用户名: 密码: 验证码:
拟南芥ICE1通过调节赤霉素合成调控植物生长发育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
适度低温是一些高等植物正常的生长发育所必需的,如低温层积被广泛用于提高拟南芥等种子的萌发率和一致性。赤霉素(GA)是调控种子萌发、茎和下胚轴伸长、花发育和开花等诸多生命过程的重要激素,在拟南芥、榛子和苹果中的研究表明,低温层积能提高种子内源GA含量。所以GA和低温两条信号通路是相通的,但是,人们对整合两条通路的共同节点知之甚少。ICE1是拟南芥低温信号转导通路中的一个关键转录因子,它响应低温信号,并通过调控CBFs转录因子激活COR(cold-regulated)基因的表达,从而调控植物的低温响应。本文着重研究ICE1基因在植物发育方面的功能,特别是它通过调节GA合成调控拟南芥的植株生长、开花、育性等。主要研究结果如下:
     1. ICE1抑制拟南芥的植株生长
     成年野生型拟南芥(Col-0)植株的高度为30 cm左右,而突变体ice1-t高达45 cm,在ICE1基因过表达株系中,强表型植株的高度只有10 cm左右。这说明,ICE1能够抑制拟南芥的植株生长,降低株高。
     2. ICE1通过调控GAMYB基因影响花粉育性
     在ice1-t突变体的主花序轴上,下端有10个左右的果荚不能结种子。与野生型相比,突变体对应部位的花药开裂较晚,花粉粒颜色异常。在萌发培养基上的离体萌发实验表明,野生型花粉的萌发率高达50%,而ice1-t花粉只有10%。人工授粉后的活体实验表明,ice1-t花粉在野生型和突变体的柱头都不能正常萌发,而用野生型花粉授粉可以使突变体结果荚。上述结果表明,雄性不育导致了突变体的花序基部不育。
     鉴于GAMYB-like基因影响花粉育性,我们分析了该类基因在野生型和突变体中的表达模式,半定量RT-PCR和Northern杂交实验结果表明,与野生型相比,突变体花中的AtMYB33、AtMYB65、AtMYB101和AtMYB120基因表达上调。
     3. ICE1通过调控开花相关基因影响开花时间
     短日照条件下,ice1-t突变体的开花时间比野生型早。进而我们分析了开花诱导相关基因的表达模式。半定量RT-PCR结果显示,突变体中促进拟南芥开花的基因LFY、CO和FT表达上调,而抑制开花的基因FLC表达下调。
     4. ICE1通过调控LECs基因影响种子发育
     ice1-t的成熟种子外表干瘪,显微观察发现,ice1-t突变体能发育出正常的球形胚、心形胚和鱼雷胚,但随后的发育受阻,不能形成正常大小和形状的弯子叶胚,导致成熟胚不能充满种皮,造成种子干瘪。
     鉴于LEC1、LEC2和FUS3等是胚胎发育的重要调控基因,我们对这些基因的表达模式进行了分析,实时定量RT-PCR结果显示,LEC1、LEC2和FUS3在ice1-t果荚中的表达升高,其中FUS3最明显。
     5. ICE1通过调控GA合成代谢相关基因影响内源GA水平
     鉴于突变体的各种表型,我们怀疑ICE1能够调控GA合成或代谢,因此对GA合成代谢关键酶基因的表达模式进行了分析。实时定量RT-PCR结果显示,在ice1-t突变体中,GA合成相关基因AtGA3ox1、AtGA3ox2、AtGA3ox3、AtGA3ox4和AtGA20ox1的表达水平明显升高,而GA分解代谢基因AtGA2ox2表达水平则下降。激素测定也表明,突变体的内源GA含量升高,表明ICE1基因抑制拟南芥的内源GA合成。
     6. ICE1蛋白与AtGA3ox4基因启动子的顺式元件结合
     染色质免疫共沉淀(CHIP)结果表明,在候选基因AtGA3ox1、AtGA3ox2、AtGA3ox3、AtGA3ox4、AtGA20ox1和AtGA2ox2中,ICE1蛋白能够与GA合成基因AtGA3ox4的启动子结合,特异结合的E-box元件为-206 CATTTG -200。
Appropriate low temperature favorably contributes to plant growth and development, for example, cold stratification is widely applied to promote germination both in frequency and synchronization. Phytohormone gibberellins (GAs) play crucial roles in seed germination, stem and hypocotyl elongation, floral development and flowering time. Cold stratification can increase the endogenous GA contents in Arabidopsis, hazel and apple seeds. Therefore, cold and GA signal pathway should be integrated to regulate plant development in a crosspoint which is unclear as yet. ICE1 is a key transcription factor in cold signaling pathway of Arabidopsis. It controls the response of plant to cold signal by initiating CBFs transcription factors and COR (cold-regulated) genes in turn. In this study, the functions of ICE1 in plant growth and development were observed and investigated with emphasis on the regulation of ICE1 to plant growth, flowering and fertility by tuning GA synthesis. The main results are shown as follows:
     1. ICE1 represses plant growth in Arabidopsis
     Mature WT (Col-0) plant was about 30 cm in height, while ice1-t mutant up to 45 cm. Arabidopsis plants overexpressing ICE1 gene exhibited a dwarf phenotype. The plant height was only 10 cm. So, ICE1 could suppress plant growth in Arabidopsis.
     2. ICE1 controls male sterility by tuning GAMYB-like genes
     The first ten siliques failed to set seed in the base of florescence of ice1-t mutant. The anthers of corresponding flowers dehisced later in mutant than WT. In addition, mutant pollens exhibited abnormal in color relative to WT. Germination in vitro on medium demonstrated that 50% pollens were able to germinate in WT while only 10% in mutant. Furthmore, germination in vivo on pistils artificially pollinated showed that mutant pollens failed to germinate on both WT and mutant pistils, while artificial pollination with WT pollen lead to success in setting seeds in mutant siliques. Those findings indicate that male sterility causes the failure to set seeds in the basal flowers of mutant.
     Considering the regulation of GAMYB-like genes to pollen development, gene expression patterns were investigated in mutant and WT with RT-PCR and RNA-blot assay. The results showed that the transcript level of four GAMYB-like genes, i.e. AtMYB33, AtMYB65, AtMYB101 and AtMYB120, were up-regulated in ice1-t mutant relative to WT.
     3. ICE1 controls flowering time by modulating the relative genes
     ice1-t mutant flowered earlier than WT under short day (SD) conditions. Subsequently, the expression patterns of key genes involved in floral initiation were examined with semi-quantitative RT-PCR. The result indicated that the inducing genes LFY, CO and FT for floral initiation were up-regulated in ice1-t mutant, while the suppressor gene FLC was down-regulated.
     4. ICE1 controls seeds development by tuning LECs genes
     The mature seeds of ice1-t were scrawny and shriveled in seed skin. Microsopic observation found that ice1-t produced normal globular, heart and torpedo embryo. However, the embryo development of mutant was inhibited in the following stages and failed to form embryo with curled cotyledon. As a result, the embryos were smaller in mutant than WT, which made the mutant seed looking scrawny.
     Because LEAFY COTYLEDON (LEC) genes, i.e. LEC1, LEC2 and FUS3, play key roles in controlling embryo development, we detected their expression patterns. Real-time RT-PCR showed that all three genes, especially FUS3, were up-regulated in the siliques of ice1-t mutant relative to WT.
     5. ICE1 controls endogenous GA level by regulating the expression of genes involved in GA synthesis and metabolism
     Based on those phenotypes of ice1-t mutant, it was predicted that ICE1 can regulate GA synthesis or metabolism. Real-time RT-PCRs were carried out to verify the hypothesis. It was found that GA synthesis-related genes AtGA3ox1, AtGA3ox2, AtGA3ox3, AtGA3ox4 and AtGA20ox1 were up-regulated in ice1-t mutant relative to WT, while GA degradation-related gene AtGA2ox2 was down-regulated. In fact, it was also found that GA level was much higher in mutant than WT. So, ICE1 repress the synthesis of endogenous GA in Arabidopsis.
     6. ICE1 protein binds to the promoter of AtGA3ox4
     Chromatin immunoprecitation (CHIP) showed that ICE1 protein could bind to the promoter of GA biosynthetic gene AtGA3ox4 among 6 candidate genes, i.e. AtGA3ox1, AtGA3ox2, AtGA3ox3, AtGA3ox4, AtGA20ox1 and AtGA2ox2. The binding E-box element is -206 CATTTG -200.
引文
王勇,陈克平,姚勤bHLH转录因子家族研究进展。遗传,2008, 30(7): 821-830
    曾群,赵仲华,赵淑清植物开花时间调控的信号途径。遗传,2006, 28(8): 1031?1036
    Achard P., Baghour M., Chapple A., Hedden P., Van Der Straeten D., Genschik P., Moritz T. and Harberd N.P. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA, 2007 (104): 6484-6489.
    Achard P., Cheng H., De Grauwe L., Decat J., Schoutteten H., Moritz T., Van Der Straeten D., Peng J. and Harberd N.P. Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006 (311): 91-94.
    Achard P., Herr A., Baulcombe D.C. and Harberd N.P. Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004 (131): 3357-3365.
    Achard P., Vriezen W.H., Van Der Straeten D. and Harberd N.P. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell, 2003 (15): 2816-2825.
    Agarwal P.K., Agarwal P., Reddy M.K. and Sopory S.K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep, 2006 (25): 1263-1274.
    Alabadi D., Gil J., Blazquez M.A. and Garcia-Martinez J.L. Gibberellins repress photomorphogenesis in darkness. Plant Physiol, 2004 (134): 1050-1057.
    Atchley W.R. and Fitch W.M. A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA, 1997 (94): 5172-5176.
    Avila J., Nieto C., Canas L., Benito M.J. and Paz-Ares J. Petunia hybrida genes related to the maize regulatory C1 gene and to animal MYB proto-oncogenes. Plant J, 1993 (3): 553-562.
    Aya K., Ueguchi-Tanaka M., Kondo M., Hamada K., Yano K., Nishimura M. and Matsuoka M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell, 2009: tpc.108.062935.
    Bailey P.C., Martin C., Toledo-Ortiz G., Quail P.H., Huq E., Heim M.A., Jakoby M., Werber M. and Weisshaar B. Update on the basic helix-loop-helix transcription factor genefamily in Arabidopsis thaliana. Plant Cell, 2003 (15): 2497-2502.
    Bouquin T., Mattsson O., Naested H., Foster R. and Mundy J. The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J Cell Sci, 2003 (116): 791-801.
    Brocard-Gifford I.M., Lynch T.J. and Finkelstein R.R. Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling. Plant Physiol, 2003 (131): 78-92.
    Browse J. and Xin Z. Temperature sensing and cold acclimation. Curr Opin Plant Biol, 2001 (4): 241-246.
    Busov V.B., Meilan R., Pearce D.W., Ma C., Rood S.B. and Strauss S.H. Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol, 2003 (132): 1283-1291.
    Cedroni M.L., Cronn R.C., Adams K.L., Wilkins T.A. and Wendel J.F. Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Mol Biol, 2003 (51): 313-325.
    Cercós M., Gomez-Cadenas A. and Ho T.H. Hormonal regulation of a cysteine proteinase gene, EPB-1, in barley aleurone layers: cis- and trans-acting elements involved in the co-ordinated gene expression regulated by gibberellins and abscisic acid. Plant J, 1999 (19): 107-118.
    Chandler P.M., Marion-Poll A., Ellis M. and Gubler F. Mutants at the Slender1 locus of barley cv himalaya. molecular and physiological characterization. Plant Physiol, 2002 (129): 181-190.
    Chen H., Banerjee A.K. and Hannapel D.J. The tandem complex of BEL and KNOX partners is required for transcriptional repression of GA20ox1. Plant J, 2004 (38): 276-284.
    Chen H., Rosin F.M., Prat S. and Hannapel D.J. Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiol, 2003 (132): 1391-1404.
    Chen L., Nishizawa T., Higashitani A., Suge H., Wakeui H., Takeda K. and Takahashi H. A variety of wheat tolerant to deep-seeding conditions: Elongation of the first internode depends on the response to gibberellin and potassium. Plant Cell Environ, 2001 (24):469-476.
    Chen Y.C. and McCormick S. sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development, 1996 (122): 3243-3253.
    Cheng H., Qin L., Lee S., Fu X., Richards D.E., Cao D., Luo D., Harberd N.P. and Peng J. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development, 2004 (131): 1055-1064.
    Chhun T., Aya K., Asano K., Yamamoto E., Morinaka Y., Watanabe M., Kitano H., Ashikari M., Matsuoka M. and Ueguchi-Tanaka M. Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell, 2007 (19): 3876-3888.
    Chien J.C. and Sussex I.M. Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L.) Heynh. Plant Physiol, 1996 (111): 1321-1328.
    Chinnusamy V., Ohta M., Kanrar S., Lee B.H., Hong X., Agarwal M. and Zhu J.K. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev, 2003 (17): 1043-1054.
    Clough S.J. and Bent A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998 (16): 735-743.
    Colombo N, Favret EA. The effect of gibberellic acid on male fertility in bread wheat. Euphytica, 1996 (91): 297-303.
    Cone J.W., and Spruit C.J.P. Imbibition conditions and seed dormancy of Arabidopsis thaliana. Physiol Plant, 1983 (59): 416–420.
    Corbesier L. and Coupland G. The quest for florigen: a review of recent progress. J Exp Bot, 2006 (57): 3395-3403.
    Curaba J., Moritz T., Blervaque R., Parcy F., Raz V., Herzog M. and Vachon G. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol, 2004 (136): 3660-3669.
    Davidson S.E., Smith J.J., Helliwell C.A., Poole A.T. and Reid J.B. The pea gene LH encodes ent-kaurene oxidase. Plant Physiol, 2004 (134): 1123-1134.
    Dean Rider S., Jr., Henderson J.T., Jerome R.E., Edenberg H.J., Romero-Severson J. and Ogas J. Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J, 2003 (35): 33-43.
    Derkx M.P.M., Vermeer E., and Karssen C.M. Gibberellins in seeds of Arabidopsis thaliana: Biological activities, identification and effects of light and chilling on endogenous levels. Plant Growth Regul, 1994 (15): 223-234.
    Di Laurenzio L., Wysocka-Diller J., Malamy J.E., Pysh L., Helariutta Y., Freshour G., Hahn M.G., Feldmann K.A. and Benfey P.N. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell, 1996 (86): 423-433.
    Diaz I., Vicente-Carbajosa J., Abraham Z., Martinez M., Isabel-La Moneda I. and Carbonero P. The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J, 2002 (29): 453-464.
    Ferré-D'AmaréA.R., Pognonec P., Roeder R.G. and Burley S.K. Structure and function of the b/HLH/Z domain of USF. EMBO J, 1994 (13): 180-189.
    Finkelstein R.R. and Lynch T.J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000 (12): 599-609.
    Fleet C.M. and Sun T.P. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol, 2005 (8): 77-85.
    Flood RG, Halloran GM. The nature and duration of gene action for vernalization response in wheat. Ann Bot (Lond), 1984 (53): 363–368.
    Folta K.M., Pontin M.A., Karlin-Neumann G., Bottini R. and Spalding E.P. Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J, 2003 (36): 203-214.
    Fu X. and Harberd N.P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 2003 (421): 740-743.
    Fukazawa J., Sakai T., Ishida S., Yamaguchi I., Kamiya Y. and Takahashi Y. Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controllingthe level of gibberellins. Plant Cell, 2000 (12): 901-915.
    Gaj M.D., Zhang S., Harada J.J. and Lemaux P.G. Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta, 2005 (222): 977-988.
    Gan Y., Yu H., Peng J. and Broun P. Genetic and molecular regulation by DELLA proteins of trichome development in Arabidopsis. Plant Physiol, 2007 (145): 1031-1042.
    Gazzarrini S., Tsuchiya Y., Lumba S., Okamoto M. and McCourt P. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell, 2004 (7): 373-385.
    Gilmour S.J., Fowler S.G. and Thomashow M.F. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol, 2004 (54): 767-781.
    Gilmour S.J., Sebolt A.M., Salazar M.P., Everard J.D. and Thomashow M.F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000 (124): 1854-1865.
    Gilmour S.J., Zarka D.G., Stockinger E.J., Salazar M.P., Houghton J.M. and Thomashow M.F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998 (16): 433-442.
    Giraudat J., Hauge B.M., Valon C., Smalle J., Parcy F. and Goodman H.M. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell, 1992 (4): 1251-1261.
    Gocal G.F., Poole A.T., Gubler F., Watts R.J., Blundell C. and King R.W. Long-day up-regulation of a GAMYB gene during Lolium temulentum inflorescence formation. Plant Physiol, 1999 (119): 1271-1278.
    Gong Z., Lee H., Xiong L., Jagendorf A., Stevenson B. and Zhu J.-K. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci USA, 2002 (99): 11507-11512.
    Goto N, Pharris RP. Role of gibberellins in the development of floral organs of the gibberellin-deficient mutant ga1-1 of Arabidopsis thaliana. Can J Bot, 1999 (77): 944-954.
    Grandori C., Cowley S.M., James L.P. and Eisenman R.N. The Myc/Max/Mad network andthe transcriptional control of cell behavior. Annu Rev Cell Dev Biol, 2000 (16): 653-699.
    Griffiths J., Murase K., Rieu I., Zentella R., Zhang Z.L., Powers S.J., Gong F., Phillips A.L., Hedden P., Sun T.P. and Thomas S.G. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006 (18): 3399-3414.
    Grotewold E., Drummond B.J., Bowen B. and Peterson T. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell, 1994 (76): 543-553.
    Gubler F., Chandler P.M., White R.G., Llewellyn D.J. and Jacobsen J.V. Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiol, 2002 (129): 191-200.
    Gubler F. and Jacobsen J.V. Gibberellin-responsive elements in the promoter of a barley high-pIα-amylase gene. Plant Cell, 1992 (4): 1435-1441.
    Gubler F., Kalla R., Roberts J.K. and Jacobsen J.V. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pIα-amylase gene promoter. Plant Cell, 1995 (7): 1879-1891.
    Gubler F., Raventos D., Keys M., Watts R., Mundy J. and Jacobsen J.V. Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant J, 1999 (17): 1-9.
    Han M.H., Goud S., Song L. and Fedoroff N. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA, 2004 (101): 1093-1098.
    Harada J.J. Role of Arabidopsis LEAFY COTYLEDON genes in seed development. Journal of Plant Physiology, 2001 (158): 405-409.
    Hay A., Barkoulas M. and Tsiantis M. PINning down the connections: transcription factors and hormones in leaf morphogenesis. Curr Opin Plant Biol, 2004 (7): 575-581.
    Hay A., Kaur H., Phillips A., Hedden P., Hake S. and Tsiantis M. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol, 2002 (12): 1557-1565.
    Hedden P. and Phillips A.L. Gibberellin metabolism: new insights revealed by the genes.Trends Plant Sci, 2000 (5): 523-530.
    Hedden P., Phillips A.L., Rojas M.C., Carrera E. and Tudzynski B. Gibberellin biosynthesis in plants and fungi: A case of convergent evolution? J Plant Growth Regul, 2001 (20): 319-331.
    Heim M.A., Jakoby M., Werber M., Martin C., Weisshaar B. and Bailey P.C. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol, 2003 (20): 735-747.
    Helliwell C.A., Chandler P.M., Poole A., Dennis E.S. and Peacock W.J. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA, 2001 (98): 2065-2070.
    Henderson J.T., Li H.C., Rider S.D., Mordhorst A.P., Romero-Severson J., Cheng J.C., Robey J., Sung Z.R., de Vries S.C. and Ogas J. PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol, 2004 (134): 995-1005.
    Hilhorst H.W. and Karssen C.M. dual effect of light on the gibberellin- and nitrate-stimulated seed germination of Sisymbrium officinale and Arabidopsis thaliana. Plant Physiol, 1988 (86): 591-597.
    Hofmann N.R. They all scream for ICE1/SCRM2: core regulatory units in stomatal development. Plant Cell, 2008 (20): 1732.
    Hsieh T.H., Lee J.T., Yang P.T., Chiu L.H., Charng Y.Y., Wang Y.C. and Chan M.T. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol, 2002 (129): 1086-1094.
    Hu J., Mitchum M.G., Barnaby N., Ayele B.T., Ogawa M., Nam E., Lai W.C., Hanada A., Alonso J.M., Ecker J.R., Swain S.M., Yamaguchi S., Kamiya Y. and Sun T.P. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell, 2008 (20): 320-336.
    Hughes M.A. and Dunn M.A. The molecular biology of plant acclimation to low temperature. J Exp Bot, 1996 (47): 291-305.
    Ikeda-Iwai M., Satoh S. and Kamada H. Establishment of a reproducible tissue culture systemfor the induction of Arabidopsis somatic embryos. J Exp Bot, 2002 (53): 1575-1580.
    Ikeda A., Ueguchi-Tanaka M., Sonoda Y., Kitano H., Koshioka M., Futsuhara Y., Matsuoka M. and Yamaguchi J. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell, 2001 (13): 999-1010.
    Ishida S., Fukazawa J., Yuasa T. and Takahashi Y. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. Plant Cell, 2004 (16): 2641-2651.
    Ishitani M., Xiong L., Lee H., Stevenson B. and Zhu J.K. HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell, 1998 (10): 1151-1161.
    Ishitani M., Xiong L., Stevenson B. and Zhu J.K. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell, 1997 (9): 1935-1949.
    Jacobsen S.E. and Olszewski N.E. Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiol, 1991 (97): 409-414.
    Jaglo-Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O. and Thomashow M.F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998 (280): 104-106.
    Jefferson R.A. The GUS reporter gene system. Nature, 1989 (342): 837-838.
    Jiang C. and Fu X. GA action: turning on de-DELLA repressing signaling. Curr Opin Plant Biol, 2007 (10): 461-465.
    Jiang C., Gu J., Chopra S., Gu X. and Peterson T. Ordered origin of the typical two- and three-repeat MYB genes. Gene, 2004 (326): 13-22.
    Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol, 1999 (41):577-585.
    Kamiya Y. and Garcia-Martinez J.L. Regulation of gibberellin biosynthesis by light. Curr Opin Plant Biol, 1999 (2): 398-403.
    Kanaoka M.M., Pillitteri L.J., Fujii H., Yoshida Y., Bogenschutz N.L., Takabayashi J., ZhuJ.K. and Torii K.U. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell, 2008 (20): 1775-1785.
    Kaneko M., Inukai Y., Ueguchi-Tanaka M., Itoh H., Izawa T., Kobayashi Y., Hattori T., Miyao A., Hirochika H., Ashikari M. and Matsuoka M. Loss-of-function mutations of the rice GAMYB gene impairα-amylase expression in aleurone and flower development. Plant Cell, 2004 (16): 33-44.
    Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K. and Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol, 1999 (17): 287-291.
    Klempnauer K.H., Gonda T.J. and Bishop J.M. Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene. Cell, 1982 (31): 453-463.
    Knight H., Veale E.L., Warren G.J. and Knight M.R. The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell, 1999 (11): 875-886.
    Koes R., Verweij W. and Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci, 2005 (10): 236-242.
    Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol, 2004 (55): 521-535.
    Kroj T., Savino G., Valon C., Giraudat J. and Parcy F. Regulation of storage protein gene expression in Arabidopsis. Development, 2003 (130): 6065-6073.
    Lanahan M.B., Ho T.H., Rogers S.W. and Rogers J.C. A gibberellin response complex in cerealα-amylase gene promoters. Plant Cell, 1992 (4): 203-211.
    Lange T. Molecular biology of gibberellin synthesis. Planta, 1998 (204): 409-419.
    Ledent V. and Vervoort M. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res, 2001 (11): 754-770.
    Lee B.H., Henderson D.A. and Zhu J.K. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell, 2005 (17): 3155-3175.
    Lee H., Fischer R.L., Goldberg R.B. and Harada J.J. Arabidopsis LEAFY COTYLEDON 1represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc Natl Acad Sci USA, 2003 (100): 2152-2156.
    Lee S., Cheng H., King K.E., Wang W., He Y., Hussain A., Lo J., Harberd N.P. and Peng J. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev, 2002 (16): 646-658.
    Lester D.R., Ross J.J., Smith J.J., Elliott R.C. and Reid J.B. Gibberellin 2-oxidation and the SLN gene of Pisum sativum. Plant J, 1999 (19): 65-73.
    Li H., Lin Y., Heath R.M., Zhu M.X. and Yang Z. Control of pollen tube tip growth by a rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell, 1999 (11): 1731-1742.
    Littlewood T., and Evan G.I.. Helix-Loop-Helix Transcription Factors, 3rd ed. 1998 (New York: Oxford University Press).
    Liu C.M. and Meinke D.W. The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J, 1998 (16): 21-31.
    Liu L., White M.J. and MacRae T.H. Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem, 1999 (262): 247-257.
    Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K. and Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998 (10): 1391-1406.
    Livak K.J. and Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001 (25): 402-408.
    Lotan T., Ohto M., Yee K.M., West M.A., Lo R., Kwong R.W., Yamagishi K., Fischer R.L., Goldberg R.B. and Harada J.J. Arabidopsis LEAFY COTYLEDON 1 is sufficient to induce embryo development in vegetative cells. Cell, 1998 (93): 1195-1205.
    Lovegrove A. and Hooley R. Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci, 2000 (5): 102-110.
    Luerssen H., Kirik V., Herrmann P. and Misera S. FUSCA3 encodes a protein with aconserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J, 1998 (15): 755-764.
    Ma P.C., Rould M.A., Weintraub H. and Pabo C.O. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell, 1994 (77): 451-459.
    MacAlister C.A., Ohashi-Ito K. and Bergmann D.C. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature, 2007 (445): 537-540.
    Magome H., Yamaguchi S., Hanada A., Kamiya Y. and Oda K. dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J, 2004 (37): 720-729.
    Magome H., Yamaguchi S., Hanada A., Kamiya Y. and Oda K. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J, 2008 (56): 613-626.
    Massari M.E., and Murre C. Helix-loop-helix proteins: Regulators of transcription in eukaryotic organisms. Mol. Cell. Biol, 2000 (20): 429–440.
    Meier C., Bouquin T., Nielsen M.E., Raventos D., Mattsson O., Rocher A., Schomburg F., Amasino R.M. and Mundy J. Gibberellin response mutants identified by luciferase imaging. Plant J, 2001 (25): 509-519.
    Meshi T. and Iwabuchi M. Plant transcription factors. Plant Cell Physiol, 1995 (36): 1405-1420.
    Millar A.A. and Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell, 2005 (17): 705-721.
    Minami A., Nagao M., Ikegami K., Koshiba T., Arakawa K., Fujikawa S. and Takezawa D. Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta, 2005 (220): 414-423.
    Mitchum M.G., Yamaguchi S., Hanada A., Kuwahara A., Yoshioka Y., Kato T., Tabata S.,Kamiya Y. and Sun T.P. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J, 2006 (45): 804-818.
    Miura K., Jin J.B., Lee J., Yoo C.Y., Stirm V., Miura T., Ashworth E.N., Bressan R.A., Yun D.J. and Hasegawa P.M. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell, 2007 (19): 1403-1414.
    Mohapatra S.S., Wolfraim L., Poole R.J. and Dhindsa R.S. Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa. Plant Physiol, 1989 (89): 375-380.
    Monke G., Altschmied L., Tewes A., Reidt W., Mock H.P., Baumlein H. and Conrad U. Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA. Planta, 2004 (219): 158-166.
    Moon J., Suh S.S., Lee H., Choi K.R., Hong C.B., Paek N.C., Kim S.G. and Lee I. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J, 2003 (35): 613-623.
    Mouradov A., Cremer F. and Coupland G. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, 2002 (14 Suppl): S111-130.
    Murray F., Kalla R., Jacobsen J. and Gubler F. A role for HvGAMYB in anther development. Plant J, 2003 (33): 481-491.
    Murre C, McCaw PS, Baltimore D. A new DNA bindingand dimerizing motif in Immunoglobulin enhancer binding, Daugtherless, MyoD, and Myc proteins. Cell, 1989, 56(5):777?783.
    Muschietti J., Dircks L., Vancanneyt G. and McCormick S. LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. Plant J, 1994 (6): 321-338.
    Nair S.K. and Burley S.K. Recognizing DNA in the library. Nature, 2000 (404): 715, 717-718.
    Nakashima K., and Yamaguchi-Shinozaki K. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol. Plant, 2006 (126): 62–71.
    Nei M. Phylogenetic analysis in molecular evolutionary genetics. Annu Rev Genet, 1996 (30): 371-403.
    Ogas J., Kaufmann S., Henderson J. and Somerville C. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA, 1999 (96): 13839-13844.
    Ogawa M., Hanada A., Yamauchi Y., Kuwahara A., Kamiya Y. and Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell, 2003 (15): 1591-1604.
    Oh E., Yamaguchi S., Hu J., Yusuke J., Jung B., Paik I., Lee H.S., Sun T.P., Kamiya Y. and Choi G. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell, 2007 (19): 1192-1208.
    Oh E., Yamaguchi S., Kamiya Y., Bae G., Chung W.I. and Choi G. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J, 2006 (47): 124-139.
    Ohashi-Ito K. and Bergmann D.C. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell, 2006 (18): 2493-2505.
    Ohto M.A., Fischer R.L., Goldberg R.B., Nakamura K. and Harada J.J. Control of seed mass by APETALA2. Proc Natl Acad Sci USA, 2005 (102): 3123-3128.
    Olszewski N, Sun T-p, Gubler F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 2002, (Supplement):S61-S80.
    Oppenheimer D.G., Herman P.L., Sivakumaran S., Esch J. and Marks M.D. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell, 1991 (67): 483-493.
    Palatnik J.F., Allen E., Wu X., Schommer C., Schwab R., Carrington J.C. and Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003 (425): 257-263.
    Park W., Li J., Song R., Messing J. and Chen X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 2002 (12): 1484-1495.
    Payne CT, Zhang F, Lloyd AM. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics, 2000(156): 1349-1362.
    Peng J., Carol P., Richards D.E., King K.E., Cowling R.J., Murphy G.P. and Harberd N.P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev, 1997 (11): 3194-3205.
    Peng J. and Harberd N.P. The role of GA-mediated signalling in the control of seed germination. Curr Opin Plant Biol, 2002 (5): 376-381.
    Perazza D., Vachon G. and Herzog M. Gibberellins promote trichome formation by up-regulating GLABROUS1 in Arabidopsis. Plant Physiol, 1998 (117): 375-383.
    Phillips A.L., Ward D.A., Uknes S., Appleford N.E., Lange T., Huttly A.K., Gaskin P., Graebe J.E. and Hedden P. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol, 1995 (108): 1049-1057.
    Pillitteri L.J., Sloan D.B., Bogenschutz N.L. and Torii K.U. Termination of asymmetric cell division and differentiation of stomata. Nature, 2007 (445): 501-505.
    Rabinowicz P.D., Braun E.L., Wolfe A.D., Bowen B. and Grotewold E. Maize R2R3 MYB genes: Sequence analysis reveals amplification in the higher plants. Genetics, 1999 (153): 427-444.
    Regan S.M. and Moffatt B.A. Cytochemical analysis of pollen development in wild-type Arabidopsis and a male-sterile mutant. Plant Cell, 1990 (2): 877-889.
    Reidt W., Wohlfarth T., Ellerstrom M., Czihal A., Tewes A., Ezcurra I., Rask L. and Baumlein H. Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J, 2000 (21): 401-408.
    Rhoades M.W., Reinhart B.J., Lim L.P., Burge C.B., Bartel B. and Bartel D.P. Prediction of plant microRNA targets. Cell, 2002 (110): 513-520.
    Richards D.E., King K.E., Ait-Ali T. and Harberd N.P. How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol, 2001 (52): 67-88.
    Riechmann J.L. and Meyerowitz E.M. The AP2/EREBP family of plant transcription factors. Biol Chem, 1998 (379): 633-646.
    Rieu I., Ruiz-Rivero O., Fernandez-Garcia N., Griffiths J., Powers S.J., Gong F., LinhartovaT., Eriksson S., Nilsson O., Thomas S.G., Phillips A.L. and Hedden P. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J, 2008 (53): 488-504.
    Robinson K.A., Koepke J.I., Kharodawala M. and Lopes J.M. A network of yeast basic helix-loop-helix interactions. Nucleic Acids Res, 2000 (28): 4460-4466.
    Rosin F.M., Hart J.K., Horner H.T., Davies P.J. and Hannapel D.J. Overexpression of a knotted-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol, 2003 (132): 106-117.
    Rosinski J.A. and Atchley W.R. Molecular evolution of the MYB family of transcription factors: evidence for polyphyletic origin. J Mol Evol, 1998 (46): 74-83.
    Ross J.D., and Bradbeer J.W. Studies in seed dormancy. VI. The content of endogenous gibberellins in seeds of Corylus avellana L. Planta, 1971 (100): 288–302.
    Saibo N.J., Vriezen W.H., Beemster G.T. and Van Der Straeten D. Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant J, 2003 (33): 989-1000.
    Sakamoto T., Kamiya N., Ueguchi-Tanaka M., Iwahori S. and Matsuoka M. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev, 2001 (15): 581-590.
    Sakamoto T., Morinaka Y., Ishiyama K., Kobayashi M., Itoh H., Kayano T., Iwahori S., Matsuoka M. and Tanaka H. Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol, 2003 (21): 909-913.
    Sanders P.M., Bui A.Q., Weterings K., McIntire K.N., Hsu Y.-C., Lee P.Y., Truong M.T., Beals T.P., and Goldberg R.B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant Reprod, 1999 (11): 297–322.
    Schomburg F.M., Bizzell C.M., Lee D.J., Zeevaart J.A. and Amasino R.M. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell, 2003 (15): 151-163.
    Schwechheimer C. Understanding gibberellic acid signaling--are we there yet? Curr Opin Plant Biol, 2008 (11): 9-15.
    Serna L. bHLH proteins know when to make a stoma. Trends Plant Sci, 2007 (12): 483-485.
    Shinwari Z.K., Nakashima K., Miura S., Kasuga M., Seki M., Yamaguchi-Shinozaki K. and Shinozaki K. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun, 1998 (250): 161-170.
    Shropshire J.W., Klein W.H., and Elstad V.B. Action spectra of photomorphogenic induction and photoinactivation of germination in Arabidopsis thaliana. Plant Cell Physiol, 1961 (2): 63–69.
    Sieburth L.E. and Meyerowitz E.M. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell, 1997 (9): 355-365.
    Silverstone A.L., Chang C., Krol E. and Sun T.P. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J, 1997 (12): 9-19.
    Singh D.P., Jermakow A.M. and Swain S.M. Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell, 2002 (14): 3133-3147.
    Sińska I., Lewak S., Gaskin P., and MacMillan J. Reinvestigation of apple-seed gibberellins. Planta, 1973 (114): 359–364.
    Skriver K., Olsen F.L., Rogers J.C. and Mundy J. cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci USA, 1991 (88): 7266-7270.
    Sorensen A.M., Krober S., Unte U.S., Huijser P., Dekker K. and Saedler H. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J, 2003 (33): 413-423.
    Stockinger E., Gilmour S. and Thomashow M. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997 (94): 1035-1040.
    Stone S.L., Kwong L.W., Yee K.M., Pelletier J., Lepiniec L., Fischer R.L., Goldberg R.B. and Harada J.J. LEAFY COTYLEDON 2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA, 2001 (98): 11806-11811.
    Stracke R., Werber M. and Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 2001 (4): 447-456.
    Strader L.C., Ritchie S., Soule J.D., McGinnis K.M. and Steber C.M. Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homologue, SNEEZY. Proc Natl Acad Sci USA, 2004 (101): 12771-12776.
    Sun T. Gibberellin signal transduction. Curr Opin Plant Biol, 2000 (3): 374-380.
    Sun T.P. and Gubler F. Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol, 2004 (55): 197-223.
    Symons GM, Reid JB. Interactions between light and plant hormones during de-etiolation. J Plant Growth Regul, 2003 (22):3-14.
    Tahtiharju S. and Palva T. Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J, 2001 (26): 461-470.
    Takahashi R, Yasuda S. Genetics of earliness and growth habit in barley. In RA Nilan, ed, Barley Genetics II. Proceedings of the second international barley genetics symposium. Washington State University Press, Pullman, WA, 1971: 388–408.
    Takahashi Y, Fukazawa J, Matushita A, Ishida S. Involvement of RSG and 14-3-3 proteins in the transcriptional regulation of a GA biosynthetic gene. J Plant Growth Regul, 2003 (22):195-204.
    Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S. Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellins as well as auxin in light-grown hypocotyl elongation. J Plant Growth Regul, 2003 (22):259-271.
    Thomas S.G., Phillips A.L. and Hedden P. Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA, 1999 (96): 4698-4703.
    Thomas S.G. and Sun T.P. Update on gibberellin signaling. A tale of the tall and the short. Plant Physiol, 2004 (135): 668-676.
    Thomashow M.F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999 (50): 571-599.
    Thornton T.M., Swain S.M. and Olszewski N.E. Gibberellin signal transduction presents…the SPY who O-GlcNAc'd me. Trends Plant Sci, 1999 (4): 424-428.
    Toledo-Ortiz G., Huq E. and Quail P.H. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 2003 (15): 1749-1770.
    Tsukaya H. Organ shape and size: a lesson from studies of leaf morphogenesis. Curr Opin Plant Biol, 2003 (6): 57-62.
    Tyler L., Thomas S.G., Hu J., Dill A., Alonso J.M., Ecker J.R. and Sun T.P. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol, 2004 (135): 1008-1019.
    Ueguchi-Tanaka M., Ashikari M., Nakajima M., Itoh H., Katoh E., Kobayashi M., Chow T.Y., Hsing Y.I., Kitano H., Yamaguchi I. and Matsuoka M. GIBBERELLIN INSENSITIVE DWARF 1 encodes a soluble receptor for gibberellin. Nature, 2005 (437): 693-698.
    Urao T., Yamaguchi-Shinozaki K., Urao S. and Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993 (5): 1529-1539.
    Vicient C.M., Bies-Etheve N. and Delseny M. Changes in gene expression in the leafy cotyledon 1 (lec1) and fusca3 (fus3) mutants of Arabidopsis thaliana L. J Exp Bot, 2000 (51): 995-1003.
    Vriezen W.H., Achard P., Harberd N.P. and Van Der Straeten D. Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J, 2004 (37): 505-516.
    Wang H., Caruso L.V., Downie A.B. and Perry S.E. The embryo MADS domain protein AGAMOUS-Like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell, 2004 (16): 1206-1219.
    Williams P.M., Bradbeer J.W., Gaskin P., and MacMillan J. Studies in seed dormancy. VIII. The identification and determination of gibberellins A1 and A9 in seed of Corylus avellana L. Planta, 1974 (117): 101–108.
    Willige B.C., Ghosh S., Nill C., Zourelidou M., Dohmann E.M., Maier A. and Schwechheimer C. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell, 2007 (19): 1209-1220.
    Yamaguchi-Shinozaki K. and Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994 (6): 251-264.
    Yamaguchi S. and Kamiya Y. Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol, 2000 (41): 251-257.
    Yamaguchi S., Sun T., Kawaide H. and Kamiya Y. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol, 1998 (116): 1271-1278.
    Yamauchi Y., Ogawa M., Kuwahara A., Hanada A., Kamiya Y. and Yamaguchi S. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell, 2004 (16): 367-378.
    Yang Y. and Klessig D.F. Isolation and characterization of a tobacco mosaic virus-inducible MYB oncogene homolog from tobacco. Proc Natl Acad Sci USA, 1996 (93): 14972-14977.
    Yanovsky M.J. and Kay S.A. Living by the calendar: how plants know when to flower. Nat Rev Mol Cell Biol, 2003 (4): 265-276.
    Yazawa K., Takahata K. and Kamada H. Isolation of the gene encoding CARROT LEAFY COTYLEDON 1 and expression analysis during somatic and zygotic embryogenesis. Plant Physiol Biochem, 2004 (42): 215-223.
    Yu H., Ito T., Zhao Y., Peng J., Kumar P. and Meyerowitz E.M. Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Natl Acad Sci USA, 2004 (101): 7827-7832.
    Zarka D.G., Vogel J.T., Cook D. and Thomashow M.F. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol, 2003 (133): 910-918.
    Zeng Q., Zhao Z.H. and Zhao S.Q. Signal pathways of flowering time regulation in plant. Yi Chuan, 2006 (28): 1031-1036.
    Zhang S., Wong L., Meng L. and Lemaux P.G. Similarity of expression patterns of KNOTTED1 and ZmLEC1 during somatic and zygotic embryogenesis in maize (Zeamays L.). Planta, 2002 (215): 191-194.
    Zhu J., Dong C.H. and Zhu J.K. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol, 2007 (10): 290-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700