用户名: 密码: 验证码:
TiO_2光催化氧化水体中微污染磺胺类药物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磺胺类药物(SAs)是临床治疗、畜牧业和水产养殖业中的常用抗菌药物。随着我国农业的快速发展,其作为兽药、渔药的使用量与日俱增。有研究表明磺胺类药物进入环境后降解较慢,可能长期存留。药物残留不仅对生态系统产生不良影响,还可以通过食物链富集作用危害到人体健康。Ti02光催化氧化具有性质稳定、无毒、催化活性高、无二次污染、能矿化某些难生物降解污染物等优点,被广泛应用于持久性有机污染物、个人护理品等难生物降解有机物的去除研究。
     实验采用Ti02和Ti02/EP对水体中低质量浓度磺胺嘧啶(SDZ)和磺胺甲恶唑(SMX)进行了光催化降解,探讨了各种因素对SDZ和SMX光催化降解效果的影响。结果表明:
     (1) UV/TiO2光催化降解微量SDZ,最好水平组合是:pH值约为7、Ti02浓度为0.08g/L和光照强度为1000μw/cm2,初始浓度为5mg/L,反应时间为50 min时,SDZ降解效率超过99%。
     (2)进行UV-TiO2/EP光催化降解SDZ和SMX,在最适水平组合:Ti02最佳负载量为20 wt%,质量浓度为5 mg/L,pH=6.7,紫外光照射强度为1000μw/cm2,反应时间达到45 min和30 min时,SDZ和SMX的降解率达到94%和96%。
     (3)同时考察了水体中常见无机离子和腐植酸对SAs降解效率的影响。HC03-在低浓度时能促进SDZ和SMX的光催化降解,高浓度时促进作用不明显;S042-和C1-对SDZ和SMX的光催化降解有轻微的抑制作用;HA对SDZ和SMX光催化降解有抑制作用,浓度越高,抑制作用越强。
     (4)通过高活性的羟基自由基(·OH),攻击SDZ分子中的S-N键和S-C和C-S断裂,形成中间产物:4-(2-氨基毗啶-1(2H)-基)苯胺、磺胺酸、4-(2-氨基吡啶-1(2氢)-基)磺酸。然后活性·OH再次攻击苯胺和4-(2-氨基吡啶-1(2氢)-基)磺酸的苯环、C-N和C-S键,最终使其彻底降解为8042-,N03-,NH4+,CO2等无机离子以及无机物。由此推测SDZ光催化降解途径可能有三种。
     实验证明,UV-TiO2光催化氧化能够有效降解水中的低质量浓度磺胺类药物,实验为低浓度磺胺类药物污染的水体修复提供一些基础数据。
Sulfonamides are synthetic antimicrobial agents, which are used in aquaculture, animal husbandry and human medicines commonly. With the agriculture development in our country, the usage amount of sulfonamides as veterinary and fisher drugs increase every day. Some researches showed that self-decomposition of sulfonamides was slow and a considerable amount of its still remained for a long time in environment. TiO2 is considered to be the most suitable for widespread environmental photocatalytic applications due to its considerable photocatalytic activity, high stability, non-environmental impact and low cost.
     The degradation of trace sulfadiazine and sulfamethoxazole in water by TiO2 and TiO2 /EP was investigated. The effects of various parameters on the performance of degradation rates were studied too. It is provided some basic data for treating trace sulfadiazine and sulfamethoxazole in water. Results are showed that:
     (1) The photodegradation of trace SDZ in wastewater by using UV/TiO2 can get a good result at the optimal conditions. The degradation efficiency of SDZ reached 99% under the conditions of initial concentration of SDZ of 5.0 mg/L, TiO2 dose of 0.08g/L, solution pH of neutral, radiation intensity of 1000 uw/cm2 and reaction time of 50 min.
     (2) The photodegradation of trace SDZ (SMX) in wastewater by using UV-TiO2/EP can get a good result at the optimal conditions. The degradation efficiency of SDZ (SMX) reached 94%(96%) under the conditions of initial concentration of 5.0 mg/L, TiO2 loading of 20 wt%, solution pH of 6.7, radiation intensity of 1000μw/cm2 and reaction time of 45 (30)min.
     (3) The degradation efficiency of SDZ and SMX were enhanced at low concentration and was not remarkable at high concentration by HCO3-. The degradation efficiency of SDZ and SMX were slightly inhibited by SO42- and Cl-, and it was strongerly inhibited by HA, the inhibition was stronger as the concentration higher.
     (4) The mechanism of SDZ may involved in high oxidation ability of active hydroxyl radicals (·OH) which are strongly enough to break the S-N, C-S and S-C bond of SDZ. Froming the intermediate product:sulfanilicacid,4-(2-iminopyrimidine-1(2H)-vl)aniline, 4-(2-iminopyri-midine-1(2H)-vl) aniline salfacid. And then·OH again attacks benzene ring, C-N and C-S bond of the intermediate product, finally, SDZ is broken into SO42-, NO3-, NH4+, CO2 ect. Thus, we can concluded that the degradation of SDZ may have three pathway.
引文
[1]Wai O W H. A lid-driven elongated annular FLUME (LEAF) for the Determination of Sediment Transport Properties [C]//Gyr A, Kinzelbach W.Sedimentation and Sediment Transport, Proceedings of the Monte VeritaSymposium. Switzerland:Kluwer Academic Publishers,2002:241-244.
    [2]Chan W Y, Wai O W H, Li Y S. Critical shear stress for deposition of cohesive sediments in Mai Po [J]. Journal of Hydrodynamics, Ser.B,2006,18 (3):300-305.
    [3]李俊锁,邱月明,王超.兽药残留分析[M].上海:上海科学技术出版社,2002.
    [4]刘伟,王慧,陈小军,杨大为,匡光伟,孙志良.抗生素在环境中降解的研究进展[J].动物医学进展,2009,30(3):89294.
    [5]Bruce J R, Paul K S L, Michael M. Emerging chemicals of concern:Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China[J]. Marine Pollution Bulletin,2005,50:913-920.
    [6]Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones and other organic wastewater contaminants in U.S. streams,1999-2000:A national reconnaissance. Environ Sci Technol,2002,36(6):1202-1211.
    [7]Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment:A review of recent research data. Toxicol Lett,2002,131(1):5-17.
    [8]Giorgia M L, Davide C, Paol O G, et al. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy[J]. Chemosphere.2004, 54(4):661-6681.
    [9]Karthikeyan K G, Meyer M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA [J]. Science of the Total Environment,2006,36:196-207.
    [10]Lindberg R H, Wennberg P, Johansson M I, et al. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden[J]. Environ Sci Technol,2005,39(10):3421-3429.
    [11]Tamtam F, Mercier F, Bot Le B, et al. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions [J]. Science of the Total Environment.2008, 393 (1):84-95.
    [12]Gulkowska A, He Y H, So M K, et al. The occurrence of selected antibiotics in Hong Kong coastal waters [J]. Mar. Pollut. Bull,2007,54 (8):1287-1293.
    [13]姜蕾,陈书怡,杨蓉,等.长江三角洲地区典型废水中抗生素的初步分析[J].环境化学,2008,27(12):2458-246.
    [14]Hernando M D, Mezcua M, Ferna'Ndez-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments [J]. Talanta,2006,69:334-342.
    [15]Schwan B W, Hayes E P, Fioro J M, et al. Human pharmaceuticals in US surface waters: A human health risk assessment [J]. Regulatory Toxicology and Pharmacology,2005, 42(3):296-312.
    [16]Chang H, Hu J Y, Wang L Z, et al. Occurrence of sulfonamide antibiotics in sewage treatment plants [J]. Chinese Science Bulletin,2008,53(4):514-520.
    [17]Xu W H, Zhang G, Li X D, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China [J]. Water Reseach, 2007,41:4526-4534.
    [18]Lingberg R H, Wennberg P, Johansson M I, et al. Screening of human antibiotic substances and determination of weekly mass fluxes in five sewage treatment plants in Sweden [J]. Environ. Sci. Technol,2005,39:3421-3429.
    [19]Batt A L, Snow D D, Aga D S. Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA [J]. Chemosphere,2006,64(11): 1963-1971.
    [20]Stackelberg P E, Furlong E T, Meter M T, et al. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant[J]. Science of the Total Environment,2004,329(1-3): 99-113.
    [21]Diaz-Cruz M S, Lopezdealda M J, Barcelo D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge[J]. Trends in Analytical Chemistry,2003,22(6):340-351.
    [22]Park S, Choi K. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems [J]. Ecotoxicology,2008,17(6):526-538.
    [23]Baquero F, Martinez J L, Canton R. Antibiotics and antibiotic resistance in water environments [J]. Current Opinion in Biotechnology,2008,19(3):260-265.
    [24]Baran W, Sochacka J, Wardas W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions [J]. Chemosphere,2006, 69(5):1295-1299.
    [25]Kaniou S, Pitarakis K, Barlagianni I, et al. Photocatalytic oxidation of sulfamethazine [J]. Chemosphere,2005,60(3):372-380.
    [26]林维宣.各国食品中农药兽药残留限量规定[M].大连:大连海事出版社,2001:1309-1310.
    [27]Morse A, Jackson A. Fate of a Representative Pharmaceutical in the Environment. Final report submitted to Texas Water Resources Institute,2003,1-2,6,10.
    [28]Lindberg R, Jarnheimer P-A, Olsen B, et al.,Tysklind T. Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards. Chemosphere 2004,57,1479-1488.
    [29]Kummerer K, Steger-Hartmann T, Mayer M. Biodegradability of the antitumour agent ifosfamide and its occurrence in hospital effluents and communal sewage [J].Water Research,1997,31(11):2705-2710.
    [30]Heberer T. Occurrence, fate and removal of pharmaceutical residues in the aquatic environment:a review of recent research data [J]. Toxicology Letters,2002,131:5-17.
    [31]Carballa M, Omil F, Juan M. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant [J]. WaterResearch,2004,38:2918-2926.
    [32]Seino A, Furusho S, Masunaga S. Occurrence of pharmaceuticals used in human and veterinary medicine in aquatic environments in Japan[J]. Journal of Japan Society on Water Environment,2004,27 (11):685-691.
    [33]Committee on Drug Use in Food Animals, Panel on Animal Health, Food Safety, and Public Health, National Research Council,1999. The Use of Drugs in Food Animals: Benefits and Risks. National Academy Press, Washington, DC.
    [34]Giorgia M L, Davide C, Paol O G, et al. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy [J]. Chemosphere,2004,
    54(4):661-6681.
    [35]Samueisen O B. Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm [J]. Aquculture,1989,83(1/2):7-16.
    [36]Gao J, Pedersen J A. Adsorption of sulfonamide antimicrobialagents to clay minerals [J]. Environ. Sci. Technol,2005,3,9,9509-9516.
    [37]刘小云,舒为群.水中抗生素污染现状及检测技术研究进展[J]。中国卫生检验杂志,2005,15(8).
    [38]王丽平,章明奎,郑顺安.土壤中恩诺沙星的吸附-解吸特性和生物学效应[J].土壤通报,2008,39(2):393-397.
    [39]Daughton C G, Jones-Lepp T, Eds. Pharmaceuticals and Personal Care Products in the Environment:Scientific and Regulatory Issues; ACS Symposium Series 791; American Chemical Society:Washington, DC,2001.
    [40]Ku¨mmerer K, Ed. Pharmaceuticals in the Environment:Sources, Fate, Effects and Risk, 1st ed, Springer-Verlag:Berlin,2001.
    [41]Fent K, Escher C, Caminada D. Estrogenic activity of pharmaceuticals and pharmaceutical mixtures in a yeast reporter gene system [J]. Reproductive Toxicology, 2006,22:175-185.
    [42]Crane M, Watts C, Boucard T. Chronic aquatic environmental risks from exposure to human pharmaceuticals [J]. Sci Total Environ,2006,367:23-41.
    [43]Gould I. M. A review of the role of antibiotic policies in thecontrol of antibiotic resistance [J]. Antimicrob. Chemother,1999,43,459-465.
    [44]Bolong N, Ismaila A F, Salimb M R, et al. A review of the effects of emerging contaminants in waste water and options for their removal [J]. Desalination,2009,239: 229-246.
    [45]Klaus Kummerer. Antibiotics in the aquatic environment-A review-Part I[J]. Chemosphere,2009,75(4):417-434.
    [46]Ingerslev F, Halling-Sorensen B. Biodegradability properties of sulfonamides in activated sludge [J]. Environ. Toxicol. Chem.2000,19,2467-2473.
    [47]Al-Ahmad A, Daschner F D, Kummerer K. Biodegradability ofcefotiam, ciprofloxacin,
    meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria[J]. Arch Environ Contam Toxicol,1999,37(2):158-63.
    [48]Kummerer K, Al-Ahmad A, Mersch-Sundermann V. Biodegradability of some antibiotics,elimination of the genotoxicity and affection of wastewater bacteria in a simple test[J]. Chemosphere,2000,40(7):701-710.
    [49]Virender K, Sharma, Santosh K, et al. Oxidation of sulfonamide antimicrobials by Ferrate(Ⅵ) [FeⅥO42-] [J]. Environ. Sci. Technol.,2006,40 (23):7222-7227.
    [50]Mantzavinos D, Psillakis E. Enhancement of biodegradability of industrial wastewaters by chemical oxidation pretreatment [J]. J Chem Technol Biotechnol,2004,79:431-54.
    [51]Comninellis C, Kapalka A, Malato S, et al. Advanced oxidation processes for water treatment:advances and trends for R&D [J]. J Chem Technol Biotechnol,2008,83: 769-776.
    [52]Maria Klavarioti, Dionissios Mantzavinos, Despo Kassinos. Removal of residual pharmace-uticals from aqueous systems by advanced oxidation processes [J]. Environment International,2009,35:402-417.
    [53]扈胜禄,李坚斌,黄伟,等.水的高级氧化技术-自由基反应[J].矿产与地质,2003,17(1):82-86.
    [54]Trovoa Alam G, Nogueiraa Raquel F P, Ana Aguerab, et al. Degradation of sulfamethoxazole in water by solar photo-fenton. Chemical and toxicological evaluation [J]. Water Research, In Press, Available online 17 April 2009.
    [55]Ivonete Rossi Bautitz, Raquel F. Pupo Nogueira. Degradation of tetracycline by photo-Fenton process Solar irradiation and matrix effects [J]. Journal of Photochemistry and Photobiology A:Chemistry,2007,87(1):33-39.
    [56]Sharma Virender K. Oxidative transformations of environmental pharmaceuticals by Cl2, C1O2, O3, and Fe(VI):Kinetics assessment[J]. Chemosphere,2008(73):1379-1386.
    [57]肖小明,李洪青,邹华生.超声波降解有机污染物的研究与发展[J].环境科学与技术,2003,26(S2):84-86.
    [58]洪荷芳,李正山,王欢.一种新兴的高级氧化技术-超临界水氧化法[J].环境污染治理技术与设备,2004,5(4):62-65。
    [59]Jingyi Li, Chuncheng Chen, Jincai Zhao, et al. Photodegradation of dye pollutants on
    TiO2 nanoparticles dispersed in silicate under UV-VIS irradiation [J]. Applied Catalysis B:Environmental,2002,37:331-338.
    [60]Palominos Rodrigo A, Mondaca Maria A, Ana Giraldo, et al. Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions [J]. Catalysis Today,2009,144 (1-2):100-105.
    [61]Wiegel S, Aulinger A, Brockmeyer R, et al. Pharmaceuticals in the river Elbe and its tributaries[J]. Chemosphere,2004,57:107-126.
    [62]Bendz D, Paxeus NA, Ginn TR, et al. Occurrence and fate of pharmaceutically active compounds in the environment, a case study:Hbje River in Sweden [J]. Journal of Hazard Material,2005,122:195-204.
    [63]Moldovan Z. Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania [J]. Chemosphere,2006,64:1808-1817.
    [64]Kang X, Bhandari A, Das K, et al. Occurence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids [J]. Journal of Environmental Quality,2005,34: 91-104.
    [65]徐维海,张干,邹世春,等.香港维多利亚港和珠江广州河段水体中抗生素的含量特征及其季节变化[J].环境科学,2006,27(12):232-233.
    [66]胡冠九,王冰,孙成.高效液相色谱法测定环境水样中5种四环素类抗生素残留[J].环境化学,2007,26(1):106-107.
    [67]Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquatic environment [J]. Science Total Environ,1999,225(1-2):109-118.
    [68]Lindsey ME, Meyer M, Thurman EM. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry [J]. Anal Chem,2001; 73(19): 4640-4646.
    [69]Cha JM, Yang S, Carlson KH. Trace determination of [beta]-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry [J]. J Chromatogr A 2006; 1115(1-2):46-57.
    [70]Hoffmann MR, Martin ST, ChoiW, Bahnemann DW. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev,1995.95(1),69-96.
    [71]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension [J]. Bull Environ Contam, Toxicol,1976,16 (5): 697-701.
    [72]姜洪雷,张旋.固定化二氧化钛光催化氧化研究进展[J].山东轻工业学院学报,2003,(12).
    [73]张从良.磺胺类药物环境行为及相关热力学基础研究[D].郑州大学,2007.
    [74]Bajpai A.K, Rajpoot M, Mishra D.D. Studies on the correlation between structure and adsorption of sulfonamidecompounds [J]. Colloids and surfaces:Physicochemical and Engineering Aspects,2000, (168):193-205.
    [75]Akbal F, Onar A N. Photocatalytic degradation of phenol [J]. Environmental Monitoring and Assessment,2003,83:295-302.
    [76]Sabate J, Bayona J M, Solanas A M. Photolysis of PAHs in aqueousphase by UV irradiation [J]. Chemosphere,2001,44:119-124.
    [77]邓华健,喻红.光催化氧化垃圾填埋渗滤液的主要因素[J].天津化工,2003,17(5):16-17.
    [78]Boreen A L, Arnold X A, Mcneill K. Photochemical fate of sulfa drugs in the aquatic environment:sulfa drugs containing five-Membered heterocyclic groups [J]. Environ. Sci. Technol,2004,38(14):3933-3940.
    [79]X. Z. L i, F. B. L i, C. M. Fan, et al. Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode. Water Research [J],2002,36: 2215-2224.
    [80]湖南大学,天津大学,同济大学等.建筑材料.第4版.北京:中国建筑工业出版,1996.230
    [81]徐家保.建筑材料学.第2版.广州:华南理工大学出版社,1995.253
    [82]Hosseini S N, Borghei S M, Vossoughi M, et al. Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol[J]. Appl Catal B,2007,74:53-62.
    [83]Mehmet D, Mahir A. Removal of methyl violet from aqueous solution by perlite [J]. J Colloid and Interface Sci,2003,267:32-41.
    [84]Chakir A, Bessiere J. A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite [J]. J Hazard Mater,2002, B95:
    29-46.
    [85]Hosseini S. N, Borghei S. M, Vossoughi M. Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol [J]. Applied Catalysis B:Environment,2007, 74(1-2):53-62.
    [86]杨阳,陈爱平,古宏晨,等.以膨胀珍珠岩为载体的漂浮型Ti02光催化剂降解水面浮油[J].催化学报,2001,22(2):177-180.
    [87]何建波,张鑫,魏凤玉,等.Ti02薄膜晶相组成对苯胺光催化降解的影响应用化学[J].1999,16(5):57-60.
    [88]Anne L. B, William A. A, Kristopher M. Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups identification of an SO2 extrusion photoproduct. Environ. Sci. Technol.,2005,39(10):3630-3638.
    [89]Boreen A L, Arnold X A, McNeill K. Photochemical Fate of Sulfa Drugs in the Aquatic Environment:Sulfa Drugs Containing Five-Membered Heterocyclic Groups [J]. Environ Sci Technol,2004,38(14):3933-3940.
    [90]Lanhua Hua, Phillip M, Penney L, et al. Strathmanna, Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis [J]. Water Reserch,2007,41, 2612-2626.
    [91]X.Z.Li, C.M.Fan, et al. Enhancement of photocatalytic oxidation of humic acid in TiO2 suspensisons by increasing cation strength [J]. Chemosphere,2002,48:453-460.
    [92]赵雷,马军,孙志忠.无机离子对催化臭氧化降解水中痕量硝基苯效果的影响[J].环境科学,2006,27(5):924-930.
    [93]Haye M H B, Mac C P, Malcolm R L, et al. Humic Substances:in Search of St ructure [M]. New York:John Wiley and Sons,1989.
    [94]Liao C. H., Gurol M. D. Chemical oxidation by photolytic decomposition of hydrogen peroxide [J]. Environ. Sci. Techno,1995,29,3007-3014.
    [95]Roberto Andreozzi, Marotta Raffaele, Paxeus Nicklas. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment [J]. Chemosphere,2003,50: 1319-1330.
    [96]Monica W. Lam and Scott A. Mabury. Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters [J].
    Aquat.Sci.2005,67,177-188.
    [97]M Jesu, Garc Gala, M Silvia Di'az-Cruz, et al. Identification and determinationof metabolites and degradation products of sulfonamide antibiotics[J]. Trends in Analytical Chemistry,2008,27 (11).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700