xAg-1Zn/Cu interface, So that the toughness of the solder jointis decreased. The formation of the brittle layer can be inhibited by increasing of Zncontent, and the solder joints with2wt.%Zn content have good toughnesses. Meanwhile,the disadvantages of Sn-Ag-Zn solders such as lower wettability and the erosion on Cusubstrate at150oC are discovered in this study.
     The brittleness of the Sn-xAg-1Zn/Cu solder joint and the erosion of Sn-Ag-Znsolder on Cu substrate can be prevented by plating Ni on Cu substrate. The toughnessesof as-reflowed Sn-Ag-Zn/Ni/Cu solder joints are higher than Sn-Ag-Zn/Cu solder joints.After150oC aging for200hours, there is Ag3Sn IMC particle formed on the solder/Niinterface. There is Ag3Sn phase in Sn-xAg-1Zn solders, so the interfacial Ag3Sn is moreconducive to form on the Sn-xAg-1Zn/Ni interface. Therefore, the joint strengths of theSn-xAg-1Zn/Ni/Cu joints were decreased sharply after thermal aging. The strengths ofsolder joints with Zn content more than2wt.%in the solder are not decliningsignificantly.
     Doping of Cr, Cu and Ni can improve wettability of Sn-Ag-Zn solders obviously, butthe excessive doping leads to segregation. To prevent segregation, there are only0.05wt.%Cr,0.1wt.%Cu and0.1wt.%Ni doped in Sn-2Ag-2.5Zn solder respectively. Afterdoping, the soldering defects are reduced obviously in as-reflowed solder joints. Theplasticity of the solder joint with Cu doping is decreased, so its toughness is low. Whilethe plasticity of joints with Cr and Ni doping are not changed obviously, theirtoughnesses are better than undoped solder joint. After250oC soldering for4hours, thetoughness of solder joint with Cr doping is drop obviously, which may caused byprecipitation of supersaturated Cr. While the toughness of the joints with Cu and Ni doping remain higher than undoped joint.
     It can be found by the electrochemical Analysis that the corrosion resistance of theSn-Ag-Zn solders are lower than the Sn-Ag-Cu solders but higher than the Sn-Zn solders,while there are not significant differences among the Sn-Ag-Zn solders. The Sn-2Ag-1Znsolder has the best corrosion resistance in the Sn-xAg-1Zn solders. When the Zn contentis lower than2.5wt.%, the corrosion resistance is decreased with the increasing of Zncontent in Sn-2Ag-xZn solders. While Zn content up to3wt.%, the corrosion resistance isturning for the better. This phenomenon is caused by the conversion of the eutectics. Themain eutectic in Sn-2Ag-2.5Zn solder is β-Sn+ζ-AgZn eutectic, while β-Sn+ε-AgZn inthe Sn-2Ag-3Zn solder. The corrosion resistance is not obviously changed after Cr dopedand just little better after Cu and Ni doped, which may be caused by the small dopingmount.
引文
[1] Howard Manko. Solder and soldering.2nd ed. New York: McGraw-Hill.1979:23~24.
    [2] Rahn Armin. The Basics of Soldering: John Wiley.1993:15~16.
    [3] Brady George. Materials Handbook. New york: McGraw Hill.1996:.768~770.
    [4]菅沼克昭.无铅焊接技术.北京:科学出版社.2004:1~2.
    [5] M. G. Pecht. Soldering Process and Equipment. UK: Wiley,2001:114~115.
    [6]石德珂.材料科学基础.北京:机械工业出版社.1999:270~271.
    [7] F. Y. Hung, H. M. Lin, P. S. Chen. A study of the Thinfilm on the Surface ofSn-3.5Ag/Sn-3.5Ag-2.0Cu Lead-free Alloy [J]. Journal of Alloys andCompounds.2006,415:85~92.
    [8] L. Kaufman. Solids Under Pressure. New York: McGraw-Hill.1963:267.
    [9] T. Y. Pan, J. M. Nicholson, H. D. Blair, R. H. Poulson, Cooper R. P., Mitlin D.,M. F. Cheung. Dynamic Wetting Characteristics of Some Lead-free Solders.presented at the Proceedings of the7th International SAMPE Conference,Parsippany, New Jersey.1994:343~354.
    [10] M. P. Vianco. Prototyping Lead-free Solders on Hand-soldered, Through-holeCircuit Boards. presented at the Proceedings of the7th International SAMPEConference, Parsippany, New Jersey.1994:366.
    [11] K.S. Kim, T. Matsuura, K. Suganuma. Effects of Bi and Pb on Oxidation inHumidity for Low-temperature Lead Free Solder Systems [J]. Journal ofElectronic Materials.2006,1:41~47.
    [12] U. S. Mohanty, K. L. Lin. Electrochemical Corrosion Behavior of Lead-freeSn-8.5Zn-XAg-0.1Al-0.5Ga Solder in3.5%NaCl Solution [J]. MaterialScience and Engineering, A.2005,406:34~42.
    [13]秦俊法,楼蔓藤,李国文,罗海潘,巫秀芳,肖益新,李增禧.对铅中毒认识的三次重大飞跃.广东微量元素科学.2010年03期:1~13.
    [14] E.P. Wood, K.L. Nimmo. In Search of New Lead-free Electronic Solders [J],Journal of Electronic Materials,1994,23(8):709~713.
    [15] E. R. Monsalve. Lead ingestion hazard in hand soldering environments.presented at the Proceedings of the8th Annual Soldering Technology andProduct Assurance Seminar, Naval Weapons Center, China Lake, CA.1984:23.
    [16] D. Napp. Lead-free Interconnect Materials for the Electronics Industry.presented at the Proceedings of the27th International SAMPE TechnicalConference, Albuquerque, NM.1995:342.
    [17] Directive2002/96/EC of the European Parliament and Council on wasteelectrical and electronic equipment (WEEE). Official Journal of EuropeanUnion.2003.
    [18] Directive2002/95/EC of the European Parliament and Council on therestriction of the use of certain hazardous substances in electrical andelectronic equipment (RHS). Official Journal of European Union.2003.
    [19]电子信息产品中有毒有害物质的限量要求. SJ/T11363-2006.中华人民共和国信息产业部.2006.
    [20] S.K. Kang, A.K. Sarkhel. Lead-free Solders for Electronic Packaging [J].Journal of Electronic Materials.1994,23:171~180.
    [21] F. Vnuk, M.H. Ainsley, R.W.Smith. The Solid Solubility of Silver, Gold andZinc in Metallic Tin [J]. Journal of Materials Science.1981,16:1171~1176.
    [22] M. McCormack, S. Jin, G.W. Kammlott, H.S. Chen. New Pb-free Solder Alloywith Superior Mechanical Properties [J]. Applied Physics Letters.1993,63(1):15~17.
    [23] C. J. Thwaites. Soft Soldering Handbook. International Tin Research Institute.1977:204.
    [24] R. Darveaux, K. Banerji. Constitutive Relations For tin-based Solder joints [J].IEEE transactions on components, Hybrids Manufacturing.1992,15:1014~1022.
    [25] J. Liang. Creep Study for Fatigue Life Assessment of Two Pb-Free HighTemperature Solder Alloys. Materials Research Society SymposiumProceedings.1997,445:307~312.
    [26] JENN-MING SONG, ZONG-MOU WU, DE-AN HUANG, andHSIN-YICHUANG. The Effect of Low-Temperature Solute Elements onNonequilibrium Eutectic Solidification of Sn-Ag Eutectic Solders [J]. Journalof Electronic Materials.2007,36(12):1608~1614.
    [27] K.Suganuma, K.Niibara. Wetting and Interface Microstructure Between Sn-ZnBinary Alloys and Cu [J]. Journal of Materials Research.1998,13(10):2859~2865.
    [28] F. Hua, J. Glazer. Lead-free Solders for Electronic Assembly, Design andReliability of Solders and Solder Interconnections [J]. The Minerals, Metalsand Materials Society.1997:65~74.
    [29] M. Abtew, G. Selvaduray. Lead-free Solders in Microelectronics [J]. MaterialScience and Engineering.2000,27:95~141.
    [30] K. Suganuma. Heat Resistance of Sn–9Zn Solder/Cu Interface with or withoutCoating [J]. Journal of Materials Research.2000,15(4):884~891.
    [31]陈熹.新型Sn-9Zn基低熔点无铅焊料的研究[博士论文].上海:上海交通大学.2009.
    [32] F. G Yost, F. M. Hosking, and D. R. Frear. The Mechanics of Solder AlloyWetting and Spreading. New York: Van Nostrand Reinhold.1993:303.
    [33] Kazuhiro Nogita, Jonathan Read, Tetsuro Nishimura, Keith Sweatman,Shoichi Suenaga and Arne K. Dahle. Microstructure Control in Sn–0.7mass%Cu Alloys [J]. Materials Transactions.2005,46(11):2419~2425.
    [34] Kyoo-Sik Bae and Si-Jung Kim. Microstructure and adhesion properties ofSn–0.7Cu/Cu solder joints [J]. Journal of Materials Research. Apr2002,17(4):743~746.
    [35] Thomas Siewert, Stephen Liu, David R. Smith, Mr. Juan Carlos Madeni.Database for Solder Properties with Emphasis on New Lead-free Solders.Colorado: National Institute of Standards and Technology&Colorado Schoolof Mines.2002:66~67.
    [36] N.T. Gladkikh, S.P. Chizhik, V.I. Latin, L.K., Grigor'eva, A.L. Samsonik, andV.N. Sukhov. Structure of. Binary Alloys in Condensed Films [J]. RussianMetallurgy.1987,1:173~181.
    [37] J.W. Morris, Jr., J.L. Freer Goldstein, and Z. Mei. Microstructure andMechanical Properties of Sn-In and Sn-Bi Solders [J]. Journal of the Minerals,metals, and Materials Society.1993,45:25~27.
    [38] R. W. Wild. Properties of Some Low Melting Fusible Alloys. IBM FederalSystems Division Laboratory. New York1971:19–21.
    [39] K. Suganuma. Influence of Various Factors on Lift-off Pphenomenon in WaveSoldering with Sn–Bi Alloy [J]. Japan Institute of Electronics PackagingAcademic.1999,2:116~120.
    [40] J. Glazer. Metallurgy of Low Temperature Pb-free Solders for ElectronicAssembly [J]. International materials reviews.1995,40(2):67.
    [41] Z. Mei, J.W. Morris Jr. Superplastic Creep of Low Melting Point Solder Joints[J]. Journal of Electronic Materials.1992,21:401~407.
    [42] J. L. Freer, J. W. Morris. Microstructure and Creep of Eutectic Indium/tin onCopper and Nickel Substrates [J]. Journal of Electronic Materials. June1992,21:647~652.
    [43] J. Seyyedi. Thermal Fatigue Behavior of Low Melting Point Solder Joints [J].Soldering and Surface Mount Technology.1993,13:26~32.
    [44] Jeong-Won Yoona, Bo-In Noha, Bong-Kyun Kimb, Chang-Chae Shura,Seung-Boo Junga. Wettability and Iinterfacial Reactions of Sn–Ag–Cu/Cu andSn–Ag–Ni/Cu Solder Joints [J]. Journal of Alloys and Compounds.3November2009,486:142~147.
    [45] K. W. Moon. Experimental and Thermodynamic Assessment of Sn-Ag-CuSolder Alloys [J]. Journal of Electronic Materials.2000,29:1122~1136.
    [46] F. Rosalbino, E. Angelini, G. Zanicchi, R. Marazza. Corrosion behaviourassessment of lead-free Sn–Ag–M (M=In, Bi, Cu) solder alloys [J]. MaterialsChemistry and Physics.2008,109:386~391.
    [47] F. X. Che, J. E. Luan, Xavier Baraton. Effect of Silver Content and NickelDopant on Mechanical Properties of Sn-Ag-based Solders. presented at theElectronic Components and Technology Conference.2008:485~490.
    [48] K. Zeng and K. N Tu. Six Cases of Reliability Study of Pb-free Solder Jointsin Electronic Packaging Technolog [J]. Materials Science and Engineering R.2002,38:55~105.
    [49] Henry Y. Lu, Haluk Balkan, K.Y. Simon Ng. Effect of Ag Content on theMicrostructure Development of Sn-Ag-Cu Interconnects [J]. Journal ofMaterials Science: Materials in Electronics.2006,17:171~188.
    [50] Ursula R. Kattner, William J. Boettinger. On the Sn-Bi-Ag Ternary PhaseDiagram [J]. Journal of Electronic Materials.1994,23:603~610.
    [51] Vianco P.T., Rejent J.A. Properties of Ternary Sn–Ag–Bi Solder Alloys. Part II.Wettability and Mechanical Properties Analyses [J]. Journal of ElectronicMaterials.1999,28:1138~43.
    [52] Artaki I, Jackson A.M, Vianco P.T. Evaluation of Lead-free Solder joints inElectronic Assemblies [J]. Journal of Electronic Materials.1994,23:757~63.
    [53] K. Suganuma. Advances in Lead-free Electronics Soldering [J]. CurrentOpinion in Solid State and Materials Science.2001,5:55~64.
    [54] Ursula R. Kattner and Carol A. Handwerker. Calculation of Phase Equilibria inCandidate Solder Alloys [J]. Zeitschrift für Metallkunde.2001,92:1~12.
    [55] I. Ohnuma, Miyashita, M., Liu, X.J., Ohtani, H., Ishida, K. Phase Equilibriaand Thermodynamic Properties of Sn-Ag Based Pb-Free Solder Alloys [J].IEEE Transactions on Electronics Packaging Manufacturing.2003,26:84~89.
    [56] K. J. Korhonen TM. Thermodynamics of the Sn–In–Ag Solder system [J].Journal of Electronic Materials.1998,27:149~58.
    [57] YOSHIHARU KARIYA and MASAHISA OTSUKA. Mechanical FatigueCharacteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) Solder Alloys [J].Journal of Electronic Materials.1998,27:1229~1235.
    [58] Ohtani, H. Miyashita, M., Ishida, K. Thermodynamic Study of PhaseEquilibria in the Sn-Ag-Zn System [J]. Journal of the Physical Society ofJapan.1999,63:685~694.
    [59] Y.K. Jee, Y.H. Ko, and Jin Yu, Effect of Zn on the Intermetallics Formationand Reliability of Sn-3.5Ag Solder on a Cu pad [J], Journal of MaterialsResearch,2007,22:1879~1887.
    [60] Y.C. Liu, J.B. Wan, Z.M. Gao. Intermediate Decomposition of MetastableCu5Zn8Phase in the Soldered Sn-Ag-Zn/Cu Interface [J]. Journal of Alloysand Compounds.2008,465:205~209.
    [61] Jun Shen, Shiqiang Lai, Yongchang Liu, Houxiu Gao, Jun Wei. The effects ofthird alloying elements on the bulk Ag3Sn formation in slowly cooled Sn3.5Aglead-free solder [J]. Journal of Materials Science: Materials in Electronics.2008,19:275~280.
    [62] FENG-JIANG WANG, FENG GAO, XIN MA, and YI-YU QIAN. DepressingEffect of0.2wt.%Zn Addition into Sn-3.0Ag-0.5Cu Solder Alloy on theIntermetallic Growth with Cu Substrate During Isothermal Aging [J]. Journalof ELECTRONIC MATERIALS.2006,35:1818~1824.
    [63] Y. Y. WEI, J. G. DUH. Effect of Thermal Ageing on (Sn-Ag, Sn-Ag-Zn)/PtAg,Cu/Al2O3Solder Joints [J]. Journal of Materials Science: Materials inElectronics.1998,9:373~381.
    [64] K.L.Lin, C.L.Shih. Wetting Interaction Between Sn-Zn-Ag Solders and Cu [J].Journal of Electronic Materials.2003,32:95~100.
    [65] Chang T C, Hsu Y T, Hon M H, Wang M C. Enhancement of the Wettabilityand Solder Joint Reliability at the Sn-9Zn-0.5Ag Lead-free Solder Alloy-CuSubstrate by Ag Precoating [J]. Journal of Alloys and Compounds.2003,360:217~224.
    [66] Takemoto T, Funaki T, Matsunawa A. Electrochemical Investigation on theEffect of Silver Addition on Wettability of Sn-Zn System Lead-free Solder [J].Welding Research Abroad.2000,46:20~23.
    [67] Lin K L, Shih C L. Microstructure and Thermal Behavior of Sn-Zn-AgSolders [J]. Journal of Electronic Materials.2003,32:1496~1500.
    [68] C. Wei, Y.C. Liu., Y.J. Han, J.B. Wan, K. Yang. Microstructures of EutecticSn-Ag-Zn Solder Solidified with Different Cooling Rates [J]. Journal ofAlloys and Compounds.2008,464:301~305.
    [69] S. Terashima, M. Tanaka and K. Tatsumi. Thermal fatigue properties and grainboundary character distribution in Sn-xAg-0.5Cu (x=1,1.2and3) lead freesolder interconnects [J]. Science and Technology of Welding and Joining.2008,13:61~65.
    [70] W.H. Zhu, Luhua Xu. Drop Reliability Study of PBGA Assemblies withSAC305, SAC105and SAC105-Ni Solder Ball on Cu-OSP and ENIG SurfaceFinish. presented at the Electronic Components and Technology Conference.2008:1667~1672.
    [71] Ahmer Syed, Tae-Seong Kim. Effect of Pb free Alloy Composition onDrop/Impact Reliability of0.4,0.5&0.8mm Pitch Chip Scale Packages withNiAu Pad Finish. presented at the Electronic Components and TechnologyConference.2007:1879~1887.
    [72] Lili Gao, Songbai Xue, Liang Zhang, Zhong Sheng, Feng Ji, Wei Dai,Sheng-lin Yu, Guang Zeng. Effect of Alloying Elements on Properties andMicrostructures of SnAgCu Solders [J]. Microelectronic Engineering.2010,87:2025~2034.
    [73] SHINICHI TERASHIMA, YOSHIHARU KARIYA, TAKUYA HOSOI, andMASAMOTO TANAKA. Effect of Silver Content on Thermal Fatigue Life ofSn-xAg-0.5Cu Flip-Chip Interconnects [J]. Journal of ELECTRONICMATERIALS.2003,32:1527~1533.
    [74] G. H. Gulliver. The Quantitative Effect of Rapid Cooling upon theConstitution of Binary Alloys [J]. Journal of the Institute of Metals. vol.9,1913:120~157.
    [75] E. Scheil. Remarks on the Crystal Layer Formation [J]. Zeitschrift fürMetallkunde.1942,34:70~72.
    [76] I. Ohnuma, K. Ishida, Z. Moser, W. Ga sior, K. Bukat, J. Pstrus′, R. Kisiel,and J. Sitek. Pb-Free Solders: Part II. Application of ADAMIS Database inModeling of Sn-Ag-Cu Alloys with Bi Additions [J]. Journal of PhaseEquilibria and Diffusion.2006,27:245~254.
    [77] B. Huang, H. S. Hwang, N. CH. Lee. A Compliant and Creep ResistantSAC-Al(Ni) Alloy. presented at the57th Electronic Components andTechnology Conference. Reno,2007:184~191.
    [78] A. Zribi, A.Z. Clark, L. Borgesen, and E.J.P. Cotts. The Growth ofIntermetallic Compounds at Sn-Ag-Cu Solder/Cu and Sn-Ag-Cu Solder/NiInterfaces and the Associated Evolution of the Solder Microstructure [J].Journal of Electronic Materials.2001,30:1157.
    [79] K.L. Lin and T.P. Liu. High Temperature Oxidation of a Sn-Zn-Al solder [J].Oxidation of Metals.1998,50:255.
    [80] K.L.LIN, H.M.HSU. Sn-Zn-Al Pb-free Solder-an Inherent Barrier Solder forCu Contact [J]. Journal of Electronic Materials.2001,30:1068~1072.
    [81] J. M. Song, C. F. Huang and H. Y. Chuang. Microstructural Characteristics andVibration Fracture Properties of Sn-Ag-Cu-TM (TM=Co, Ni and Zn)[J].Journal of Electronic Materials.2006,35:2154~2163.
    [82] Yao Pei, Liu Ping, Liu Jim. Interfacial reaction and shear strength ofSnAgCu-xNi/Ni solder joints during aging at150°C [J]. MicroelectronicEngineering.2009,86:1969~1974.
    [83] Jeong-Won Yoona, Bo-In Noha, Bong-Kyun Kimb, Chang-Chae Shura,Seung-Boo Junga. Wettability and Interfacial Reactions of Sn-Ag-Cu/Cu andSn-Ag-Ni/Cu Solder joints [J]. Journal of Alloys and Compounds.2009,486:142~147.
    [84] M.L. Huang, N. Kang, Q. Zhou and Y.Z. Huang. Effect of a Trace of Bi and Nion the Microstructure and Wetting Properties of Sn-Zn-Cu Lead-Free Solder[J]. Journal of Materials Science&Technology.2007,23:81~84.
    [85] M.L. Huang, N. Kang, Q. Zhou and Y.Z. Huang. Effect of Ni Content onMechanical Properties and Corrosion Behavior of Al/Sn–9Zn–xNi/Cu Joints[J]. Journal of Materials Science&Technology.2012,28:844~852.
    [86] Xi Chen, Anmin Hu, Ming Li, Dali Mao. Effect of Small Additions ofAlloying Elements on the Properties of Sn-Zn Eutetic Alloy [J]. Journal ofElectronic Materials.2006,35:1734~1739.
    [87] Xi Chen, Anmin Hu, Ming Li, Dali Mao. Study on the Properties ofSn-9Zn-xCr Lead-free Solder [J]. Journal of Alloys and Compounds.2008,460:478~484.
    [88] Xi Chen, Anmin Hu, Ming Li, Dali Mao. Effect of a Trace of Cr onIntermetallic Compound Layer for Tin-Zinc Lead-Free Solder Joint duringAging [J]. Journal of Alloys and Compounds.2009,470:429~433.
    [89]张富文,刘静,杨福宝,胡强,贺会军,朱学新,徐骏,石力开.新型Sn-Ag-Cu-Cr无铅焊料合金的研究[J].电子元件与材料.2005,24:45~48.
    [90] D.Q. Yu, J. Zhao, L. Wang. Improvement on the Microstructure Stability,Mmechanical and Wetting Properties of Sn–Ag–Cu Lead-free Solder with theAddition of Rare earth Elements [J]. Journal of Alloys and Compounds.2004,376:170~175.
    [91] L. Liu. Research on Effects of Minute Amount of Rare-Earth Element Ce onProperties of SnAgCu Alloy and Reliability of Soldered Joints [Dissertation].Nanjing University of Aeronautics and Astronautics,2006.
    [92] Tung-Han Chuang. Rapid Whisker Growth on the Surface ofSn–3Ag–0.5Cu–1.0Ce Solder Joints [J]. Scripta Materialia.2006,55:983~986.
    [93] Metallic materials-Tensile test at Ambient Temperature, second edition.ISO6892, International organization for standardization,1998.
    [94] K.W. Andrews, H.E. Davies, W. Hume-Rothery, C.R. Oswin. The EquilibriumDiagram of the System Silver-Zinc [J]. Proceedings of the Royal Society.1940-1941, A177,149-167.
    [95] Kenneth George Libbrecht. Kenneth George Libbrecht’s Field guide toSnowflakes: Voyageur Press.2006:11.
    [96] The Standard test Method on Wettability Estimation of Solders. the NationalStandard of China. GB11364-89,1989.
    [97]束德林.金属力学性能.北京:机械工业出版社.2001:70,142.
    [98] Y. Austin Chang, Daniel Goldberg, and Joachim P. Neumann. Phase diagramsand Thermodynamic Properties of Ternary Copper-silver Systems [J]. Journalof Physical and Chemical Reference Data.1977,6:621~673.
    [99] Jing Hu, Anmin Hu, Ming Li, Dali Mao. Depressing Effect of0.1wt.%CrAddition into Sn-9Zn Solder Alloy on the Intermetallic Growth with CuSubstrate During Isothermal Aging [J]. Materials Characterization.2010,61:355~361.
    [100] Jinglin Bi, Anmin Hu, Jing Hu, Tingbi Luo, Ming Li, Dali Mao. Effect of CrAdditions on Interfacial Reaction Between the Sn-Zn-Bi Solder andCu/electroplated Ni Substrates [J]. Microelectronics Reliability.2011,51:636~641.
    [101] C.W. Hwang, J.G. Lee, K. Suganuma, H. Mori. Interfacial MicrostructureBetween Sn-3Ag-xBi and Cu Substrate with or without Electrolytic Ni Plating[J]. Journal of Electronic Materials.2003,32:52~62.
    [102] C.Y. Lee, J.W. Yoon, Y.J. Kim. Interfacial Reactions and Joint Reliability ofSn-9Zn solder on Cu or Electrolytic Au/Ni/Cu BGA Substrate [J].Microelectronic Engineering.2005,82:561~568.
    [103] P. Nash, Y. Y. Pan. The Ni Zn (Nickel-Zinc) System [J]. Journal of PhaseEquilibria.1987,8:422~430.
    [104] J.B.Darby, and D.B. Jugle. Solubility of Several First-Long-Period TransitionElements in Liquid Tin [J]. Trans. Metall. Soc. AIME.1969,245:2515~2518.
    [105] P. J. Brown. The Structure of the-phase in the Transition Metal-zinc AlloySystems [J]. Acta Crystallographica.1962,15:608~612.
    [106] Okpalugo D. E, Booth J. G, Costa M. M. R, Ziebeck K. R. A. Magnetic PhaseDiagrams For the Dilute Cr-Sn and Cr-Sb Systems [J]. Journal of AppliedPhysics.1985,57:3039~3041.
    [107] K. N. Tu, K. Zeng. Tin-lead (SnPb) Solder Reaction in Flip Chip Technology[J]. Material Science and Engineering R.2001,34:1~59.
    [108]不锈钢阳极极化测量的方法. JIS G0579,日本工业标准.2007.
    [109] U.S.Mohanty, K.L.Lin. Potentiodynamic Polarization Measurement ofSn-8.5Zn-XAl-0.5Ga Alloy in3.5%NaCl Solution [J]. Journal of theElectrochemical Society.2006,153:319~324.
    [110] U.S. Mohanty, K.L. Lin. The Effect of Alloying Element Gallium on thePolarization Characteristics of Pb-free Sn-Zn-Ag-Al-XGa Solders in NaClsolution [J]. Corrosion Science.2006,48:662.
    [111] D.Q.Yu, C.M.L. Wu, L. Wang. The Electrochemical Corrosion Behavior ofSn-9Zn and Sn-8Zn-3Bi Lead-free Solder Alloys in NaCl Solution. presentedat the16th International Corrosion Conference. Beijing, China,2005:19.
    [112] Udit Surya Mohanty, Kwang-Lung Lin. Electrochemical Corrosion Behaviourof Pb-free Sn-8.5Zn-0.05Al-XGa and Sn-3Ag-0.5Cu Alloys in ChlorideContaining Aqueous Solution [J]. Corrosion Science.2008,50:2437~2443.
    [113] U.S.Mohanty, K.L.Lin. The polarization characteristics of Pb-freeSn-8.5Zn-xAg-0.1Al-0.05Ga alloy in3.5%NaCl solution [J]. CorrosionScience.2007,49:2815~2831.
    [114] D. Abayarathna, E.B. Hale, T.J. O'Keefe, Y. M.Wang, D Radovic. Effects ofSample Orientation on the Corrosion of Zinc in Ammonium Sulfate andSodium Hydroxide Solutions [J]. Corrosion Science.1991,32:755~768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700