用户名: 密码: 验证码:
嗜热真菌热稳定纤维素酶的分子改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是地球上分布最广、蕴藏量最丰富的生物质,也是最廉价的可再生资源,但是其中有大部分不能直接利用,成为纤维素废物。我国几乎所有的纤维素废物,如作物秸秆、废纸、废木料等,白白烧掉或直接丢弃。这种处理方式不但造成数十亿直接经济损失,而且焚烧产生的大量浓烟及排放的很多有害气体对环境和生态都造成了严重的影响。纤维素废料之所以难于利用是由于纤维素难于降解分子结构,而纤维素酶可以将纤维素降解为工业上易于利用的葡萄糖,纤维素酶还可用于纺织、造纸、洗涤、饲料食品加工以及洗涤剂生产等工业领域。该酶主要来自于真菌、细菌和原生动物,是降解纤维素生成葡萄糖的一组酶的总称,它不是单成分酶,而是由多个起协同作用的酶构成的多酶体系。
     尽管纤维素酶已经在工业上有所应用,但是其酶活力、热稳定性和pH稳定性等酶学指标仍需要提高才能满足工业生产的需要。嗜热微生物是高热稳定纤维素酶的主要来源,嗜热真菌产生的纤维素酶在高温条件下具有高活力和稳定性,并且与中温真菌一样,嗜热真菌产生的各类纤维素酶普遍含有多种类型的组分。嗜热子囊菌光孢变种(Thermoascus aurantiacus var.levisporus)和嗜热毛壳菌(Chaetomium thermophilum CT2)是广泛分布的,生长上限温度较高的嗜热真菌,从这两种真菌中已分离了多种嗜热酶,并且证明了其纤维素酶存在多个组分,产生的纤维素酶的活性及耐热性都很高,具有极大的研究和应用价值。本研究中从嗜热子囊菌光孢变种(T.aurantiacus var.levisporus)中分离到一种eg1基因(GenBank登录号为AY 847014),并在毕赤酵母中高效表达,筛选到一株工程菌命名为GpN24,该重组毕赤酵母工程菌株所表达的内切葡聚糖酶Ⅰ具有良好的热稳定性。
     工程菌GpN24产生的酶蛋白分子量为33kDa,最适温度和pH分别为55℃和5.0,在90℃的条件下保温30min后仍具有50%的酶活力,在pH3.0-5.0的条件下酶活力保持稳定。为了提高酶活力和稳定性,本研究以内切葡聚糖酶eg1作为出发基因,采用易错PCR方法建立突变体库后,以高活力作为筛选压力,先后以双层平板法和小量发酵法筛选突变体库。经过突变和筛选,获得了一个酶活力提高3.5倍的突变体,并且最适pH由原来的5.0变为了4.0。测得的序列与野生基因比较,发现第41位氨基酸N突变为D;第129位氨基酸Y突变为H;第235位氨基酸G突变为E。其中第129和第235个氨基酸均属于保守性的氨基酸。通过硫酸铵沉淀、DEAE-Sepharose Fast Flow阴离子层析、Phenyl-Sepharose疏水层析等步骤纯化了该蛋白,酶学性质与野生酶进行了比较,并初步探讨酶活力提高的可能机制。
     利用融合PCR技术在eg1的5’末端连接了来自于嗜热毛壳菌(C.thermophilum CT2)的cbh1基因,经测序验证读码框正确后,构建表达载体转化毕赤酵母GS115中,筛选到一株表达量较高的融合基因eg1cbh1的酵母工程菌株,命名为GPNI3。该菌株表达的融合酶的分子量为88kDa,最适温度和pH分别为50℃和4.0,对不同底物的酶活力均高于内切葡聚糖酶eg1的活力。
     大多数纤维素水解酶至少由催化区和结合区组成,催化区含有催化水解纤维素β-1,4糖昔键的活性位点;纤维素吸附区(CBD),主要功能是结合纤维素,对纤维素的超分子结构具有特异性,能够提高酶对纤维素的吸附,从而增加纤维素底物的水解。CBD在纤维素酶对不溶性纤维素底物的水解中起着关键作用,关于CBD作用的多数信息,是通过去除该结构域、改变结构域或进行定点诱变研究而得到,本实验室已经从嗜热毛壳菌中分离到了cbh1和cbh3基因,cbh1具有完整的结构即:催化区、结合区以及连接两个区域的连接桥;而cbh3缺少结合区,本研究在无结合区的嗜热毛壳菌cbh3酶蛋白的C端通过融合PCR技术连接了cbh1基因的纤维素结合区CBD,经测序验证读码框正确后,构建表达载体转化毕赤酵母中,筛选到一株高表达量的融合基因cbh3-1的酵母工程菌株,命名为GPB103。该菌株表达的融合酶蛋白分子量为51kDa,最适温度和pH分别为60℃和4.0,滤纸酶活较cbh3提高了1.2倍,DEAE-Sepharose Fast Flow阴离子层析纯化了该蛋白,并对酶学性质进行了研究。
Cellulose is the most abundant organic compound on Earth,widely spreading as one of the cheapest renewal resources, but most of it can’t be used directly and becomes cellulose waste.Almost all of the cellulose waste, such as crop residual, used paper, forest waste and so on, is merely burned or deserted without treatment in China, which causes many environmental, ecological problems and several billion yuan economic losses in one year.The cellulose waste is difficult to be used because it is a tough molecule to break down, but it can be converted into sugars, which can be easily used in industry, by cellulases.Cellulases can also used in textile industry, paper and pulp industry, food industry, feed industry, detergent industry and so on.The cellulase refers to a class of enzymes produced chiefly by fungi, bacteria, and protozoans that catalyzes the hydrolysis of cellulose by Hydrolyzing 1,4-beta-D-glycosidic linkages in cellulose.
     Although the cellulase has been widely used as an important industrial enzyme, it should be improved in enzyme activity, thermostability, pH stability to meet the industry need.Thermophiles are main sources of cellulases with high thermostability.Cellulases from the thermophilic fungi have been reported to be stable and highly active at high temperature and, like mescophilic fungi, thermophilic fungi can produce multiple forms of the cellulase components, mostly.Thermoascus aurantiacus var.levisporus and chaetomium thermophilum CT2 are both widespread thermophilic fungi.They can thrive at temperature between 45℃and 50℃, while most fungi would die above 40℃.Several thermostable enzymes have been isolated from the thermophilic fungi.Current study shows that both the thermophilic fungi’s cellulases have multiple components and have high activity and thermostability, which makes the thermophilic fungi’s cellulases have great research and industry value.
     In this study, an endo-β-glucanase encoding gene, eg1 (GenBank accession number: AY 847014), has been isolated from T.aurantiacus var.levisporus and expressed in pichia pastoris.A high expression efficiency strain named GpN24 was gotten through screening, and this strain can express recombinant endo-β-glucanase with excellent thermostability.The molecular of the enzyme was 33kDa.The optimum pH and temperature of the recombinant enzyme activity were 5.0 and 55℃respectively.The recombinant enzyme remained 50% of its original activity after 30 min at 90℃and the activity of the recombinant enzyme can remain stable in pH between 3.0 and 5.0.Direct evolution based on eg1’s error-prone PCR and high throughput screening for higher activity in pichia pastoris was used to enhance activity and stability of the endo--β-glucanase from T.aurantiacus var.levisporus and the expression efficiency of its encoding gene eg1.A mutant library of eg1 was constructed by error-prone PCR.In this research, small amount ferment in 1.5ml centrifuge tube after two-layer plate was used to screen for higher enzyme activity.Through mutagenesis and screening, a mutant showed 3.5 fold enzyme activity and optimum pH changing from 5.0 to 4.0.The result of alignment of the mutant’s and the wild type amino acid sequences showed that the wild type‘s 44 amino acid N was replaced with D,and the wild type’s 129 amino acid Y changed to H, and wild type’s 235 amino acid G mutate to E.The mutant site 229 and 235 belong to conserved sites.Both the mutant endo-β-glucanase and wild type endo-β-glucanase were purified by fractional ammonium sulphate precipitation, ion exchange chromatography on DEAE-Sepharose and Phenyl-Sepharose hydrophobic interaction chromatography.The preliminary mechanism was studied by comparing the two purified endo-β-glucanases.
     Cbh1 of C.thermophilum was linked to 5’end of eg1 by fusion PCR.After sequencing to make sure a correct ORF, an expression vector was constructed to transform into pichia pastoris, and then a high expression strain of fusion gene eg1cbh1 was screened, and named GPNI3.The molecular of the enzyme was 88kDa .The fusion protein expressed by this strain exhibited maximal activity at pH 4.0 and 60oC and showed higher enzyme activity on all the different substrates than endo-β-glucanase eg1
     Most cellulases have catalysis domain (CD) and binding domain (BD) .The CD has active sites of catalyzingβ-1,4 glycosidic bond , while the CBD have specificity to the supramolecular structure of cellulose, and increase the absortion to cellulose, and accelerates the hydrolysis of cellulose.As the CBD has key role in the hydrolysis of cellulose, lots of researchs were done by deletion、change or site-directed mutagenesis to the CBD.Cbh1 gene and cbh3 gene were cloned from C.thermophilum, and cbh1 has CD CBD and a link, while cbh3 don’t have CBD.We linked the CBD of cbh1 to the C- terminal through fusion PCR.The expression plasmid was constructed and transformed into Pichia pastoris.A strain with high expression was selected and named as GPB103.After DEAE-Sepharose chromatography, the fusion enzyme homogeneously by SDS-PAGE was purified and the characterization of the purified enzyme was carried out.The molecular of the fusion protein expressed was 51kDa.The optimum temperature and pH for enzyme activity were 60℃and 4.0 respectively, and the activity increased 1.2 times on filter paper.
引文
1.伯永科,崔海信,刘琪等.基于稀酸水解法的制糖残渣纤维素糖化研究.中国农业科技导报, 2008, 5:8-93
    2.蔡勇,阿依木古丽,臧荣鑫等.芽孢杆菌CY1—3株碱性纤维素酶基因ceIC的克隆及其在大肠杆菌中的表达.中国兽医科学, 2006, 12:961-966
    3.陈偿.甲醇毕赤氏酵母表达体系.热带农业科学, 1999, 2:36-43
    4.陈红歌,朱静,梁改芹等.黑曲霉木聚糖酶的纯化与性质.菌物系统, 2000, 19: 111-116
    5.陈红歌,张东升,刘亮伟.纤维素酶菌种选育研究进展.河南农业科学, 2008, 8:5-7
    6.陈红歌.野油菜黄单胞菌α-淀粉酶性质及其体外定向进化研究.南京农业大学博士论文, 2005
    7.陈静,李多川,张玉芹等.嗜热子囊菌光孢变种cbh1基因的cDNA克隆及在毕赤酵母的高效表达.农业生物技术学报, 2006, 3:406-411
    8.陈祺,韦宇拓,杜丽琴等.绿色木霉葡聚糖内切酶Ⅰ基因的定点突变及酶学性质的研究.广西农业生物科学, 2008, 27: 1-7
    9.方柏山,洪燕,夏启容.酶体外定向进化(Ⅱ).华侨大学学报(自然科学版), 2005, 2: 113-116
    10.顾方媛,陈朝银,石家骥等.纤维素酶的研究进展与发展趋势.微生物学杂志, 2008, 1:83-87
    11.郭德宪,曹健,鲍宇茹.利用生物技术降解纤维素的研究进展.郑州工程学院学报, 2001, 3:82-86
    12.胡利勇,钟卫鸿.纤维素酶基因克隆及其功能性氨基酸研究进展.生物技术, 2003, 2:43-45
    13.黄瑛,蔡勇,杨江科等.基于易错PCR技术的短小芽孢杆菌YZ02脂肪酶基因BpL的定向进化.生物工程学报, 2008, 3:445-451
    14.姜世民.体外定向进化大肠杆菌β-半乳糖苷酶和农杆菌介导DREB1A基因转化苹果的研究.南京农业大学博士论文, 2003
    15.李明华,张大伟,楚杰等.饲料纤维素酶的研究与应用进展.新饲料, 2006, 7:65-68.
    16.李淑华,顾晓梅,邱红娟.生物酶在染整加工中的应用及其发展.染整技术, 2007, 1:13-17
    17.李亚玲.嗜热真菌热稳定纤维素酶的分离纯化及基因的克隆与表达.山东农业大学博士论文. 2007
    18.梁靖,须海荣.纤维素酶在速溶茶中的应用研究.茶叶, 2002, 28:25-26.
    19.刘北东,杨谦.绿色木霉AS3.3711的葡聚糖内切酶Ⅲ基因的克隆与表达.环境科学, 2004, 9:127-132
    20.刘北东,杨谦.绿色木霉AS3.3711的葡聚糖内切酶Ⅴ基因的克隆与表达.高技术通讯, 2004, 8:28-32
    21.刘北东.绿色木霉AS3.3711的葡聚糖内切酶Ⅰ基因的克隆与表达.北京林业大学学报, 2004, 6:72-75
    22.刘发来,范建平,苏士等.纤维素生物转化研究进展.安徽农业科学, 2008, 17: 7059-7060
    23.刘守安,李多川,俄世瑾等.嗜热毛壳菌纤维素酶(CBH II)cDNA的克隆及在毕赤酵母中的表达.生物工程学报, 2005, 21:892-899
    24.刘守安,李多川,张燕等.嗜热毛壳菌CT2纤维二糖水解酶Ⅰ在毕赤酵母中的高效表达.菌物学报, 2006, 25:256-262
    25.刘翔,何国庆.纤维素酶及相关酶在食品生物技术中的应用.粮油加工与机械, 2003, 6:61-63
    26.刘岩,于涟.基因融合技术及其应用.农业生物技术学报, 2006, 2: 273-278
    27.刘燕,张宏福,孙哲.纤维素酶的分子生物学与基因工程研究进展.饲料工业, 2007, 18:11-14
    28.刘颖,张玮玮.生物技术生产纤维素酶及其应用研究进展.精细与专用化学品, 2007, 15:8-10
    29.孟雷,陈冠军,王怡等.纤维素酶的多型性.纤维素科学与技术, 2002, 2:47-55
    30.乔宇,毛爱军,何永志等.里氏木霉内切-β-葡聚糖酶Ⅱ基因在毕赤酵母中的表达及酶学性质研究.菌物学报, 2004, 23:388-396
    31.孙宪昀,曲音波,刘自勇.青霉木质纤维素降解酶系研究进展.应用与环境生物学报,2007, 13: 736-740
    32.孙志浩,柳志强.酶的定向进化及其应用.生物加工过程, 2005, 3:7-13
    33.汪天虹,王春卉,高培基.纤维素酶纤维素吸附区的结构与功能.生物工程进展, 2000, 20: 37-40
    34.汪天虹,吴静,邹玉霞.瑞氏木霉分子生物学研究进展.菌物系统, 2000, 19: 147-152
    35.王冬梅,李多川.四个嗜热真菌中国新记录种.菌物学报, 2005, 24:19-23
    36.王建荣,张曼夫,黄涛.绿色木霉纤维素霉CBHⅡ基因的结构研究.遗传学报, 1995, 1:74-80
    37.王瑾,邬敏辰,周晨妍.内切葡聚糖酶在大肠杆菌与毕赤酵母中的表达.生物技术通报, 2008, 3:110-114
    38.王禄山,张玉忠,高培基.纤维二糖水解酶I吸附结构域的新功能.中国科学C辑:生命科学, 2008, 38:678 -686
    39.夏黎明,萧庆,余世袁.碳源对固定里氏木霉合成纤维素酶的影响.纤维素科学与技术, 1994, 2:72-77
    40.肖冬光,王德培,昊沉等.里氏木霉纤维素酶在酒精生产中应用的研究.酿酒, 1997, 3:12-16
    41.肖志壮,王婷,汪天虹等.瑞氏木霉内切葡聚糖酶Ⅲ基因的克隆及在酿酒酵母中的表达.微生物学报, 2001, 41:391-396
    42.肖志壮,王婷,王攀等.筛选在非生长条件下突变体酶的新方法.微生物学通报, 2001, 28:74-77
    43.肖壮志.瑞氏木霉内切葡聚糖酶Ⅲ基因的克隆及在酿酒酵母中的表达.微生物学报, 2001, 4:391-396
    44.谢占玲,吴润.纤维素酶的研究进展.草业学, 2004, 4:72-76
    45.徐卉芳,张先恩,张治平等.大肠杆菌碱性磷酸酶的体外定向进化研究.生物化学与生物物理进展, 2003, 1:89-94
    46.徐天鹏.里氏木霉纤维素酶基因的克隆及其在毕赤酵母中的表达的研究.东北农业大学博士论文, 2007
    47.阎伯旭,齐飞,张颖舒等.纤维素酶分子结构和功能研究进展.生物化学与生物物理进展, 1999, 26:233-237
    48.阎伯旭,高培基.纤维素酶分子结构与功能研究进展.生命科学, 1995, (5):22-25
    49.阎伯旭,齐飞,张颖舒.纤维素酶分子结构和功能研究进展.生物化学与生物物理进展, 1999, 3:235-237
    50.阎伯旭,孙迎庆,高培基.有限酶切拟康氏木霉纤维素酶分子研究其结构域的结构与功.纤维素科学与技术, 1998, 3:2-9
    51.颜涌捷,任铮伟.纤维素连续催化水解研究.太阳能学报, 1999, 1:57-58
    52.杨永彬,黄谚谚.纤维素酶的结构及分子多样性.生命的化学, 2004, 3:211-213
    53.张传富,顾文杰,彭科峰等.微生物纤维素酶的研究现状.生物信息学, 2007, 1: 34-36
    54.张济邦.生物酶在印染工业中的应用现状和发展前景.印染, 2000, 4:47-52
    55.张平平,刘宪华.纤维素生物降解的研究现状与进展.天津农学院学报, 2004, 3: 48-54
    56.张晓华,刘敏雄,谭蓓英.一个分解纤维素的瘤胃梭菌新种.微生物学报. 1995, 35: 397- 399
    57.张晓勇,陈秀霞,高向阳.纤维素酶的蛋白质工程.纤维素科学与技术, 2006, 14 :55-58
    58.张秀艳.β一葡聚糖酶的定向进化及热稳定性研究.浙江大学博士论文, 2006
    59.张煜,刘刚,余少文等.里氏木霉纤维二糖水解酶Ⅱ在毕赤酵母中的高效表达.菌物学报, 2005, 24:367-375
    60.赵春杰,吕耀龙,马玉玲.极端微生物研究进展.内蒙古农业大学学报, 2008, 29: 271-274
    61.祝令香,于巍.康宁木霉K801纤维素酶CBHⅡ基因的克隆及序列分析.菌物系统, 2001, 2:174-177
    62. Adney W S, Himmel M E, Tueker M P, et al.. Thermostable Purified endoglucanase from Acidothermus cellulolyticus ATCC43068. United States Patent, 2002, 13:587-594
    63. Aguilar R, Ramirez J A, Garrote G, et al. . Kinetic study of the acid hydrolysis of sugarcane bagasse. Journal of Food Engineering, 2002, 55: 309-318
    64. Aharoni A, Gaidukov L, Yagur S, et al.. Directed evolution of mammalian paraoxona- ses PON1 and PON3 for bacterial expression and catalytic specialization. Proceedings ofthe National Academy of Sciences of the USA, 2004, 101:482-487
    65. Ahsan M,Matsumoto M,Kimura T, Sakka K, et al. . Purifieation and eharacterization of the fanllly J catalyticdomain derived from the Clostridium thermocellum endoglucanase CelJ,Biosci Biotechnol Bioehem, 1997, 61:427-31
    66. Ait N, Creuzet N, Cattaneo J. Properties of glueosidase Purified from Clostridium thermoeellum. J.Gen. Microbiol, 1982, 128:569-577
    67. Alexander V, Gusakov, Arkady P, et al.. Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I(Cel7A)produced by the industrial strain of Chrysosporium lucknowense. Enzyme and Microbial Technology, 2005, 36:57-69
    68. Allen S J, Holbrook J J. Production of an activated form of Bacillus stearothermophilus L-2-hydroxyacid dehydrogenase by directed evolution. Protein engineering, 2000, 13:5-7
    69. Alzari P M, Souchon H, Dominguez R. The crystal structure of endoglucansase celA, a family 8 glucosylhydroase from Clostridium thermocellum Structure, 1996, 4: 265- 275
    70. Amold F H. In IBC Directed Enzyme Evolution. San Diego , 1998
    71. Ando S, Ishida H, Kosugi Y, et a.l. HyPerthermostable Endoglueanase from Pyroeoecus horikoshii, Appl Environ Microbiol, 2002, 68:430-433
    72. Arrizubieta M J, Polaina J. Increased thermal resistance and modification of the catalytic properties of a beta-glucosidase by random mutagenesis and in vitro recombination. Journal of Biological Chemistry, 2000, 275: 28843-28848
    73. Bae H, Turcotte G, Chamberland H, et al.. A comparative study between an endogluc- anase IV and its fused protein complex Cel5CBM6. FEMS Microbiology Letters, 2003, 227: 175-181
    74. Beguin P, Aubert J P. The biological degradation of cellulose. FEMS Microbiology Review, 1994, 13:25-58
    75. Bhat M K, Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 1997, 15:583-620
    76. Bhat M K. Cellulases and related enzymes in biotechnology. Biotechnology Advances, 2000, 5: 355~383
    77. Bok J D, Yernool D A, Eveleigh D E. Purification characterization and molecularanalysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Applied Environmental Microbiology, l998, 64:4774-4781
    78. Boraston A B, Bolam D N, Gilbert H J, et al.. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J, 2004, 382:769-781
    79. Bornscheuer U T, Altenbuchner J, Meyer H H. Directed evolution of an esterase: Screening of enzyme libraries basedon pH-indicators and a growth assay. Bioorganic & Medicinal Chemistry, 1999, 7:2169-2173
    80. Bothwell M K, Wilson D B, Irwin D C, et al.. Binding reversibility and surface exchange of Thermonospora fusca E3 and E5 and Trichoderm areesei CBH I. Enzyme and Microbial Technol, 1997, 6:411-417
    81. Buchholz F, Angrand P O, Stewart A F. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nature Biotechnol. 1998, 16:657-662
    82. Cadwell R C, Joyce G F. Mutagenic PCR. PCR Methods Application, 1994, 6:S136-140
    83. Carrard C A, Koivula H, Soderlund, et al.. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proceedings of the National Academy of Sciences of the USA. 2000, 10342-10347
    84. Catcheside D E, Rasmussen J P, Yeadon P J. Diversification of exogenous genes in vivo in Neurospora. Appl Microbiol Biotechnol, 2003, 62:544-549
    85. Cavaco-Paulo A J, Morgado J. Andreaus, et al.. Interac-tions of cotton with CBD peptides. Enzyme Microb. Technol, 1999, 25:639-643
    86. Chen K, Arnold F H. Turning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci USA, 1993, 90: 5618-5622
    87. Chen Keqin, Arnold F H. Enzyme engineering for nonaqueous solvents: Random mutagenesis to enhance activity of subtilisin E inpolar organic media. Biotechnology, 1991, 9 :1070-1077
    88. Chen Keqin, Arnold F H. Tuning the activity of an enzyme for unusual environments: Sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc. Natl. Acad. Sci. USA , 1993 , 12: 5618-5622
    89. Cheng C, Tsukagoshi N, Udaka S. Nucleotide sequence of the cellobiohydrolase gene from Trichoderma viride.Nucleic Acids Research , 1990, 18:55-59
    90. Cheong T K, Oriel P J. Cloning of a wide-spectrum amidase from Bacillus stearotherr- mophilus BR388 in Escherrichia coli and marked enhancement of amidase expression using directed evolution. Enzyme and Microbial Technology , 2000, 26:152-158
    91. Cherry J R, Lamsa M H, Schneider P, et al.. Directed evolution of a fungal peroxidase. Nature Biotechnol. 1999, 17:379-384
    92. Clare J J, Rayment F B, Ballantine S P. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multipule tandem integrations of the gene. Biotechnology, 1991, 455-460
    93. Crameri A, Raillard S A, Bermudez E et al.. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature, 1998, 391:288-291
    94. Crameri A, Dawees G, Rodriguez E, et al.. Molecular evolution of an arsenate detoxify- catio pathway by DNA shuffling. Nature Biotechnol, 1997, 15:4436-438
    95. Cregg J M, Barringer K J, Hessler A Y. Pichia pastoris as a host system for transform -ations. Molecular cellular Biology, 1985, 5:3376-3385
    96. Damude H G, Withers S G, Kilburn D G, et al.. Site-directed mutation of the putative catalytic residues of endoglucanase CenA from Cellulomonas fimi. Biochemistry, 1995, 34:2220-2224
    97. Davies G J, Brzozowski A M, Dauter M. Structure of the Bacillus agaradherans family 5 endoglucanase and its cellobiose complex. Journal of Biological Chemistry , 2000, 348:201-207
    98. Davies G J, Ducros V, Lewis R J. Oligosaccharide specifity of a family 7 endoglucanase insertion of potential sugar-binding subsites. Journal of Biotechnology , 1997, 57:91-100
    99. Davies G J, Tolley S P, Henrissat B. Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens. Biochemistry, 1995, 34:16210-16220
    100.Davies G J. Mackenzie L, Brzozowski A M. Structure of the Bacillus agaradherans family 5 endoglucanase and its cellobiose complex. Biochemistry, 1998, 37:1926-1932.
    101.Divne C, Stahlberg J, TeeriT, et al.. High-resolution crystal structures reveal how acellulose chain is bound in the 50 long tumnel of cellobiohydrolase I from Trichoderma reesei. Journal of Molecular Biology , 1998, 275:309-325
    102.Dominguez R, Souchon H, Lascombe M B. A common protein fold and similar active in two distinct families of beta-glycanases. Nature Structural & Molecular Biology , 1995, 2:569-576.
    103.Dvies G J, Tolly SR, Henrissat B, et al. . Structures of oligosaccharide -bound forms of the endoglucanase V from Humicola insolens at 1.9Aresolution. Biochemistry, 1995, 49: 16210-16220
    104.Enari T M, Paavola M L. Enzymatic hydrolysis of cellulose. CRC Critical Reviews in Biotechnology, 1987, 5:67-81
    105.Esterbauer H W, Steiner I, Labudova A, et al.. Production of Trichoderma cellulase in laboratory and pilot scale. Biores. Technol, 1991, 36:51-65
    106.Faterstaml T, Petterssonl G. The 1, 4-β-D-glucan cellobiohydrolases of Trichoderm a- reesei QM 9414. A new type of cellulolyticsynergism. FEBS Letters , 1980, 1:97-100
    107.Fong S, Machajewski T D, Mak C C, et al.. Directed evolution of D-2-keto-3-deoxy-6- phosphogluconate aldolase to new variants for the deeicient synthesis of D-and L-sugars. Chem. Biol, 2000, 7:873-883
    108.Gao Wenzhong, Xing Bengang, Tsien R Y, et al.. Novel fluorogenic subst rates for imag- ingβ-lactamase gene expression. Am.Chem.Soc., 2003, 37:11146-11147
    109.Gibbons I. Microfluidic assays for high-throughput submicroliter assays using capillary electrophoresis. Drug Discov.Today, 2000, 1:33
    110.Gilligan W, Reese E T. Evidence for multiple components in microbial cellulases. Can. J. Microbiol., 1954, 1:90-107
    111.Gonzalez-Blasco G, Sanz-Aparicio J, Gonzalez B, et al.. Directed evolution of beta- glucosidase A from Paenibacillus polymyxa to thermal resistance. Biochem. J., 2000, 275: 13012-13078
    112.Graham L D, Jennings P A, et al.. Random mutagenesis of the substrate-binding site of a serine protease can generate enzymes weith increased activities and altered primary specificities. Biochemistry, 1993, 32:6250-6258
    113.Hall J, Black G W, Ferreira L M A, et al.. The non-catalytic cellulose-binding domain of a novel cellulase from Pseudom onasfluorescens subsp.cellulosa is important for the efficient hydrolysis of Avicel. Biochem. J., 1995, 309:749-756
    114.Halldórsdóttir SThórólfsdóttir E,Cloning sequencing and overexPression of a Rhodother- mus marinus gene eneoding a thermostable cellulose of glyeosilhydrolase family 12, Applied Microbiology and Biorechnogy, 1998, 49:277-284
    115.Hansson L O, Widersten M, Mannervik B. An approach to optimizing the active site in a glutathione transferase by evolution in Vitro. Biochem J, 1999, 344:93-100
    116.Hefford M A, Laderorte K, Willick C E, et al.. Protein Engineering. 1992, 5:433-439
    117.Heikinheimo L, Buchert J, Miettinen-Oinonen A, et al.. Treating denim fabrics with Trichoderma reesei cellulase.Textile Res. J., 2000, 70: 969-973
    118.Heloguera G, Morrison S L, Penichet M L. Antibody-cytokine fusion proteins: Harnes- sing the combined power of cytokines and antibodies for cancer Therapy. Clinical Immunology, 2002, 105:233-246
    119.Hende E, Bomscheuer U T. Directed evolution of an esterase from Pseudomonas fluorescens Random mutagenesis by error-prone PCR or a mutator strain and identifica- tion of mutants showing enhanced enantioselectivity by a resorufinbased fluorescence assay. Biol. Chem, 1999, 380:1029-1033
    120.Hhoski J, Yano T, Koyama Y, et al.. Directed evolution of thermostable kanamycin- resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem (Tokyo), 1999, 126:951-956
    121.Hikaru Nakazawa, Katsunori Okada, Tomoko Onodera, et al.. Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Appl Microbiol Biotechnol. 2009
    122.Hilge M, Gloor S M, Rypniewski W. High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca substrate specificity in glycosylhydrolase family 5. Structure, 1998, 6:1433-1444
    123.Huang Y, Kraussq G, Cottaz SDriguez H, Lipps G, A highly acid-stable and thermo- stable endo-β-glucanase from the thermoacido Philic arehaeon Sulfolobus solfaricus, Biochem. J., 2005, 385:581-588
    124.Ida L, Barbarar E, Jonathan W. The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. Ultramicroscopy, 2000, 82:213-221
    125.Iffland A, Tafelmeyer P, Saudan C, et al.. Directed molecular evolution of cytochrome cperoxidase. Biochemistry, 2000, 39:10790-10798
    126.Irina Kataeva, Xin-Liang Li, Huizhong Chen, et al.. Cloning and Sequence Analysis of a New Cellulase Gene Encoding CeIK a Major Cellulosome Component of Clostridium thermocellum: Evidence for Gene Duplication and Recombination. Journal of Bacteriology, 1999, 181: 5288-5295
    127.Jaeger K E, Eggert T, Eipper A, et al.. Directed evolution and the creation of enan- tioselective biocatalysts. Appl Microbiol Biotechnol, 2001, 55:519-530
    128.Jiong Hong, Hisanori Tamaki, Kenji Yamamoto Hidehiko Kumagai. Cloning of a gene encoding a thermostable endo-β-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnology Letters, 2003, 25:657-661
    129.Joo H, Lin Z, Arnold F H. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature, 1999, 399:670-673
    130.Kampenvan M D, Dekker N, Egmond M R, et al.. Substrate specificity of Staphylococcus hyicus lipase and Staphylococcus aureus lipase as strdied by in vivo chimeragenesis. Biochemistry, 1998, 37:3459-3466
    131.Kampen van M D, Egmond M R. Directed evolution: From a staphylococcal lipase to phospholipase Eur J Lipid Sci Technol, 2000, 102:717-726
    132.Kamrat T, Nidetzky B. Entrapment in E.coli improves the operational stability of recombinant beta-glycosidase CelB from Pyrococcus furiosus and facilitates biocatalyst recovery. Jourlol of Biotechnology, 2007, 129:69-76
    133.Kaper T, Brouns S J, Geerling AC, et al.. DNA Family shuffling of hyperthermostable beta-glycosidases. Biochem. J., 2002, 368:461-470
    134.Kashima Y, Mori K, Fukada H et al.. Analysis of the function of a Hyperthermophilic endoglueanase from Pyroeoeeus horikoshii that hydrolyzes crystalline cellulose, Extre- mophilies, 2005, 9:37-43
    135.Katie Heton, Industrial Uses of Thermophilie Cellulase protein Structure and Function,2004, Spring:645
    136.Kilburn D G, Assouline Z, Din N, et al.. Proceeding of the second Tricel symposium on Trichoderma reesei cellulase and other hydrolases. Helsinki, 1993, 8:281-290
    137.Kim B, Hathaway T R, Loeb L A. Human immunodeficiency virus revers traverse transcriptase Functional mutants obtained by random mutagenesis coupled with gentic selection in Escherichia coli. J Biol. Chem., 1996, 271:4872-4878;12825-12831
    138.Kim J J, Trivedi N N, Nottingham L K, et al.. Modulation of amplitude and direction of in vivo immune responses by coadministration of cytokine gene expression cassettes with DNA immunogens. European Journal of Immunology, 1998, 28:1089-1103
    139.Kim Y S, Jung H C, Pan J G. Bacterial cell surface display of an enzyme library for selective screening of improved cellulose variants. Applied Environmental Microbiology, 2000, 66: 788-793
    140.Kim Y W, Lee S S, Warren RA, et al.. Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire. J. Bio. Chem, 2004, 279:42787-42793.
    141.Kleyweg G J, Zou J Y, Divne C. The crystal structure of the catlytic domian of endoglucanaseⅠfrom Trichoderma reesei. Journal of Molecular Biology , 1997, 272:383-397
    142.Knaust R K C, Nordlund P. Screening for soluble expression of recombinant proteins in a 962well format. Analytical Biochemistry, 2001, 297:79-85
    143.Knecht W, Munch-Petersen B, Piskur J. Identification of residues involved in the specificity and regulation of the highly efficient multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster. Journal of Molecular Biology , 2000, 301:827-837
    144.Knowles J, Lehtovaara P, Teeri T T. Trends in Biotechnol. 1987, 5:255-261
    145.Kong X D, Liu Y M, Zhang J, et al.. Directed evolution ofαaspartyl dipeptidase from Salmonella typhimurium. Biochem Biophys Res Commun, 2001, 288:137-142
    146.Kotake T, Kaneko S, Kubomoto A, et al.. Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-beta-galactanase gene. Biochem, 2004, 377:749-755
    147.Kraulis P J, Jones T A. Determination of three-dimensional protein structures from nuclear magnetic resonance data using fragments of known structures. Proteins, 1987, 2: 188-201
    148.Kwon I, Ekino K, Oka T, et al.. Effects of amino acid alterations on the transglycosy- lation reaction of endoglucanase I from Trichoderma viride HK-75. Biosci Biotechnol Biochem, 2002, 66:110-116
    149.Lanio T, Jeltsch A, Pingoud A. Towards the design of rare cutting restriction endonucleases:using directed wvolution to generate variants of Eco RⅤdiffering in their substrate specificity by two orders of magnitude. J Mol Biol, 1998, 283:59-69
    150.LaVallie E R, McCoy J M. Gene fusion expression systems in Escherichia coli. Current Opinion of Biotechnology, 1995, 6:501-506
    151.Lebbink JH, Kaper T, Bron P, et al.. Improving lowtemperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution. Biochemistry, 2000, 39:3656-3665
    152.Lee R L, Paul J W, Willem H, et al.. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 2002, 9:507-511
    153.Lee S J, Kang H Y, Lee Y H. High-throughput screening methods for selecting L-threonine aldolases with improved activity. Journal of Molecular Catalysis (B), 2003, 26:265-272
    154.Lemos M A, Teixieira J A, Domin gues M R et al. . The enhancement of the cellulolytic activity of cellobiohydrolaseⅠand endohlucanase by the addition of cellulose binding domains derived from Trichoderma reesei Enzyme and Microbial Technology, 2003, 32:35-40
    155.Leung D W, Chen E, Goeddel D V. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique, 1989, 1:11-15
    156.Levy I, Shoseyov O. Cellulose-binding domains biotechnological applications. Biote- chnol Adv., 2002, 20:191-213
    157.Liebl W, Ruffle P, Bronnenmeier K, et al.. Analysis of a Thermotoga maritima DNA fragment encoding two similar thermostable cellulases, CelA and Ce1B, and characteri-zation of the recombinant enzymes. Microbiology, 1996, 142:2533-420
    158.Lin H, Tao H, Cornish VW. Directed evolution of a glycosynthase via chemical complementation. J. Am. Chem. Soc., 2004;126:15051-15059
    159.Linder M, Nevanen T, Teeri T T. Design of a pH-dependent cellulose-binding domain. FEBS Letters ., 1999, 447:13-16
    160.Linder M, Teere T T. The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proceedings of the National Academy of Sciences of the USA, 1996, 93: 12251-12255
    161.Linder M, Teeri T T. The roles and function of cellulose-binding domains. J Biotechnol, 1997, 57:15-28
    162.Ling Lin, Xin Meng, Pengfu Liu et al.. Improved catalytic efficiency of Endo-β-1, 4-glucanase from Bacillus subtilis BME-15 by directed evolution. Appl Microbiol Biote- chnol, 2009, 82:671-679
    163.Liu G, Tang X, Tian S-L, Xu D and Xing M. Improvement of the celllulolytic activity of Trichoderma reesei endoglucanaseⅣwith an additional catalytic domain. World Journal of Microbiol Biotechnology, 2006, 22:1301-1305
    164.Loo V B, Harald J, Spelberg L. Directed evolution of epoxide hydrolase from Agrobacterium radiobacter toward higher enantios-electivity by Error-prone PCR and DNA Shuffling. Chemistry & Biology, 2004, 11:981-990
    165.Love D R, Fisher R, Bergquist P L. Sequence structure and expression of a clonedβ-glucosidase gene from an extreme thermophile. Mol. Gen. Genet, 1988, 213:84-92
    166.Lynd L R, Weimer P J, Van W H, et al.. Microbial cellulose Utilization: Fundamentals and Biotechnology, Microbiology and Molecular Biology Reviews, 2002, 66:506-577
    167.Macarron R, Beeumen J, Henrissat B, et al.. Identification of an essential Glutamate residure in the active site of endoglucanaseⅢ. FEBS Letters, 1993 , 316:137-140
    168.Marques H, Pala L. Characterisation and application of glycanases secreted by Aspergillus terreus CCMI 498 and Trichoderma viride CCMI 84 for enzymatic deinking of mixed office wastepaper. Journal of Biotechnology , 2003, 100: 209-219
    169.Martin Schülein. Protein engineering of cellulases. Biochimica et Biophysica Acta Rview. 2000, 1543:239-252
    170.Matsuura T, Yomo T, Trakulnaleamsai S, et al.. Nonadditivity of mutational effects on the properties of catalase and its application to efficient directed evolution. Protein Engineering, 1998, 11:789-795
    171.McBeath G, Kast P, Hilvert D. Redesigning enzyme topology by directed evolution. Science, 1998, 279: 958-1961
    172.McCarter J P, Withers S G. Mechanisms of enzymatic glycoside hydrolysis. About Current Opinion in Structural Biology, 1997, 4:885-892
    173.McCarthy JK, Uzelac A, Davis DF, et al.. Improved catalytic efficiency and active site modification of 1, 4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. Journal of Biological Chemistry , 2004, 279:11495-11502
    174.McGavin M, Forsberg C W. Catalytic and substrate-binding domains of endoglucanase 2 from Bacteroides succinogenes. Jaurnal of Bacteriology. 1989, 171:3310-3320
    175.Merja E, Penttila M, Andre L, et al.. Expression of two Trichoderma reesei endogluca- nases in the yeast Saccharomyces cerevisiae. Yeast, 1987, 3: 175-185
    176.Mitsuishi Y, Nitisinprasert S, Saloheimo M, et al.. Site-directe mutagenesis of the putative catalytic residure of Trichoderma reesei. FEBS Letters , 1990 , 275:135-138
    177.Miyazaki K, Arnold F H. Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. Journal Molecular Evolution, 1999, 49:716-720
    178.Mokw S L, Antal M J. Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose. Industrial and Engeneering Chemistry Research, 1992, 31: 94-100
    179.Moloney A P, Mccrae S I, Wood T M, et al.. Isolation and characterization of the 1, 4-β-D glucan hydrolysis of Talarom ycesem ersonii. Biochem J., 1985, 225: 365-372
    180.Moore J C, Jin H M, Kuchner O, et al.. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. Journal of Molecular Biology, 1997, 272: 336-347
    181.Morawski B, Lin Z, Cirino P, et al.. Functional expression of horseradish peroxidase in Saccharomyces cerevisiae and Picha pastoris. Protein Engineering, 2000, 13:377-384
    182.Murashima K, Chen C L, Kosugi A. Heterologous production of Clostridium cellulo- vorans EngB, using protease deficient Bacillus subtilis and preparation of active recombinant cellulosomes. Journal of Bacteriology, 2002, 184 : 76-81
    183.Murashima K, Kosugi A, Doi R H. Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with noncelluloso- mal endoglucanase EngD. Mol. Microbiol, 2002, 45:617- 626
    184.Nakamura A, Fukunmori F, Horinouchi. Construction and characterization of the chimeric enzymes between the Bacillus subtilis cellulase and an alkalophilic Bacillus cellulase. J. Biol. Chem, 1991, 266:1579-1583
    185.Nardini M, Lang D A, Liebeton K, et al.. Crystal structure of pseudomonas aeruginosa lipase in the open conformation The prototype for family II of bacterial lipase. J. Biolchem, 2000, 75:31219-31225
    186.Ness J E, Welch M, Giver L, et al.. DNA shuffing of subgenomic sequences of subtilisin. Nature Biotechnol, 1999, 17:893-896
    187.Nguyen Q A, Tucker M P. Dilute acid /metal salt hydrolysis of lingocellulosics. USA 6423145, 2002
    188.Ozaki K, Sumitomo N, Hayashi Y. Site-directed mutagenesis of the putative active site of endoglucanase K from Bacillus sp. KAM-330. Biochim Biophys. Acta., 1994, 1207: 159-164
    189.Park J S, Hitomi J, Beppu T. Identification of two amino acids contributing the high enzyme activity in the alkaline pH range of an alkaline endoglucanase from a Bacillus sp. Protein Engineering, 1993 , 6 :921-926
    190.Pere J, Siika-Aho M, Buchert J, et al.. Effects of purified Trichoderma reesei cellulases on the fibre properties of kraft pulp. Tappi. J., 1995, 78:71-78
    191.Rabinovich M L, Melnick M S, Bolobova A V. The structure and mechanism of action of cellulolytic enzymes. Biochem (Moscow) , 2002, 67: 850-871
    192.Rabinovich M L, Melinik M S, Bolobova A V. Cellulases from microorganisms. PriklBiokhim Mikrobiol, 2002, 38:355-373
    193.Reese E G, Siu G H, Levision S. The biological degradation of soluble cellulose deriva- tives and its relationship to the mechanism of cellulose hydrolysis. Journal of Bacteriology, 1950, 59: 485-497
    194.Reese E T. Polysaccharase and the hydrolysis of insoluble substrates. Proc Sess, 1976, 6: 9-12
    195.Reinikainen T, Ruohonen L, Nevanen T, et al.. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins.1992, 14: 475-482
    196.Reinikainen T, Teleman O, Teeri TT. Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins. 1995, 22:392-403
    197.Riedel K, Bronnenmeier K. Active-site mutations which change the substrate specificity of the Clostridium ercorarium stcellulase CelZ implications for synergism. European Journal of Endocrinology, 1999, 262: 218-223
    198.Robinson C R, Sauer R T. Optimizing the stability of single chain proteins by linker length and composition mutagenesis. Proceedings of the National Academy of Sciences of the USA, 1998, 95:5929-5934
    199.Rouvinen J, Bergfors T, Teeri T. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science, 1990, 249:380-386
    200.Rowe L A, Melissa L G, Omar B A, et al.. A comparison of directed evolution approaches using theβ-Glucuronidase model system. Journal of Molecular Biology, 2003, 332:851-860
    201.Rubingh D N. Protein engineering from a bioindustrial point of view. Current Opinion in Biotechnology , 1997, 48:417-422
    202.Sakon J, Adney W S, Himmel M E. Crystal structure of thermostable family 5 endocellu- lase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry, 1996, 35:10648-10660
    203.Sakon J, Irwin D, Wilson D B. Structure and mechanism of endo/exocellulase E4 fromThermobifida fusca. Nature Structural & Molecular Biology , 1997, 4:810-818
    204.Saul D J, Wi11iams L C, Love D R et al.. Nucleotide sequence of a gene from Caldocellum saccharolytlcum encoding for exocellulase and endocellulase activity. Nucleic Acids Research 1989, 17:439
    205.Saul D J, Wi11iams L C, Love D R, et al.. CelB a gene coding for a bi-functional cellulase from the extreme thermophile Caldocellum saccharolytlcum. Applied Environ- mental Microbiology. 1990, 56:3117-3124
    206.Schulei M. Protein engineering of cellulases. Biochim Biophys Acta, 2000, 1543:293- 252
    207.Schulein M. Kinetics of fungal cellulases biochem. Biochemical Society Transactions, 1998, 26:164-167
    208.Shao Z, Zhao H, Arnold F H. Random-priming in vitro recombination:an effective tool for directed evolution.Nucleic Acids Research , 1998, 26:681-683
    209.Singh A, Hayash i K. Microbial cellulase:protein architecture, molecular properties and biosynthesis. Advances in Applied Microbiology, 1995, 40:1-44
    210.Song J K, Rhee J S. Enhancement of stability and activity of phospholipase A1 in organic solvents by directed evolution. Biochim Biophys Acta, 2001, 547:370-378
    211.Stahlberg J, Johansson G, Pettersson. A New Model for Enzymatic Hydrolysis of Cellulose Based on the Two-Domain Structure of Cellobiohydrolase IG. Biotechnol. 1991, 9:286-290
    212.Stahlberg J, Divne C, Koivula A. Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolaseⅠfrom Trichoderma reesei. Journal of Molecular Biology, 1996, 264:337-349
    213.Stemmer W P C. Rapid evolution of a protein in vitro by DNA shuffling. Nature, 1994, 370:389-391
    214.Sun Y, Cheng J Y. Hydrolysis of lignocellulosic mate-rialsfor ethanol production:a review. Bioresource Technol, 2002, 83:1-11
    215.Suzuki T, Yasugi M, Arisaka F, et al.. Adaptation of a thermophilic enzyme 3-isopropyl- malate dehydrogenase to low temperatures. Protein Engineering, 2001, 14:85-91
    216.Takashima S, Nakamura A. Molecular cloning and expression of the novel fungal beta- glucosidase genes from Humicola grisea and Trichoderma reesei. Biochem (Tokyo), 1999, 125:728-736
    217.T' eo V E, Saul D J, Bergqui st P L. CelA another gene encoding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Applied Microbiology and Biotechnology. 1995, 43:291-296
    218.Teeri T T. Crystalline cellulose degradation:new insight into the function of cellobio- hydrolases. Trends Biotechnol, 1997, 15:160-167
    219.Ting Wan, Xiangmei Liu. Directed evolution for engineering PH Profile of endogluean- aseⅢfrom Trichoderma reesei. Biomolecular Engineering. 2005, 22:89-94
    220.Tomme P, Warren R A, Gilkes N R. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol, 1995, 37:1-81
    221.Tomme P, Van Tilbeurgh H, Pettersson G, et al.. Studies of the cellulolytic system of Trichoderma reesei QM9414: Analysis of domain function in two cellobiohydrolases by limited proteolysis. European Journal. 1988, 170:575?581
    222.Tomme P, Warren R A J, Miller R C, et al.. Cellulose-binding domains:Classification and properties. ACS Symp Ser, 1995, 618: l43-163
    223.Trimbur D E, Warren R A, Withers S G. Region-directed mutagenesis of residues surrounding the active site nucleophile in beta-glucosidase from Agrobacterium faecalis. Journal of Biological Chemistry ., 1992, 267:10248-10251
    224.Tsuyoshi Shirai, Hirokazu Ishida. Crystal Strueture of Alkaline Cellulase K: Insight into the Alkaline AdaPtation of an Industrial Enzyme. Journal of Molecular Biology, 2001, 310:1079-1087
    225.Tull D, Withers S G, Gilkes N R, et al.. Glutamic acid 274 is thenucleophile in the active site of a retaining exoglucanase. Journal of Biological Chemistry.1991,266:15621- 15625
    226.Varrot A, Hastrup S, Davies G J. Crystal structure of the catalytic core domain of the family 6 cellobiohydrolaseⅡ. Journal of Biological Chemistry, 1999, 337:297-304
    227.Wang C C, Tsou C L. Protein disulfide isomerase is both an enzyme and a chaperone. FASEB J, 1993, 7:1515-1517
    228.Wang Q, Tull D, Meinke A, et al.. Glu280 is the nucleophile in the active site of Clostridium thermocellum CelC, a family A endo-beta-1, 4-glucanase. Journal of Biological Chemistry, 1993, 268:14096 -140102
    229.Wang Q P, Tull D, Meinke A. Glu280 is the nucleophile in the active site of Clostridium thermocellum CelC. Journal of Biological Chemistry, 1993, 268:14096-14102
    230.Wang T, Liu X, Yu Q, et al.. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomolecular Engineering, 2005, 22:89- 94
    231.Wang W K, Kruus K, Wu J H. Cloning and DNA sequence of the gene coding for Clostri-dium thermocellum cellulase Ss (CeIS) a major cellulosome component. The Journal of Bacteriology, 1993, 175:1293-1302
    232.Washington S L, Yoon M S, Chagovetz A M, et al.. A genetic system to identify DNA polymerase beta mutator mutants. Proceedings of the National Academy of Sciences of the USA, 1997, 94:1321-1326
    233.Wey T T, Hseu T H, Huang L. Molecular cloning and sequence analysis of the cellobiohy- drolaseⅠgene from Trichoderma koningii G-39. Curr Microbiol, 1994, 28: 31-39
    234.Wintrode P L, Miyazaki K, Amold F H. Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution. Journal of Biological Chemistry,2000,275:31635- 31640
    235.Wolfgang D E, Wilson D B. Mechanistic studies of active site mutants of Thermomo- nospora fusca endocellulase E2. Biochemistry, 1999, 3:9746-9751
    236.Wood T M, Bhat K M. Methods for measuring cellulase activities. Methods in Enzymo- logy, 1988, 160:87-112
    237.Wood T M, Mccrae S I. Synergism between enzyme involved in the solubilization of native cellulose. Advances in Chemistry Ser., 1979, 181:181-209
    238.Wood T M. Properties and models of action of cellulase. Biotechnology & Bioengineering Symposium, 1975, 5:111-137
    239.Wright J D. 7th International Conference on Biotechnology in the Pulp and Paper Industry. Vancouver: Pubication Clerk, 1998, A5-A189
    240.Wwegner E H. Biochemical conversions by yeast fermentation at high-cell dendities,USA. Patent, 1983, 4414329
    241.Wymer N, Buchana L V, Henderson D, et al.. Directed evolutionof a new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli. Structure, 2001, 9:1-10
    242.Zhang Y H.Himmel M E.Mielenz J R. Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 2006, 24: 452- 481
    243.Yano T, Kagamiyama H. Directed evolution of ampicillin-resistant activity from a functionally unrelated DNA fragment: A labratory model of molecular evolution. Proceedings of the National Academy of Sciences of the USA. 2001, 98: 903-907
    244.Yano T, Oue S, Kagamiyama H. Directed evolution of an aspartate aminotransferase with new substrate specificities. Proceedings of the National Academy of Sciences of the USA, 1998, 95:5511-5515
    245.Yoon S J, Lee J C, Kang J O, et al.. Anti-tumor effect associated with down-regulation of MHC class 1 antigen after co-transfection of GM-CSF and IFN-gamma genesin CT26 tumor cells. Anticancer Research, 2001, 21:4031-4039
    246.Zhang J H, Dawes G, Stemmer W P C. Directed evolution of a fucosidase from a galacto- sidase by DNA shuffling and screening. Proceedings of the National Academy of Sciences of the USA, 1997, 94:4504-4509
    247.Zhang Y H, Lynd L R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng, 2004, 88:797-824
    248.Zhao H, Giver L, Shao Z, et al.. Molecular evolution by staggered extension process ( StEP) in vitro recombination. Nature Biotechnology, 1998, 16:258-261

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700