用户名: 密码: 验证码:
活性炭吸附去除饮用水源中微量石油类污染物的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以饮用水源中微量石油类污染物的吸附处理为研究对象,对活性炭吸附法去除饮用水源中微量石油类污染进行试验研究。在实际应用中,粉末活性炭的投加是在沉淀池中,而粒状活性炭是作为吸附柱对水中微量石油类进行吸附的。因此本试验研究分别研究粉末活性炭静态间歇式吸附试验和粒状活性炭连续式吸附试验两个部分。
     粉末活性炭吸附饮用水源中微量石油类污染物的研究采用烧杯试验,研究表明,试验中使用的粉末活性炭对油类的吸附过程能很好的Langmuir吸附等温线进行描述,并得到试验温度为15℃时相应的吸附等温公式(?)。同时研究对粉末活性炭吸附效果产生影响的因素,结果显示,当活性炭投加量达到12mg/L时,水中油类去除率可以达到90%以上;当吸附达到6h时,水中吸附基本达到平衡,去除率不再降低;且水中油类的去除率随着试验温度的升高略有下降。
     粒状活性炭吸附柱试验表明,滤速越大,活性炭吸附柱对水中油的处理效率越低;进水中的油流经的柱中越长,被吸附量就越大,出水油含量也越低。因此,在实际水处理中,吸附柱长与滤速为主要影响因素,滤速越低,水样与活性炭的接触时间越长,则吸附效率越高;吸附柱越长,则吸附效率越高。
     计算吸附柱内粒状活性炭对机油的吸附量,与其吸附饱和量进行对比,结果表明,在4m/h、6m/h、8m/h三种滤速下,吸附柱内粒状活性炭对机油的吸附量为其吸附饱和量的20%-30%,柱内活性炭的利用率较低。要提高活性炭的利用率,则需要降低滤速,增加水样与活性炭接触时间。
Take the adsorption treatment of trace oil pollution in drinking water source as object, study on adsorption removal of trace oil pollution in drinking water source by activated carbon. In practice, the powder activated carbon was added in the sedimentation tank, and the granular activated carbon used as an adsorption column. Therefore, the experiment is divided into static intermittent test with powdered activated carbon and granular activated carbon adsorption continuous assay test two parts.
     The powdered activated carbon adsorption tests were done in the beaker, the results showed that the powdered activated carbon used in experiments on the oil go well with Langmuir adsorption isotherm, and its adsorption isotherm equation when temperature is 15℃in the experiments is(?). The affecting factors of powdered activated carbon purification were investigated, the results showed that when the activated carbon dosage to 12 mg/L, the water of oil removal efficiency can reach 90%; when adsorbed to 6 h, the water adsorption equilibrium was achieved, the removal rate will not decrease; and the removal efficiency of oil in water decreased slightly with the experimental temperature growth.
     Granular activated carbon adsorption column experiment showed that when the velocity is rising the treatment efficiency of the oil by activated carbon in the column is decreasing; the oil in the raw water flow through the column longer the oil be attracted is larger and the oil in the adsorbed water is lower. Therefore, in the actual water treatment, the adsorption column length and the filtration rate are the main factors. The lower filtration rate make the longer time between the water and the activated carbon, then the adsorption efficiency is higher; the adsorption column is longer, the adsorption efficiency is higher.
     To Calculate the adsorption capacity of the oil by the granular activated carbon adsorption in the column, and compared with the absorption saturation capacity. The results showed that the adsorption capacity of the granular activated carbon in the column is about 20-30 percent of the absorption saturation capacity at the filtration velocity of 4m/h、6 m/h and 8 m/h. The utilization of the granular activated carbon is lower. To improve the utilization of activated carbon, the filtration rate should be reduced and the touched time between the activated carbon and the water should be increased.
引文
[1]冯运超,饮用水源质突发性污染应急处理方法[D].西安:西安建筑科技大学,2008.
    [2]刘云,高婉渝.石油产品使用与管理[M].天津:天津科学出版社,1986.
    [3]曹刚,王华.石油污染及治理[J].沿海企业与科技.2005,3:92-94.
    [4]张兴儒,吴振烈.油气田环境保护[M].北京:石油工业出版社,1995.
    [5]万邦和.海洋石油污染及其危害[J].海洋环境科学,1986,5(3):52-63.
    [6]涂华.含油废水处理用浮选剂的研究[D].南充:西南石油学院,2003.
    [7]杨维本,李爱民,张全兴等,含油废水处理技术研究进展[J].离子交换与吸附,2004,20(5):475-480.
    [8]陶永华,殷明.水中油类污染物生物处理技术方法概述[J].海军医学杂志,2001,22(2):163-166.
    [9]李芳,郭军,张伦秋.含油废水处理技术[J].油气田地面工程,2008,27(9):69-70.
    [10]郭超.水体沉积物中石油类污染物释放规律研究及王瑶水库沉积物污染状况调查[D].西安:西安建筑科技大学,2005.
    [11]李建明.海洋石油污染的危害与吸附[J].生物学教学,2002,27(7):35.
    [12]刘爱菊,李若钝.石油污染对海洋生态系统的影响[J].海岸工程.1995,14(4):62-65.
    [13]许祝华,赵新生.海洋水中的污染物分析及处理[J].海洋开发与管理,2006,23(5):123-124.
    [14]陈蓓蓓.镇江市饮用水源突发有机污染应急处理工艺研究[D].上海:同济大学,2008.
    [15]王玉林,张金彪,苏年华.福建耕地土壤重金属污染的生态效应[J].福建农业大学学报,1996.
    [16]朱艳吉,王宝辉,盖翠萍.石油类污染物的环境行为及其对环境的影响[J].化工时刊,2006,20(9):66-69.
    [17]张学佳,纪巍,康志军,等.土壤中石油类污染物自然降解研究进展[J].石化技术与应用,2008,26(3):273-278.
    [18]张学佳,纪巍,康志军,等.石油类污染物在土壤中的吸附与迁移特性[J].中国石油大学胜利学院学报,2008,22(3):20-23.[19]张学佳,纪巍,康志军,等.石油类污染物对土壤生态环境的危害[J].化工技术,2008,16(6):60-65.[20]岳占林,蒋平安.石油类污染的特性及环境行为[J].石化技术及应用.2006,24(4):307-309.[21]冯运超,饮用水源质突发性污染应急处理方法[D].西安:西安建筑科技大学,2008.[22]杨德,鲍建国,郑第.水体油污染治理研究进展[J].中国水运.2008,8(3):133-134.
    [23]王琳,王宝贞.优质饮用水吸附技术[M].北京:科技出版社,2000:164-167.
    [24]兰淑澄.活性炭水处理技术[M].中国环境科学出版社,1991:7-17.
    [25]国家环境保护局,活性炭水处理技术,北京:中国环境科学出版社,1991.
    [26]沈曾民,张文辉,张学军等.活性炭材料的制备与应用[M],北京:化学工业出版社,2006.
    [27]北京环境保护科学研究所,水污染防治手册,上海:上海科学技术出版社.
    [28]17.B R Mcleod et al. Pilot Plant Treatment Techniques for Trihalomethane Precursor Reduction-Some Financial Implications[J]. AWWA,1998,90(10).
    [29]傅献彩,陈瑞华.物理化学(下).北京:人民教育出版社.1992,322.
    [30]韩维屏等著.催化化学导论.北京:科学出版社,2003,72.
    [31]沈钟,王果庭.胶体与表面化学[M].化学工业出版社,1991年9月,166.
    [32]缪应棋主编.水污染控制工程[M].南京:东南大学出版社,2002年12月.
    [33]朱亦仁编著.环境污染治理技术[M].北京:中国环境科学出版社,1996年8月.
    [34]郑铭主编,陈万金副主编.环保设备—原理·设计·应用[M].北京:化学工业出版社,2001年4月.
    [35]Vinke P. Van Verbree M.,Voskamap A.F., et al. Modification of the surface of gads-active carbon and a chenmically activated carbon with HNO3[J]. Carbon,1994,32(4):675-686.
    [36]Ying Wei-chi, Zhang Wei, Chang Qi-gang, et al. Improved methods for carbon adsorption studies for water and wastewater treatment[J]. Environmental Progress,2006,25(2):110-120.
    [37]陈宝福,曹云峰,孟书丹.浅析影响活性炭吸附效果的因素[J].黑龙江医药,2004,17(3):193-194.
    [38]Langmuir I.The Adsorption of Gases on Plane Surfaces of Glass,Mica,and Plarinum[J].J. Am. Chem. Soc.1918,40:1361.
    [39]Griffin RA, Shimp NF. Attenuation of pollutants in municipal landfill leachate by clay minerals.1978, Report:EPA-600/2-78-157.US Environmental Protection Agency.
    [40]Majone M, Papini MP, Rope E.Clay adsorption of lead from landfill leachate[J].Environ Technol,1993,14:629-638.
    [41]Mohamed AMO and others. Geo-environmental assessment of a micaceous soil for its potential use as an engineered clay barrier. Geotech Test JASTM,1994,17(3):291-304.
    [42]tong RN, Mohamed AMO, Warkentin BP. Principles of contaminant transport in soils. 1992, Elsevier, Amsterdam,328pp.
    [43]Rowe RK, Quigley RM, Booker JR. Clayey barrier systems for waste disposal facilities. E and FN Spon, London,1995.
    [44]Farrah H, Hatton D, Pickering WF. The affinity of metalsions for clay surfaces[J]. Chem Geol,1980,28:55-68.
    [45]江霜英,高廷耀.粘土对水中氟离子吸附去除机理的研究[J].化工环保,2003,23(4):204-208.
    [46]孙家寿,刘羽,鲍世聪等.交联膨润土吸附磷行为研究[J].化学工业与工程技术,1998,19(2):1-6.
    [47]翟云波,魏先勋,曾光明等.污泥衍生吸附剂去除水溶液中福、镍离子的研究[J].现代化工,003,23(10):36-39.
    [48]廖敏,谢正苗,黄昌勇等.福在红壤中的吸附特征[J].浙江农业大学学报,1998,24(2):199-202.
    [49]W. Y. Wan Zuhairi. Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom. Environmental Geology,2003,45:236-242.
    [50]Bonn HL and others. Soil chemistry. Wiley, New York,1979,360.
    [51]M. R. Taha and others. Batch adsorption tests of phenol in soils [J].Bull Eng Geol Env, 2003,62:251-257.
    [52]Harter R D, Baker D E, Applications and Misapplications of the Langmuir Equation to soil Adsorption Phenomena[J].Soil Sci. Soc. Am. J.,1977,41:1077-1080.
    [53]Shackelford CD. Contaminant transport. In:Daniel DE(ed) Geotechnical practice for waste disposal. Chapman and Hall, London,1993,33-63.
    [54]Elprince A M, Sposito G, The romodynamic Derivation of Equations of the Langmuir Type for Ion Equilibria in Soils[J].Soil Sci. Soc. Am J.,1981,45:1077-1080.
    [55]北川睦夫.活性炭处理水的技术和管理[M].新时代出版社.1987.
    [56]王琳,王宝祯.饮用水深度处理技术[M]北学工业出版社,2003.6.
    [57]立本英机,安部郁夫编著,高尚愚译.活性炭的应用技术—其维持管理及存在问题[M].2002.7.
    [58]HsuLY,TengH. Influence of difference chemical reagents on the Preparation of activated carbons from bituminous coal fuel [J].Proc.Teeh.,2000,64 (2):155-171.
    [59]Gayle N,David C. Influence on the removal of tastes and odour by P AC [J]. water Supply:Research and technology,2002,51(8):463-474.
    [60]李大鹏,李光伟,王铁民.投加粉末活性炭去除原水中的嗅味[J].中国给水排水,2004,20(6):44-46.
    [61]王秀芳,张会平.高比表面积活性炭研制进展[J].功能材料,2005,7(36):975-977.
    [62]Martin R. Activated carbon product selection for water and wastewater treatment[J]. Industrial and Engineering Chemistry Product Research and Development,1980,19:435-441.
    [63]Gullick et al. Design of Early Waiming Monitoring System for Source Water[J]. AWWA,2003,95(11):58-72.
    [64]QiShaoying, Adham S S., Snoeyink V L., et al. Prediction and verification of atrazine[J]. Journal of Environmental Engineering,1994,120(l):202-218.
    [65]LIQ, Syoeyink V L. Marinas B J, Campos C. Pore blockage effect of NOM on atrazine adsorption kinetics of PAC:the roles of PAC Pore size distribution and NOM molecular weight [J]. Water Research,2003,37(16):4863-4872.
    [66]LIQ, Syoeyink V L, Campos C, et al. Displacement effect of NOM on Atrazine adsorption by PACs with different Pore size distributions[J].Environmental Science and Technology,2002,37(4):773-784.
    [67]LIQ, Syoeyink V L. Marifias B J, Campos C. Elueidating competitive adsorption mechanisms of atrazine and NOM using model compounds [J]. Water Research,2003,37(4):773-784.
    [68]Campos C., Snoeyink V.L., Marinas B., et al. Atrazine removal by Powered activated carbon in floc blanket reactors [J].Water Research,2000,34 (16):4070-4080.
    [69]王玉芬.粉末活性炭去除水中微量石油类的试验研究[J].太原科技,1999,(3):10-12.
    [70]周建军,王玉芬.处理黄河与汾河混合水中石油类的试验研究[J].给水排水,2002,28(9):30-32.
    [71]刘恒,叶劲,肖克艰.粉末活性炭与碱式氯化铝混凝处理微污染饮用水源的研究[J].离子交换与吸附,2006,22(1):59-94.
    [72]王燕春,刘启凯,赵庆祥.双酚A的活性炭吸附特性[J].华东理工大学学报(自然科学版),2006,32(4):431-433.
    [73]陈忠林,马军,李圭白等.受硝基苯污染松花江原水的应急处理工艺研究[J].中国给水排水,2006,22(13):1-5.
    [74]杨轶,蒋翼,王媛媛等.含油废水处理技术的研究进展[J].化学工业与工程技术,2007,28(5):29-32.
    [75]陈永盛,杨智,单浩明.浅谈海面浮油的危险性及针对措施[J].世界海运,2004,27(6):24-25.
    [76]陈贵峰,杜铭华,戴和武等,海洋浮游污染及处理技术[J].污染防治技术,10-13.
    [77]卢建国.清除水面、地面石油污染的方法(二)[J].油气田环境保护,1993,3(1):44-47.
    [78]孟建斌,陆少鸣,杨立.粉末活性炭应急处理水源石油类污染的试验研究[J].工业用水与废水,2008,39(6):22-25.
    [79]谢观体,陆少鸣.石油类污染饮用水源的应急处理工艺研究[J].工业用水与废水,2008,39(5):19-21.
    [80]P. Chingnmbe, B. Saha, R.J. Wakeman. Sorption of atrazine on conventional and surface modified activated carbons[J] Journal of Colloid and Interface Science,2006,302(2): 408-416.
    [81 JKnappe D.R.U., Snoeyink V L, Roche P., et al. Atrazine removal by Preloaded GAC [J]. AWWA,1999,91(10):97-109.
    [82]周建军,郭栋生.利用活性炭柱处理黄河水中石油类的研究[J].山西大学学报,2004,27(3):306-308.
    [83]Keun J. Choi, Sang G Kim, Chang W. Kim, et al. Effects of activated carbon types and service life on removal of endocrine disrupting chemicals:amitrol, nonylphenol, and bisphenol-A[J]. Chemosphere,2005,58(11):1535-1545.
    [84]李若愚,高乃云,徐斌等.GAC对水中内分泌干扰物双酚A的吸附特性及动力学研究[J].给水排水,2007,33(2):13-15.
    [85]S.Venkata Mohan, S.Shailaja, M.Rama Krishna, et al. Adsorptive removal of Phthalate ester (Di-ethyl Phthalate) from aqueous Phase by activated carbon:A kinetic study [J].Journal of Hazardous Materials,2007,146(1-2):278-282.
    [86]吴焕领,魏赛男,崔淑玲.吸附等温线的介绍及应用[J].染整技术,2006,28(10):12-14,27.
    [87]Issam N, Larol T, Douglas S. Optimizing Enhanced Coagulation with PAC:a case study[J].AWWA,1998,90(10):88-95.
    [88]Watt B E, Malcolm R L. Chemistry and Potential mutagenicity of humic substances in water from different water sheds in Britain and Ireland[J]. Wat Res,1996,30(6):1502-1516.
    [89]Yang, W.C. Wang, H. Modeling of oil evaporative in aqueous environment[J]. Wat Res,1997,11(10):879-880.
    [90]Jian Zhang, Paul.Bishop. Stabilization/solidification(S/S) of mercury-containing wastes using reactivated carbon and Portland cement[J]. Journal of Hazardous MaterialsB(92) 2002:199-212.
    [91]Lathtl K, Rapala J, Kivimaki A L, et al. Occurrence of microcystins in raw water sources and treated drinking water of finnish waterworks [J]. Wat Sci Tech,2001, 43(12):225-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700