用户名: 密码: 验证码:
碳纳米管/AZ31镁基复合材料的制备及ECAP变形
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用机械搅拌法及钟罩浸块铸造法(制取预制块后压块浸渗的两步方法)分别制备了CNTs/AZ31镁基复合材料,对其铸态组织及力学性能分别进行了观察及测试,且对采用钟罩浸块法制备的复合材料进行了固溶处理,并对其组织及力学性能分别进行了观察及测试,并对各种状态下的材料的断口形貌及CNTs与基体的界面结合问题进行了SEM(扫描电镜)和AFM(原子力显微镜)观察。在钟罩浸块法制备复合材料过程中,还对CNTs在预制块及基体中的分散性进行了SEM观察。此外,本文还对机械搅拌法和钟罩浸块法制备的CNTs/AZ31镁基复合材料分别进行了未预挤压态及预挤压态的ECAP(等通道转角挤压)变形,研究ECAP变形对复合材料组织及力学性能的影响。
     研究结果表明:采用钟罩浸块法制备CNTs/AZ31镁基复合材料,CNTs在预制块及AZ31基体中具有较好的分散程度。对于机械搅拌法及钟罩浸块法制备的CNTs/AZ31镁基复合材料,随着CNTs加入量的增加,晶粒都明显细化,力学性能都明显提高。抗拉强度、显微硬度和延伸率都在CNTs加入量为1wt%时达到最大值。机械搅拌法制备的分别为190.3Mpa、88.6HV和7.82%,相比AZ31合金分别提高了27.9%、75.1%和119.66%;弹性模量在CNTs加入量为1.5%wt时达到最大值90.86Gpa,相比基体提高了70.99%。钟罩浸块法制备的CNTs/AZ31镁基复合材料,相比机械搅拌法,由于CNTs在复合材料中的良好分散性,导致力学性能较之提高。抗拉强度、显微硬度、延伸率的最大值分别为210.3Mpa、96.6HV和8.56%,弹性模量在CNTs加入量为1.5wt%时达到最大值98.88Gpa;相比机械搅拌法制备的相同CNTs含量材料,分别提高了10.5%、9.0%、9.5%和8.8%;且经过固溶处理后,抗拉强度和延伸率都明显提高,在CNTs加入量为1wt%时分别达到最大值230.2Mpa和11.32%,相比铸态时,分别提高了9.5%和32.24%;显微硬度和弹性模量相对铸态都有所降低,在CNTs加入量为1wt%和1.5wt%时分别达到最大值90.2和90.22,相比铸态时,分别降低了6.6%和8.76%。
     未预挤压态的机械搅拌法制备的1%wtCNTs/AZ31镁基复合材料ECAP变形一道次后,试样开裂明显,复合材料最小晶粒尺寸达到约5μm。晶粒发生转动,原有的晶粒取向被改变,由于CNTs的加入,有织构软化的倾向。显微维氏硬度显著提高;经ECAP变形一道次后,纵截面和横截面显微硬度值为110.6和122.6HV,分别提高了46.5%和62.4%。
     预挤压态的钟罩浸块法制备的1%wtCNTs/AZ31镁基复合材料ECAP变形后,试样的铸造缺陷大大减小,晶粒得到明显细化;经过ECAP变形四道次后,晶粒尺寸细化显著,平均约为2μm,抗拉强度和延伸率显著提高,最大值分别为1道次后的306.3Mpa及四道次后的23.33%。ECAP变形四道次后,抗拉强度与晶粒的尺寸出现反Hall-Petch现象,主要是因为晶界滑动、织构弱化以及晶界结构综合作用的结果;影响ECAP后复合材料的延伸率变化的主要因素为CNTs的分散程度以及复合材料的晶粒尺寸,两者综合作用。
     铸态及固溶处理后的CNTs/AZ31镁基复合材料的断裂形式主要都为准解理断裂,由韧窝和撕裂棱所组成。ECAP变形后,复合材料以基体延性撕裂为主体,撕裂棱具有一定取向性,存在韧性断裂带,CNTs密集区域多数为CNTs/基体界面脱粘并伴随穿晶断裂的形式。CNTs与AZ31基体间在铸造复合过程中无明显的界面反应,且与基体界面结合紧密。
Carbon nanotubes(CNTs)/AZ31 magnesium composites have been casted by stirring casting method and adding precast block by plunger respectively,as-cast micro structure and mechanical properties were observed and tested respectively.And the composites produced by adding precast block by plunger were treated by solution treatment,and it's micro structure and mechanical properties were observed and tested.Fracture and Interface between CNTs and matrix were observed toward SEM and AFM.During producing composites by adding precast block by plunger,the dispersion of CNTs in precast block and AZ31 matrix were observed.In addition,the CNTs/AZ31 composites prepared by stirring casting method and adding precast block by plunger, were ECAPed on the state of Non pre-extruded and pre-extruded respectively, studying the ECAP deformation on the influence of the composites and mechanical properties of the composites after ECAP.
     It is showed that:CNTs/AZ31 composites prepared by adding precast block by plunger,where CNTs had a good dispersion in AZ31matrix,while there was a good dispersion in precast block.For the composites prepared by stirring casting method and adding precast block by plunger,as the addition of CNTs increased,grains were refined significantly and the mechanical properties were improved significantly.Tensile strength、micro-hardness and elongation all reached the maximum at the CNTs addtion of 1wt%.The maximum value of composite which was prepared by stirring casting was 190.3Mpa、88.6HVand 7.82% respectively,increased 27.9%、75.1% and 119.66% compared to the matrix;elastic mudulus reached the maximum of 90.86Gpa when the addtion of CNTs was 1.5wt%, increased 70.99% compared to the matrix.The CNTs/AZ31 composites produced by adding precast block by plunger,due to the good dispersion in matrix,the mechanical was better than the composites produced by stirring casting.The maximum value of tensile strength、micro-hardness and elongation was 210.3Mpa、96.6HVand 8.56% respectively,elastic mudulus reached the maximum of 98.88Gpa when the addtion of CNTs was 1.5wt%,;increased 10.5%、9.0%、9.5% and 8.8% respectively compared with the same addtion CNTs composites prepared by stirring casting;and after solution treatment,the tensile strength and elongation were all increased,and reached the maximum value of 230.2Mpa and11.32% respectively,increased 9.5% and 32.24% respectively compared with the as-cast composites;micro-hardness and elastic mudulus decresed compared wth the as-cast,and at the addition of CNTs of 1wt% and 1.5wt% reached the maximum value of 90.2 and 90.22 respectively ,decreased 6.6% and 8.76% respectively compared to the as-cast.
     1.0%wt CNTs/AZ31 composites which was produced by stirring casting,didn't be pre-extruded before ECAP deformation, after 1 pass, the samples were cracked remarkablely, the minimum grain size was about 5μm.Grain rotated, original grain orientation had been changed. Due to the addition of CNTs, texture emolliated.Micro-hardness increased significantly.after ECAP IP,the value of longitudinal section and cross-section was 110.6HV and 122.6HV respectively increased 46.5% and 62.4%respectively compared with the as-cast composites.
     1.0%wt CNTs/AZ31 composites which was produced by adding precast block by plunger,did be pre-extruded before ECAP deformation, after ECAP,casting defects decreased significantly,grain refined significantly;after ECAP 4 passes,grain size was refined to 2μm on average.tensile strength and elongation increased significantly,the maximum value was 306.3Mpa afte 1 pass and 23.33% after 4 passes respectively. After 4 passes, it appeared Non Hall-Petch phenomenon, which mainly because of grain-boundary sliding、texture emolliated and grain-boundary structure's combined action;and the main factors affect the composite's elongation after ECAP was the dispersion of CNTs in composites and the grain size of composites, both are combined role.
     The abruption form of CNTs/AZ31 magnesium composites on the state of as-cast and after solution treatment mainly was quasi-cleavage crack,which was made up of dimple and tear ridge. After ECAP deformation, the composites mainly were cracked as matrix ductile tear, tear ridge had a certain orientation,ductile rupture existed, the close area of CNTs mostly was sticky point with matrix and accompanied tracscrystalline fracture.There wasn't obvious interface reaction between CNTs and AZ31 matrix during the casting, and there was a strong interface bonding between CNTs and AZ31 matrix.
引文
[1]肖利,于立军.晶须增强铝、镁金属基复合材料的研究进展[J].吉林师范大学学报(自然科学版).2004,2:76-78.
    [2]李建辉,李春峰,雷廷权.金属基复合材料成形加工研究进展[J].材料科学与工艺.2002,10(2):207-212.
    [3]严峰,吴昆,赵敏.SiCw/MB15镁基复合材料超塑性[J].材料工程.2000,3:32-35.
    [4]曹晓卿,杨桂通.金属基复合材料的高应变率超塑性变形[J].太原理工大学学报,2003,34(1):46-50.
    [5]许晓静,戈晓岚.SiC晶须增强铝基复合材料超塑性.复合材料学报.2003,20(3):127-131
    [6]R.Z. Valiev,R.K.Islamgaliev,I.V.alexandrov.Bulk nanostructured materials from severe plastic deformation.Pro.Mater.Sci.2000,45:103-189.
    [7]石凤健,汪建敏,许晓静.等截面角形挤压的研究内容及现状[J].热加工工艺.2003,1:51-53.
    [8]I.Sabirov,O.Kolednik,R.Z.Valiev,R.Pippan.Equal channel angular pressing of metal matrix composites:Effect on particle distribution and fracture toughness.Acta.Mater.2005,53(18):4919-4930.
    [9]R.Z.Valiev, R.K.Islamgaliev,N.F.Kuzmina.Strengthening and grain refinement in an Al-6061 metal matrix composite through intense plastic straining.Scr.Mater.1999,40(1):117-122.
    [10]Y.Li,T.G.Langdon.Equal-channel angular pressing of an Al-6061 metal matrix composite.J.Mater.Sci.2000,35:1201-1204.
    [11]Y.Nishida,I.Sigematsu,H.Arima.J.C.Kim.T.Ando.Superplasticity of SiC whisker reinforced 7075 composite processed by rotary-die equal channel angular pressing.J.Mater.Sci.Lett.2002,21:465-468.
    [12]蔡叶,苏华钦.镁基复合材料研究的回顾与展望[J].特种铸造及有色合金,1996,(3):17
    [13]吴桢干,顾明元,陈煜等.B4Cp+SiCw/MB15Mg基复合材料的界面微结构[J].金属学报,1998,34(4):443-448.
    [14]Saravanan R A, Surappa M K. Mater Sci Eng,2000,276A(1):108-116.
    [15]A D Mcleod, C M Gabryel. Kinetic of the growth of spinal, MgAl2O4, on alumina alloys containing magnesium alloy matrix composites [J].Metallurgical Transactions 23A,1992, 1279-1283.
    [16]J Wolfenstine, G G Doncel, O D Sherby. Tension versus compression superplastic behavior of a Mg-9 wt% Li-5 wt% B4C composite. Mater Lett,1992,15(4):305-308.
    [17]P Metenier, G G Doncel, O A Ruano, et al. Superplastic behavior of a fine-grained two-phase Mg-9wt% Li alloy. Mater Sci Eng,1990, (A125):195-202.
    [18]O A Ruano,O D Sherby, J Wadsworth, et al. Diffusional creep and dffusion-controlled dislocation creep and their relation to denuded zones in Mg-ZrH2 materials. Scr Mater, 1998,38 (8):1307-1314.
    [19]O A Ruano, O D Sherby, J Wadsworth, et al. Rebuttal to "In defense of diffusional creep". Mater Sci Eng,1996, (A211):66-71.
    [20]J F Mason, C M Warwick, P J Smith, et al. Magnesium-lithium alloys in metal matrix composites. J Mater Sci,1989,24 (11):3934-3946.
    [21]T W Clyne, J F Mason. Squeeze infiltration process for fabrication of metal-matrix composites. Physical Metallurgy and Materials Science,1987,18A (8):1519-1530.
    [22]陈煜,张国定,武凤等.碳(石墨)纤维增强镁基复合材料的界面研究.稀有金属材料与工程,1997,26(3):20-25.
    [23]覃继宁,张国定,张荻等.非连续增强镁基复合材料研究.上海航天,1997,14(6):58-62.
    [24]Noguchi, Atsushi. SiCp/Mg-Ce and Mg-Ca alloy composites obtained by spray forming-g. Journal of Japan Institute of Light Metals,1995,45 (2):64-69.
    [25]M A Matin, E W Coenen, W P Vellinga, et al. Correlation between thermal fatigue and thermal anisotropy in a Pb-free solder alloy. Composite Structures,1999,47:595-601.
    [26]R T Whalen, G G Doncel, S L Robinson, et al. Mechanical properties of particulate composites based on a body-centered-cubic Mg-Li alloy containing boron. Scripta Metallurgica,1989,23(1):137-140.
    [27]Z Trojanova, P Lukc, H Ferkel, et al. Stability of microstructure in magnesium reinforced by nanoscaled alumina particles. Mater Sci Eng,1997,(A236):798-01.
    [28]Z Trojanova, P Lukc, W Riehemann, et al. Study of relaxation of residual internal stress in Mg composites by internal friction. Mater Sci Eng,2002, (A324):122-126.
    [29]权高峰.SiC粒增强镁基复合材料的研究.西安交通大学学报,1997,31(6):121-123
    [30]G Sasaki, M Yoshidaa, N Fuyamab, et al. Modeling of compocasting process arid fabrication of AZ91D magnesium alloy matrix composites. Journal of Materials Processing Technology, 2002, (130-131):151-155.
    [31]Yao L, G Sasaki, H Fukunaga. Reactivity of aluminum borate whisker reinforced aluminum alloys. Mater Sci Eng,1997, (A25):59-68.
    [32]赵宇光,姜启川,任露泉等.Fe-C-Ti-Mn合金系中TiC原位生成反应的热力学分析.吉林大学学报(工学版),2004,34(1):1-6.
    [33]陈培生,薛烽,李子全等.N-SiCp/MB2复合材料组织与力学性能.中国有色金属学报,2004,14(10):1648-1652.
    [34]S Hwang, C Nishimura, P G Mccormick. Compressive mechanical properties of Mg-Ti-C nanocomposite synthesised by mechanical milling. Scr Mater,2001,44(10):2457-2462.
    [35]S Hwang, C Nishimura, P G Mccormick. Mechanical milling of magnesium powder. Mater Sci Eng,2001,(A318):22-33.
    [36]王朝辉等,特种铸造及有色合金。纳米SiC颗粒增强AM60镁合金组织性能的研究。2005,25(11):641-642.
    [37]S.Lijima.Helical microtubules of graphitic carbon[J].Nature,1991,(354):56-58.
    [38]杨晓华,兑卫真.碳纳米管及其复合材料的机械性能[J].有色金属,2004.5,56(2).
    [39]张立得,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [40]Jia Zhijie,Wang Zhengyuan,.Production of Short Multi-wall carbon Nanotubes[J]. Carbon,1997.37(5):903-906.
    [41]Lijim S. Helical Microtubules of Graphitic Carbon. Nature,1991.354:56-58.Nature,1991.
    [42]辛玲.张锐,石广新,等.碳纳米管的性能及应用[J].中国陶瓷工业,2005,12(3):38-40.
    [43]Srivastava D,Menon M,etc.Nano-plasticity of single-wall carbon nanotubes under uniaxia1l compression[J].Phys RevLett,1999.83(15):2973-297.
    [44]陈卫祥,陈文录,徐铸德,等.碳纳米管的特性及其高性能的复合材料[J].复合材料学,2001,18(4):1-5.
    [45]马仁志,朱艳秋.铁-巴基管复合材料的研究[J].复合材料学报,1997.14(2):92-96.
    [46]Xu C L, etc. Fabrication of aluminum-carbon nanotube composites and their elec- trical Propertics[J]. Carbon,1999.37(5):855-861.
    [47]董树荣,张孝彬.纳米碳管增强铜基复合材料的滑动磨损特性研究[J].摩擦学报,1999.1(1):1-6.
    [48]刘政,赵素.碳纳米管增强复合材料研究进展[J].宇航材料工艺,2005,35(1):1-5.
    [49]陈煌,张国定,武凤,等.碳(石墨)纤维增强镁基复合材料的界面研究[J].稀有金属程,1997,26(3):20-25.
    [50]李四年,宋守志,余天庆,等.铸造法制备纳米碳管增强镁基复合材料[J].特种铸造及有色合金,2005,25(5):313-315.
    [51]李四年,宋守志,余天庆,等.铸造法制备纳米碳管增强镁基复合材料的力学性能研究[J].铸造,2004,53(3):190-193.
    [52]袁秋红.碳纳米管增强AM60镁基复合材料的研究[D].南昌大学,2008.
    [53]李四年,宋守志,余天庆,等.复合铸造法制备纳米碳管增强镁基复合材料的研究[J].中国机械工程,2005,16(3):260-264.
    [54]J.Yang, R.ScHaller. Mechanical spectroscopy of Mg reinforced with Al2O3 short fibers and C nanotubes[J]. Materials Science and Engineering,2004.A307,512-515.
    [55]Goh.C.S.Development of novel carbon nanotube reinforced magnesium nanocom- posites using the powder metallurgy technique[J].Nanotechnology,2006.17(1),7-12.
    [56]沈金龙,李四年,余天庆,等.粉末冶金法制备镁基复合材料的力学性能和增强机理研究[J].铸造技术,2005.26(4):309-312.
    [57]Yu,Zheng-Xing,etc. Hydrogen storage properties of Mg-based materials with CNTs. Chinese Journal of Nonferrous Matals,2005.15(6):876-881.
    [58]Wang,F.X,etc.Electrochemical properties of Mg-based alloys containing carbon nanotubes.Journal of Alloys and Compounds,2004.370(12),326-330.
    [59]R Z Valiev,R K Islamgaliev, IVAlexandrov,Bulk nanostructured materials from severeplastic deformation[J].Progress in Materials Science,2000,.45:103-189.
    [60]R Z Valiev.Ultrafine grained materials prepared by severeplastic deformation.Annalesdes Chimie[J].Sciencedes Materiaux,1996,21:36-39.
    [61]RZValiev,RZIslamgaliev.Superplastic ityand super plastic forming[A].The minerals,Metals and Materials Society[C].In:GhishAK,Bieler,TR,editors,1998:117.
    [62]VSZhernakov,VVLatysh,AIZHarikov,etal.The developing of nanostructured PSDTi for structuraluse[J].Scriptamater,2001,44:1771-1774.
    [63]刘咏,唐志宏,周科朝,等.纯铝等径角挤技术(Ⅰ)—显微组织演化[J].中国有色金属学报,2003,13(1):21226.
    [64]李永霞,张永刚,陈昌麒.等截面通道角形挤压对高纯铝微观组织及力学性能的影响 [J].航空材料学报,2001,21(3):33238.
    (65]郝南海,王全聪.等截面侧向挤压的力学分析[J].塑性工程学报,2001,8(3):14216.
    [66]刘咏,唐志宏,周科朝,等.纯铝等径角挤技术(Ⅱ)—变形行为模拟[J].中国有色金属学报,2003,13(2):2942299.
    [67]张建,崔宏祥,赵润娴,等.等通道转角挤压过程有限元模拟[J].重型机械,2002(3):43246.
    [68]刘祖岩,刘钢,王尔德.等径侧向挤压等效应变分布的有限元模拟[J].哈尔滨工业大学学报,1999,31(3):65267.
    [69]Y.Li,T.G.Langdon. Equal-channel angular pressing of an Al-6061 metal matrix composite.J.Mater.Sci.2000,35:1201-1204.
    [70]B.Q.Han,T.G.Langdon.Achieving enhanced tensile ductility in an Al-6061 composite processed by sever plastic deformation.Mater.Sci.and Eng:A,2005,410-411:430-434.
    [71]D.Y.Ma,J.T. Wan, K.W.Xu.Equal channel angular pressing of a SiCw reinforced aluminum-based composite.Mater.Lett.2000,56:999-1002.
    [72]L.J.Chen,C.Y.Ma,G.M.Stoica,P.K.Liaw,C.Xu,T.G.Langdon.Mechanical behavior of a 6061 Al alloyand an A12O3/6061 Al composite after equal-channel angular processing.Mater.Sci.and Eng.A,2005.
    [73]M.A.Munoz-Morris,I.Gutierrez-Urrutia,D.G.Morris.Effect of equal channel angular pressing on strength and ductility of Al-TiAl composites.Mater.Sci.and Eng.A,2005,396:3-10
    [74]M.A.Munoz-Morris,N.Caldernn,I.Gutierrez-Urrutia,D.G.Morris.Matrix grain refinement in Al-TiAl composites by severe plastic deformation:Influence of particle size and processing route.Mater.Sci.and Eng.A,2006,425(1-2):131-137.
    [75]Y.Nishida,I.Sigematsu,H.Arima.J.C.Kim.T.Ando.Superplasticity of SiC whisker reinforced 7075 composite processed by rotary-die equal channel angular pressing[J.]Mater.Sci.Lett.2002,21:465-468.
    [76]常海.ECAP变形对AZ91镁合金及SiCp/AZ91镁基复合材料显微组织和力学性能的影响[D].哈尔并工业大学,2006.
    [77]魏斌.(SiCp/AZ91D)镁基复合材料制备工艺的研究[D].南京理工大学,2004.
    [78]曾正明主编.实用工程材料技术手册北京:机械工业出版社,2000.12.
    [79]陈振华,严红革,陈吉华.镁合金.北京:化学工业出版社,2004.
    [80]石凤健.ECAP工艺与材料组织性能控制的研究[D].镇江:江苏大学,2003.
    [81]Qianqian Li, Andreas Viereckl, Christian A. Rottmair, Robert F. Singer. Improved Processing of Carbon Nanotube/Magnesium Alloy Composites [J]. Composites Science and Technology,2009;69:1193-1199.
    [82]A. Esawi, K. Morsi. Dispersion of carbon nanotubes (MWCNTS) in aluminum powder. Composites:Part A 38 (2007) 646-650.
    [83]Xi Y L, Chai D L, Zhang W X, J.E. Zhou. Titanium alloy reinforced magnesium matrix composite with improved mechanical properties [J]. Scr Mater,2006,54(1):19-23.
    [84]戚道华,曾效舒,姚孝寒._碳纳米管/ZM5镁合金复合材料的制备与力学性能研究[J].铸造技术,2007,28(5):676-682.
    [85]R H Baughman, A A Zakhidov, W A Heer. Carbon nanotubes-the route toward applications[J].Science,2002,297(5582):787-792.
    [86]C S Goh, J Wei, L C Lee, M. Gupta. Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes[J]. Mater Sci Eng,2006, (A423):153-156.
    [87]李建萍,于艳丽,胡建辉,罗军明.等通道转角挤压工艺制备超细化合金的研究与进展.南昌航空工业学院学报(自然科学版).2005,19(3):11-14.
    [88]傅定发,张辉,夏伟军,黄长清.细晶镁合金的制备方法.轻合金加工技术.2004,32(3):41-43
    [89]M. Jane cek, M. Popov, M.G. Krieger, R.J. Hellmig, Y. Estrin. Mechanical properties and microstructure of a Mg alloy AZ31 prepared by equal-channel angular pressing[J].Materials Science and Engineering A,462 (2007):116-120.
    [90]M. Eddahbi, J.A. del Valle, M.T. P'erez-Prado, O.A. Ruano. Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling[J]. Materials Science and Engineering A 410-411 (2005) 308-311.
    [91]Equal-channel angular pressing of magnesium alloy AZ91 and its effects on microstructure and mechanical properties[J]. Materials Science and Engineering A 483-484(2008)113-116.
    [92]R.Z.Valiev,T.G.Langdon.Principles of equal-channel angular pressing as a processing tool for grain refinement.Prog[J].In Mater.Sci.2006,51(7):881-981.
    [93]WANG Qu dong, CHEN Yong jun, ZHANG Lu jun, LIN Jin-bao, ZHAI Chun—quan. Microstructure and mechanical Processed properties ofAZ31-0.5%Si alloy by ECAP[J]. Trans. Nonferrous Met. Soc. China 16(2006)s1660—s166.
    [94]曾正明主编.实用工程材料技术手册[M].北京:机械工业出版社,2001.
    [95]P.J.Apps,J.R.Bowen,P.B.Prangnell.The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing.Acta.Mater.2003,51:2811-2822.
    [96]毕见强,孙康宁,刘睿,等.剪切应变量对AL-3%Mg多晶材料性能的影响[J].人工晶体学报,2005,34(4):593-596.
    [97]Kumar K. S.Swygenhoven H.V. Suresh S.Mechanical behavior of nanocystalline metals and alloys[J].Acta Materialia 51(2003)5743-5774.
    [98]靳丽.等通道角挤压变形镁合金微观组织与力学性能研究[D].上海交通大学,2006.
    [99]Kim W.J,Hong S.I.Kim Y.S,et al. Texture evolution and its effects on the mechanical properties of AZ61 Mg alloy by equal channel angular extrusion[J].Acta Materia]ia,51(2003)3293-3307.
    [100]Hall,E.O...The deformation and ageing of mild steel:Ⅲ Discussion of results. Proc. Phys. Soc. London,Sect.B.1951(64),P.747-753.
    [101]Petch,N,J..1953.The cleavage of polycrystals.J.Iron Steel Inst.17,25-28.
    [102]Aibin Ma, Jinghua Jianga,, Naobumi Saito, Ichinori Shigematsu, Yuchun Yuana, Donghui Yanga, Yoshinori Nishidab. Improving both strength and ductility of a Mg alloy through a large number of ECAP passes[J]. Materials Science and Engineering A,A 513-514 (2009):122-127.
    [103]哈富宽.断裂物理基础[M].北京,科学出版社,2000.
    [104]苏莹,张国定.非连续物增强镁基复合材料[J].机械工程材料,1996,20(1):6-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700