用户名: 密码: 验证码:
热压加工对几种块体纳米晶Fe_3Al基合金组织和性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文综述了Fe-Al系金属间化合物、纳米晶材料的力学性能、研究进展、存在的问题及铝热反应熔化法制备的块体纳米晶Fe3Al材料;通过实验研究了不同热压加工温度、次数、压力分别对含10 wt.%Mn、10 wt.%Cr、10 wt.%Ni的块体纳米晶Fe3Al材料的组织和力学性能的影响等,总结了各热压加工工艺参数对块体纳米晶Fe3Al基合金纳米结构及塑性变形性能的影响规律,探索了通过热加工增大纳米晶材料尺寸的可能性。概括起来可归纳为以下几条:
     1.含不同合金元素的块体纳米晶Fe3Al材料在热压加工中表现出不同的塑性变形能力,并随着热压加工温度的升高,材料的塑性变形能力逐渐增强;不同合金元素的块体纳米晶Fe3Al材料塑性变形能力存在差异,含10 wt.%Mn的块体纳米晶Fe3Al材料在600℃、800℃、1000℃都表现出良好的塑性变形;含10 wt.%Cr的块体纳米晶Fe3Al材料热压加工时只在600℃表现出较好的塑性变形,在800℃、1000℃热压加工时材料表现为脆性断裂;含10 wt.%Ni的块体纳米晶Fe3Al材料热压加工时在800℃和1000℃表现出较好的塑性变形,在600℃热压加工时材料表现为脆性断裂。
     2.热压加工前后含10 wt.%Mn和10 wt.%Cr的块体纳米晶Fe3Al材料主要由无序bcc结构Fe3Al相组成,晶体结构没有发生变化,含10 wt.%Ni块体纳米晶Fe3Al材料由热压加工前的无序bcc结构转变为热压加工的DO3有序结构。
     3.随着热压加工温度升高含不同合金元素的Fe3Al材料纳米晶粒尺寸增大,热压加工后含10 wt.%Mn和10 wt.%Cr的Fe3Al材料硬度增加,含10 wt.%Ni的Fe3Al材料硬度减小。含10 wt.%Mn的Fe3Al材料晶粒尺寸和硬度表现为反常的Hall-Petch关系。
     4.随着热压加工次数的增加,含不同合金元素的块体纳米晶Fe3Al材料塑性变形能力均逐渐增强,含10 wt.%Mn的Fe3Al材料晶粒尺寸减小,硬度减小,含10 wt.%Cr和10 wt.%Ni的Fe3Al材料晶粒尺寸增大,硬度变化不显著,含10 wt.%Mn的Fe3Al材料晶粒尺寸和硬度表现为反常的Hall-Petch关系。
     5.不同压力下的热压加工中,含10 wt.%Mn和10 wt.%Cr的块体纳米晶Fe3Al材料均表现出较好的塑性变形,并随着热压压力的增加,塑性变形能力逐渐增强,材料的晶粒尺寸和硬度随热压加工压力的增大变化不显著。
     6.热压加工后含不同合金元素的块体纳米晶Fe3Al材料几何尺寸都得到了增大。
In this thesis, the recent development of Fe-Al intermetallics. Bulk nanocrystalline Fe3Al materials made by aluminothermic reaction were reviewed. Effect of the hot pressing temperatures, times and pressures on the microstructure and mechanical properties of bulk nanocrystalline Fe3Al with 10 wt.% Mn,10 wt. % Cr and 10 wt.% Ni elements are studied. The rules of hot pressing parameters on nanostructure and plastic deformation of the bulk nanocrystalline Fe3Al materials were summed up. The possibility of size increase of nanostructure materials by hot pressing was explored. The main conclusions are given in the following.
     1. Bulk nanocrystalline Fe3Al materials containing different elements show different plastic deformation in hot pressing. The plastic deformation of materials were increased with hot pressing temperature rising. The bulk nanocrystalline Fe3Al materials with 10 wt.% Mn have a better plasticity at 600℃,800℃and 1000℃. But the bulk nanocrystalline Fe3Al materials with 10 wt.% Cr have a good plasticity only at 600℃and exhibited brittle fracture at 800℃and 1000℃. The bulk nanocrystalline Fe3Al materials withlO wt.% Ni has a good plasticity at 800℃and 1000℃and shows brittle fracture at 600℃.
     2. Bulk nanocrystalline Fe3Al materials with 10 wt.% Mn and 10 wt.% Cr mainly consist of Fe3Al phases with disorder bcc crystal structure before and after hot pressing. But the bulk nanocrystalline Fe3Al materials withlO wt.% Ni mainly consist of Fe3Al phases with disorder bcc crystal structure before hot pressing and changed to ordered DO3 crystal structure after hot pressing.
     3. Grain sizes of bulk nanocrystalline Fe3Al materials with different elements were increased with hot pressing temperatures increasing. The hardness of bulk nanocrystalline Fe3Al materials with 10 wt.% Mn and 10 wt.% Cr were increased after hot pressing, the hardness of Fe3Al materials with 10 wt.% Ni was decreased after hot pressing. Relationship of the hardness of the nanocrystalline Fe3Al materials with 10 wt.% Mn with grain size after hot pressing is contrary to the Hall-Petch relation.
     4. Plastic deformation of bulk nanocrystalline Fe3Al materials with different elements were increased with hot pressing times increasing. Grain sizes and hardness of bulk nanocrystalline Fe3Al materials with 10 wt.% Mn were decreased with hot pressing times increasing. Grain sizes of bulk nanocrystalline Fe3Al materials with 10 wt.% Cr and 10 wt.% Ni were increased with hot pressing times increasing, but the hardness is changelessness. Relationship of the hardness of the nanocrystalline Fe3Al materials with 10 wt.% Mn with grain size after hot pressing is contrary to the Hall-Petch relation.
     5. Bulk nanocrystalline Fe3Al materials with 10 wt.% Mn and 10 wt.% Cr have a good plasticity at different hot pressing pressures. Plastic deformation of bulk nanocrystalline Fe3Al materials was increased with hot pressing pressures increasing. The grain sizes and hardness changes are little with hot pressing pressures increasing.
     6. Geometry of bulk nanocrystalline Fe3Al materials containing different elements after hot pressing can be increased.
引文
[1]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料.北京:国防工业出版社,2001,847-902.
    [2]李恒德,肖纪美.材料的表面与界面.北京:清华大学出版社,1990.
    [3]K. P. Cooper. Metal Handbook. Tenth edition. USA:The Material information Society,1990,861-872.
    [4]C. T. Liu, J.0. Stiegler. Ductile ordered intermetallic alloys. Science,1984,226(2): 636-642.
    [5]陈国良.金属间化合物结构材料研究现状与发展.材料导报,2000,14(1):1-5.
    [6]仲增墉,叶恒强.金属间化合物.北京:机械工业出版社,1992.
    [7]C. G. Mckamey, J. A. Honton, C. T. Liu. A Review of recent developments in Fe3Al-based alloys. J. Mater. Res.1991,6(8):1779-1805.
    [8]C. T. Liu. Recent Advances in Ordered Intermetallics. Mat. Res. Soc. Symp. Proc. 1993,288:4-9.
    [9]N. S. Stoloff. Iron aluminides:present status and future prospects. Mater. Sci. Eng. A, 1998,258(1):1-14.
    [10]徐东,徐颖.金属间化合物材料的熔炼与铸造.兵器材料科学与技术,1996,19(5):123-129.
    [11]刑占平,韩雅芳.金属间化合物熔铸工艺的发展及应用.材料导报,2000,14(3):26-28.
    [12]仲增墉,韩雅芳.高金属间化合物材料的研究进展.钢铁研究学报,1997,18(增刊):1-8.
    [13]S. Schicker, D. E. Garcia, J. Bruhn, et al. Reaction synthesized AL2o3-based intermetallic composites. Acta Mater.1998,46(7):2485-2492.
    [14]H. Z. Kang, C. T. Hu. Swelling behavior in reactive sintering of Fe-Al mixtures. Materials Chemistry and Physics,2004,88(2):264-272.
    [15]S. Gedevanishvili, S. C. Deevi. Processing of iron aluminides by pressureless sintering through Fe+Al elemental route. Mater.Sci. Eng. A,2002,325(1): 163-176.
    [16]师昌绪.材料大词典.北京:化学出版社,1994.
    [17]殷声.燃烧合成.北京:冶金工业出版社,1999.
    [18]V. I. Yukhvid. Modification of SHS processes. Pure & Appl Chem. 1992,64 (7):977-988.
    [19]J. Subrahmanyam, M. Vijayakumar. Self-propagating High-temperature Synthesis. J. Mater. Sci.1992,27(23):6249-6273.
    [20]卢柯.纳米晶体金属研究进展.中国科学基金,1994,8(4):245-251.
    [21]赵明,张秋华,吕晓霞,等.制备纳米级Zn-Al合金的新方法.中国有色金属学报,1996,6(4):154-160.
    [22]H. V. Gleiter. Nanostructured Materials:Basic Concepts And Microstructure. Acta Mater.2000,48(1):1-29.
    [23]魏炳波,杨根仓,周尧和.超洁净环境中三维非晶态凝固研究.航空学报,1991,12(5):213-218.
    [24]H. Li, F. Ebrahimi. Ductile-to-Brittle Transition in Nanocrystalline Metals. Advanced Materials,2005,17(16):1969-1972.
    [25]W. K. Tredway. Toughened Ceramics. Science,1998,282(11):1275-1283.
    [26]K.Lu.Nanocrystalline metals crystallized from amorphous solid:nanocrystallization, structure, and properties. Material Science and Engineering,1996,16(4):161-221.
    [27]E. Bonetti, G. Valdre, S. Enzo, et al. Nanostructured Fe3Al inter-metallic obtained by mechanical alloying and thermal ageing. Nanostructured Materials,1993,2(4): 369-375.
    [28]韩杰才,王华彬,杜善义.自蔓延高温合成的理论与研究方法.材料科学与工程,1997,15(2):20-25.
    [29]C. N. R. Rao. Chemistry of Advanced Materials. Boston:Blackwell Sci. Public, 1993,19.
    [30]王克智,张曙光,张国强,等.自蔓延高温合成法(SHS)的发展及应用.功能材料,1994,25(6):501-508.
    [31]李安敏,张喜燕,赵新春,等.纳米晶金属块体材料制备技术与力学性能研究进展.材料导报,2007,21(4):111-116.
    [32]Y. Kawamura, M. Takagi, M. Akai, et al. A newly developed warm extrusion technique for compacting amorphous alloy powders. Mater. Sci. Eng.1988,98: 449-452.
    [33]陈国良.北京:冶金工业出版社,1999.257.
    [34]Peng J H,Chen G L. Acta Metallurgica (English Letters),2003,16 (2):104.
    [36]汤文明,唐红军,郑治祥,等.合肥工业大学学报(自然科学版),2005,28(2):129.
    [37]余兴泉,孙扬善,高涛,等.Fe3Al基合金几种不同的热加工工工艺路线对比研究.热加工工艺,1996,3:37-38.
    [38]余兴泉,孙扬善,梅建平,等.Fe3Al基金属间化合物热加工工艺研究.东南 大学学报,1994,24(7):38-43.
    [39]张德志,杜国维,肖纪美.Fe3Al基合金的热加工工艺合金比及力学性能研究.钢铁研究,1997,96(3):24-26.
    [40]姚正军,孙扬善.Fe3Al轧板中晶粒尺寸对拉伸和蠕变性能的影响.热加工工艺,2000,4:17-19.
    [41]Gleiter H.Nanostructured materials:basic concepts and microstructure.Acta mater,2000,48:1-29.
    [42]Shefford P Baker.Plastic deformation and strength of materials in small dimensions J.Mater Sci En g,2001,A319-321:16-23.
    [43]孙秀魁,丛洪涛,徐坚,等.纳米晶A1的制备及拉伸性能(Ⅰ)(Ⅱ).材料研究学报,1998,12(6):645-654.
    [44]Lu Yulin,Peter K Liaw.The mechanical properties of nanostructured materials J.Minerals,Metals & Materials Societ y,2001,53(3):31-40.
    [45]周宇松,吴希俊.纳米金属的力学性能.力学进展,2001,31(1):62-69.
    [46]Wang N,Wang Z,Aust K T,etal.Room temperature creep behavior of nanoerystalline nicked produced by an electro deposition technique J.Mater Sci En,g,1997,A237:150-158.
    [47]Padmanabhan K A.Mechanical propertise of nanostructured materials J.Mater Sci En,g,2001,A304-306:200-205.
    [48]Koch C C,Morris D G,Lu K,et al.Ductility of nanostructured materials J.MRS Bull,1999,24(2):54-58.
    [49]Lu L,Wang L B,Ding B Z,etal.High-tensile ductility in nanocrystall-ine copper J.J Marter Res,2000,15:270-273.
    [50]Qin X Y,Zhang X R,Cheng G S,et al.The elastic properties of nanostructred Ag measured by laser ultrasonic technique J. NanostructureMater,1998,10:661-672.
    [51]Sanders P G,Rittner M,Kiedaisch E,et al.Creep of nanocrystalline Cu,Pd and Al-Zr J.Nanostructured Mater,1997,18:433-440.
    [52]Mishra R S,McFadden S X,Valiev R Z,et al.Deformation mechanisms and tensile superplaticity in nanocrystalline materials J.Minerals, metals & Materials Societ y,1999,51(1):37-45.
    [53]Thomas G J, Siegel R W, Easraman J A. Scr Metall MaterJ.1990,(24):201-209.
    [54]Wunderlch W. et.al. Scripa Metall et Mater J.1990,(24):403-408.
    [55]Li D. X et al. Mater Lett J.1993,(18):29-34
    [56]Lu Yulin,Peter K Liaw.The mechanical properties of nanostructured materials J.Minerals,Metals & Materials Societ y,2001,53(3):31-40.
    [57]周宇松,吴希俊.纳米金属的力学性能.力学进展,2001,31(1):62-69.
    [58]Wang N,Wang Z,Aust K T,etal.Room temperature creep behavior of nanoerystalline nicked produced by an electro deposition technique J.Mater Sci En,g,1997,A237:150-158.
    [59]J. H. Westbrook, R. L. Fleischer, Intermetallic Compounds, Volume 3-Structural Applications of Intermetallic Compounds, John Wiley & Sons,2000.
    [60]Swygenhoven H Van,Caro A.Molecular dynamics computer simulation of nanophase:structure and mechanical properties J.Nanostructured Mats,1997,1-8:669-672.
    [61]Wunderlich W,Ishida Y,Maurer R.Ser Metall Mater,1990,24:403.
    [62]Nastasi M,Parkin D M,Gleiter H,editors.Mechanical properties and deformation behavior of materials having ultrafine microstructur- es.Kluwer,1993.
    [63]Siegel R W.Mater Sci Forum,1997,851:235.
    [64]Csttrell A H.Dislocations and plastic flow in crystals. Oxford:Cla-rendon press,1961.
    [65]Fedorov AA,Gutkin M Y,Ovidko I A,Acta Mater,2003,51:887.
    [66]Wang Y,Chen M,Zhou F,et al.Nature,2002,419:912.
    [67]李嘉,尹衍升,郝春成.纳米Fe3Al粉体及块体材料的制备及表征.机械工程学报,2005,41(3):81-85.
    [68]Hao Chuncheng, Cui Zuolinl,Yin Yansheng,, Zhang Zhikunl.Preparation and mechanical properties of Fe3Al nanostructured intermetallics, Journal of Nanoparticle Research,2002,4:107-110.
    [69]薛群基,喇培清.燃烧合成熔化制备块体纳米结构材料和金属间化合物基复合材料及其摩擦学性能.中国有色金属学报,2004,14(1):129-137.
    [70]薛群基,喇培清.低温制备高熔点先进材料的燃烧合成熔化技术.甘肃科技纵横,2002,31(3):28-33.
    [71]喇培清,赵阳,程春杰.Mn添加对铝热反应制备的块体纳米晶Fe3Al组织的影响.材料导报.2009,23(5)专辑ⅩⅢ:50-52.
    [72]P. Q. La, J. Yang, D. J. H. Cockayne, et al. Bulk nanocrystalline Fe3Al based material prepared by aluminothermic reaction. Advanced Materials,2006,18(10): 233-237.
    [73]W. K. Tredway. Toughened Ceramics. Science,1998,282(11):1275-1283.
    [74]Su-Ming Zhu, M. Tamura, K. Sakamoto, et al. Characterization of Fe3Al-based intermetallic alloys fabricated by mechanical alloying and HIP consolidation. Materials Science and Engineering,2000,292(1):83-89.
    [75]LIAN J, VALIEV R Z, BAUDEL ET B. On the enhanced grain growth in ultrafine grained metals[J].Acta Metall Mater,1995,43:4165-4170.
    [76]OKUDA S, KOBIYAMA M, INAMI T, et al. Thermal stability of nanocrystalline gold and copper prepared by gas deposition method.Scripta Mater,2001,44:2009-2012.
    [77]LU K, DONG Z F, BAKON YI I, et al. Thermal stability and grain growth of a melt-spun HfNi5 nanophase alloy.Acta Metall Mater,1995,43:2641-2647.
    [78]卢柯,周飞.纳米晶材料的研究现状.金属学报,1997,33(1):99-106.
    [79]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001,316-341.
    [80]赵新春,贾冲,张喜燕.纳米结构金属空位形成能的研究.南京大学学报(自然科学).2009,45(2):310-314.
    [81]钱聪,吴希俊,罗伟,等.纳米金属块体材料力学性能研究进展.材料导报.2003,17(7):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700