用户名: 密码: 验证码:
点火室式直喷汽油机燃烧系统及其喷雾特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于进气道喷射汽油机而言,缸内直喷汽油机具有燃油经济性好、响应快、冷启动容易、空燃比控制精确、EGR率大、排放低等优点,将成为进气道喷射汽油机的替代产品。而其点火可靠性和燃烧稳定性的提高一直是研究的关键点。为此,作者提出了点火室式直喷(DISC:Direct-Injection Sub-Chamber)汽油机燃烧系统的概念,即:在缸盖上设置一点火室,点火室与主燃烧室由通道相连,火花塞位于室内,喷油嘴置于室内或室外。通过利用机械式三次喷射油嘴的喷射特性,或利用进气气流和压缩挤流运动的燃油喷射策略,或利用喷雾在不同背压下的贯穿距特性和压缩挤流运动的燃油喷射策略,来保证在不同工况下,点火室内的混合气浓度都在可点燃范围内,从而确保点火可靠性。由于点火室喷出的火焰能量大大超过火花塞的点火能量,提高了燃烧稳定性,可以进一步扩大缸内直喷汽油机的稀薄燃烧范围,提高经济性,并能降低控制系统的难度。
     对一台直喷柴油机的供油系统和燃烧系统进行了改造,增设了电控点火系统,使其成为点火室式直喷汽油机的原理样机。在这台样机上,进行了点火可靠性和怠速排放性能实验。结果表明:经过改装后的发动机各部件工作正常,电控点火系统工作稳定,满足燃烧系统初步验证试验的要求。发动机可以在空燃比48下稳定运行,并具有400r/min的超低怠速。经过优化的点火室式直喷汽油机具有低于国3标准的排放性能。
     为了保证点火室内混合气的当量比浓度,设计了机械式三次喷射油嘴,并完成了其工作过程的数值模拟,分析了各喷孔的喷射特性。计算结果表明:三次喷射油嘴能够保证从恒量喷孔喷射出的燃油量不受循环供油量的影响,其恒量喷孔及主喷孔的喷射性能均能够满足点火室式直喷汽油机的要求。
     三次喷射油嘴的喷雾喷入到点火室内,是一个近距离多次碰撞的复杂过程。使用激光吸收散射法和CFD计算程序对点火室内的混合气形成过程进行了实验和模拟研究,并对目前可获得的喷雾/壁面作用模型进行了评价。实验结果表明,不同的碰撞角度对喷雾在点火室内的发展和混合气形成过程有显著影响。高的喷射压力会提高喷雾的汽化速度,但是对喷射终了时刻气相质量的绝对值影响不大。当环境温度和压力较低时,喷雾的汽化速度非常低,会造成点火室内火花塞的湿润现象,因此喷雾不宜过早喷入点火室。点火室深度较小时可以缩短其内部形成均匀混合气的时间,但是也会造成火花塞的湿润现象。不同的喷雾/壁面作用模型计算结果有很大的差别,很难各个方面都与实验结果相吻合。
     由于对喷油时刻和雾化的要求,应用于本燃烧系统的汽油多孔喷油嘴不能像柴油机用多孔喷油嘴那样采用较大的喷孔夹角。为了研究小夹角喷雾之间的相互干涉现象,加工了小喷孔轴线夹角的双孔喷嘴。使用激光吸收散射法对双孔喷雾特性进行了测量,并将结果与作为基准的单孔喷雾进行了比较。与实验相配合,使用三维CFD计算程序AVLFIRE对单孔及双孔喷雾进行了数值模拟。结果表明:当喷孔轴线夹角小于25°时,由于两喷束内的液滴之间的碰撞和聚合,使喷雾的汽化速度降低。小液滴聚合成为大液滴,增加了液滴的动量,有使双孔喷雾贯穿距增大的趋势。另一方面,由于两喷束内液滴具有较高的轴向速度,而周围空气未能及时补充到这个区域,使得在喷雾内部形成了相对压力较小的区域,使得双孔喷雾贯穿距有减小的趋势。双孔喷雾的贯穿距是以上两种因素相互作用的结果。存在于喷雾中心的低压区域,使得双孔喷雾的两喷束有向喷雾中心偏移的趋势,偏移量随喷孔轴线夹角的变化而变化。喷雾撞壁对于喷雾的汽化速度有显著的阻碍作用,需要尽量避免。在本燃烧系统中,指向活塞远端的喷雾可以采用较小的喷孔轴线夹角,以获得较长的贯穿距,来增加空气利用率;而指向活塞近端的喷雾应采用相对较大的喷孔轴线夹角,以减少或避免喷雾撞壁现象。
Compared with PFI gasoline engine,GDI engine has become its substitute for higher fuel economy,faster engine response,easier cold-start,precise air/fuel ratio control,larger EGR rate,and lower emissions.However,it is difficult to realize the ignition reliability and combustion stability in GDI engines.Therefore,the concept of Direct-Injection Sub-Chamber (DISC) gasoline combustion system is advanced.A sub-chamber is set in the cylinder head, and the sub-chamber is connected with the main combustion chamber by a channel.The spark plug is located in the sub-chamber,and the injector is mounted inside or outside the sub-chamber.Under all working conditions,the mixture inside the sub-chamber is in the range of easy to be ignited and the ignition reliability is realized.In the three executive schemes,the injection characteristics of the mechanical 3-injection nozzle,inlet airflow and squish,and spray tip penetration under different back pressure and squish are utilized to ensure the mixture concentration inside the sub-chamber.Due to the much larger energy of the flame compared with the spark plug discharging,the combustion stability is enhanced and the lean-bum range can be expanded.This combustion system can improve the fuel efficiency and decrease the difficulty of the control system.
     A DISC prototype engine is rebuilt from a DI diesel engine by modifying the fuel delivery system and combustion system,and adding electronic control system.After that,the preliminary feasibility and the emission experiments under idle working conditions are conducted.The following conclusions can be concluded from the experiments:all parts of the engine and the electronic control ignition system work well,and they can fulfill the demands of feasibility experiments of the DISC gasoline engine.The engine can run at the air/fuel ratio of 48 with the super low idle speed of 400r/min smoothly.The emissions of the optimized engine are lower than the National 3 emission regulations.
     In order to keep the mixture inside the sub-chamber at the range within which the mixture is easy to be ignited,a mechanical 3-injection nozzle is designed.Numerical simulation about its performance is conducted and the characteristics of the injection from each kind of nozzle hole are analyzed.The computational results show that the injection quantity from the constant nozzle hole is almost independent with the fuel injection quantity per cycle per cylinder,and the performance of both the constant nozzle hole and the major nozzle holes can fulfill the demands of this DISC gasoline engine.
     When the spray from the 3-injection nozzle is injected into the sub-chamber,it is a complex process including near-impingement and multi-impingement.The mixture formation process inside the sub-chamber is studied with the Laser Absorption-Scattering(LAS) technique and CFD code experimentally and numerically.After that,the spray/wall interaction models available are estimated using experimental results.Experimental results show that:the spray and the mixture formation process are influenced by the impinging angle. A higher injection pressure can increase the vaporization rate,while there is no big difference on the absolute value of the vapor phase mass around the EOI.Under low ambient pressure and temperature,the vaporization rate is very low,and it will cause spark-plug wetting.So,it is not suitable to inject fuel into the sub-chamber too early.When decreasing the sub-chamber depth,the time interval from the start of injection to a homogeneous mixture is formed inside the sub-chamber,but that will endanger the possibility of spark-plug wetting.Calculation results varies very much when adopting different spray/wall interaction models,and none of these models can simulate all the aspects of the impinging sprays perfectly by now.
     According to the demands of the combustion system on atomization and injection advance angle,the hole-axis-angle(HAA) among the spray jets in the DISC gasoline engine cannot be so large as typical multi-hole nozzles in diesel engines.Two-hole nozzles with small HAA were manufactured in order to study the interactions between the neighbor jets. The characteristics of the two-hole sprays are measured using LAS technique,and comparisons are made with the single-hole spray which is considered to be the baseline.At the same time,numerical simulations about the single-hole and two-hole sprays were made using a 3-D CFD code AVL FIRE.Experimental and numerical results show that:when the HAA is smaller than 25°,the vaporization of the spray will be decreased because of the collisions and coalescences of the droplets in the neighbor jets.The two-hole spray has the tendency to have a longer penetration due to the behavior of smaller droplets forming larger droplets,while the lower relative pressure region inside the spray formed by the high axial spray velocity and lack of air entrained into this area makes its penetration to decrease.So the spray tip penetration results from the co-effect of these two factors.The low relative pressure region inside the spray also causes the two jets to incline to the center of the spray,and the offset is determined by the HAA of the spray.In the DISC gasoline engine,a relative smaller HAA is favorable for the jets pointing the far end of the piston,so that it will result in a longer penetration,which can enhance the air utilization.A relative larger HAA is favorable for the jets pointing the near end of the piston,in order to decrease or avoid impingement.
引文
[1]Heywood J.B.Internal Combustion Engine Fundamentals[M].McGraw-Hill Science Engineering,1988.
    [2]Lentinello R.A.Motoring madness[J].Mechanical Engineering,2000,122(11):86-92.
    [3]王力克.满足未来排放限制的可接受的交通运输发展概念[A].北京2006内燃机可持续发展论坛暨第二届中国汽车动力系统国际论坛[C].北京:2006:4.
    [4]Huang Z.Active fuel design and management for HCCI combustion[A].12th Annual Conference of ILASS-Asia[C].KEIO University:2008.
    [5]Edwards S.P.,Frankle G.R.,Binder K,Wirbeleit F.Strategic analysis of technologies for future truck engines.SAE Paper:2000-01-3458,2000.
    [6]Konard S,Kevin B,Andrea J.R.Greenhouse gas emissions:a system analysis approach.SAE Paper:2001-01-1080,2001.
    [7]Metz N.Contribution of passenger cars and trucks to CO2,CH4,N2O,CFC and HFC emissions.SAE Paper:2001-01-3758,2001.
    [8]杨妙梁.京都议定书与欧洲柴油轿车发展动向[J].上海汽车,2005,6 35-38.
    [9]Erdmann G,Kluge J,Radtke P,Wallentowitz H.DRIVE-The futhure of automotive power[M].McKinsey & Company,2006.
    [10]Bauer H.Engine electronics[M].Robert Bosch GmbH,1997.
    [11]钱耀义.现代汽车发动机燃料供给装置[M].人民交通出版社,1996.
    [12]李志军,苏水,吕筱萍,等.轿车发动机的调节技术[J].小型内燃机与摩托车,2002,31(6):40-43.
    [13]Tabata M,Yamamoto T,Fukube T.Improving NOx and fuel economy for mixture injected S.I.engine with EGR.SAE Paper:950684,1995.
    [14]Koning A,Richter T,Jobson E,et al.Research results on processes and catalyst materials for lean NOx conversion.SAE Paper:962041,1996.
    [15]Endres H,Schulte H,Krebs R.Combustion system development trends for multivalve gasoline engines.SAE Paper:900652,1990.
    [16]Furuno S,Iguchi S,Oishi K,et al.The Effects of "inclination angle of swirl axis" on turbulence characteristics in a four-valve lean-burn engine with SCV SAE Paper:902139,1990.
    [17]Ishii W,Hanajima T,Tsuzuku H.Application of air-fuel mixture injection to lean-burn engines for small motorcycles SAE Paper:2004-32-0052,2004.
    [18]Richardson S,McMillian M.H.,Woodruff S.D.,et al.Misfire,knock and NoDx mapping of a laser-spark-ignited,single-cylinder,lean-burn natural gas engine SAE Paper:2004-01-1853,2004.
    [19]李志军,孙小明,马小强,等.稀燃汽油机运转工况对吸附还原法降低NOx排放的影响[J].燃烧科学与技术,2005,11(3):224-229.
    [20]Yoshida T,Sato A,Suzuki H,et al.Development of high performance three-way-catalyst SAE Paper:2006-01-1061,2006.
    [21]Bechtold R,Pullman J.B.Driving cycle economy,emissions and photochemical reactivity using alcohol fuels and gasoline SAE Paper:800260,1980.
    [22]Kawanami M,Horiuchi M,Klein H,et al.Development of oxidation and De-Nox catalyst for high-temperature exhaust diesel trucks SAE Paper:981196,1998.
    [23]Li Z.J.,Ye Z.M,Mohamadian H,et al.NOx emission aftertreatment study on lean burn gasoline engine using absorber reduction catalyst SAE Paper:2007-01-1932,2007.
    [24]Thomson J,Hutson D,Anstice P.J.C.,et al.Catalytic decomposition of Nitric Oxide in an oxygen rich environment SAE Paper:2001-01-3280,2001.
    [25]Takami A,Takemoto T,Iwakuni H,et al.Development of lean burn catalyst.SAE Paper:950746,1995.
    [26]Milpied J,Jeuland N.Which fuel properties for improved CAI combustion - study of fuel impacts on the operating range of a CAI PFI engine SAE Paper:2009-01-1100,2009.
    [27]Li Y.F.,Zhao H,Brouzos N,et al.Effect of injection timing on mixture and CAI combustion in a GDI engine with an air-assisted injector.SAE Paper:2006-01-0206,2006.
    [28]Li J,Zhao H,Ladommatos N.Performance and analysis of a 4-stroke multi-cylinder gasoline engine with CAI combustion SAE Paper:2002-01-0420,2002.
    [29]葛强强,王志,田国弘,王建昕.缸内直喷汽油机SI/HCCI模式切换的实现与控制[J].内燃机工程,2007,6.
    [30]Ohyama Y,et al.Effects of fuel/air mixture preparation on fuel consumption and exhaust emission in a spark ignition engine[A].ImechE Paper[C].1992:No.925023,C389/232,59-64.
    [31]Zhao F.Q.,Lai M.C.,Harrington D.L.The spray characteristics of automotive port fuel injection- a critical review.SAE Paper:950506,1995.
    [32]Cheng Y.K.,Hamrin D,Heywood B,et al.An overview of hydrocarbon emissions mechanisms in spark- ignition engines.SAE Paper:932708,1993.
    [33]Kume TI,wamoto Y,Iida K,et al.Combustion control technologies for direct injection SI engine.SAE Paper:960600,1996.
    [34]Pischinger F,Walzer P.Future trends in automotive engine technology[A].FISITA Technical Paper,No.P1303[C].1996.
    [35]Xu M.Recent Advances in direct injection gasoline injector technology and fuel preparation strategy[A].Proceedings of the Second International Workshop on Advanced Spray Combustion[C].Hiroshima,Japan:1998:201-213.
    [36]Ohkubo H,et al.Deposit formation and control in direct injection spark ignition engines[A].JSAE Technical Paper,No.20005030[C].2000.
    [37]Okabe N,et al.Study on deposits of direct injection gasoline engine[A].JSAE Technical Paper,No.9934177[C].1999.
    [38]Okamoto K,et al.Study on combustion chamber deposits from direct injection gasoline engine[A].JSAE Technical Paper,No.20005111[C].2000.
    [39]Sandquist H,Lindgren R,Denbratt I.Sources of hydrocarbon emissions from a direct injection stratified charge spark ignition engine SAE Paper:2000-01-1906,2000.
    [40]Zhao F.Q.,Lai M.C.,Harrington D.L.A review of mixture preparation and combustion control strategies for spark-ignited direct-injection gasoline engines SAE Paper:970627,1997.
    [41]Zhu G.S.,Reitz R.D.Characteristics of vaporizing continuous multi-component fuel sprays in a port fuel injection gasoline engine.SAE Paper:2001-01-1231,2001.
    [42]Curtis E.W.,Aquino C.F.,Trumpy D.K.,et al.A new port and cylinder wall wetting model to predict transient air/fuel excursions in a port fuel injected engine SAE Paper:961186,1996.
    [43]Nohira H,et al.Development of Toyota's direct injection gasoline engine[A].Proceedings of AVL Engine and Environment Conference[C].1997:239-249.
    [44]Fraidl G.K.,Piock W.F.,Wirth M.Gasoline direct injection:actual trends and future strategies for injection and combustion systems.SAE Paper:960465,1996.
    [45]Zhao F.Q.,Harrington D.L.,Lai M.C.Automotive gasoline direct-injection engines[M].Warrendale,Pa:Society of Automotive Engineers,Inc,2002.
    [46]Takagi Y,et al.The role of mixture formation in improving fuel economy and reducing emissions of automotive S.I.engines[A].FISITA Technical Paper No.P0109[C].1996.
    [47]Scherenberg M,et al.Ruckbliik uber 25 Jahre Benzin-Einspritzung in Deutchland[J].MTZ,1955,16.
    [48]Iwamoto Y,et al.Development of gasoline direct injection engine[A].Proceedings of JSAE Spring Convention(In Japanese)[C].1997:No.971,pp.297-300.
    [49]Meurer J.S.,Udaub A.C.Development and operational results of the MAN FM combustion system.SAE Paper:690255,1969.
    [50]Urlaub A.G.,Chmela F.G.High speed,multifuel engine:L9204 FMV.SAE Paper:740122,1974.
    [51]Alperstein M,Schafer G.H.,Villforth Ⅲ F.J.Texaco's stratified charge engine-multifuel,efficient,clean and practical.SAE Paper:740563,1974.
    [52]Seussel A.G.,Simko A.O.,Wade W.R.The Ford Proco engine update.SAE Paper:780699,1978.
    [53]Kato S,Onishi S.New mixture formation technology of direct fuel injection stratified combustion SI engine(Oska) SAE Paper:871689,1987.
    [54]Kato S,Onishi S,Kobayashi S.Direct injection stratified charge engine by impingement of fuel jet(Oska) performance and combustion characteristics SAE Paper:900608,1990.
    [55]Miyake M.Developing a new stratified-charge combustion system with fuel injection for reducing exhaust emissions in small farm and industrial engines SAE Paper:720196,1972.
    [56]Bechtold R.L.Performance,emissions,and fuel consumption of the White L-163-S stratified-charge engine using various fuels SAE Paper:780641,1978.
    [57]Burgess Ⅰ.Brake fluid temperatures obtained in Alpine vehicle trails SAE Paper:740126,1974.
    [58]Kato S.DISC engine technologies[A].JSME Seminar(In Japanese)[C].1989:71-81.
    [59]Preussner C,Kampmann S.Gasoline direct injection,a new challenge for future gasoline control systems-part 2:injector and mixture formation[J].MTZ,1997,58.
    [60]Iwamoto Y.Development of gasoline direct injection engine.SAE Paper:970541,1997.
    [61]Harada J,Tomita T,Mizuno H,et al.Development of a direct-injection gasoline engine.SAE Paper:970540,1997.
    [62]Takeda K,Sugimoto T,Tuchiya T,et al.Slit nozzle injector for a new concept of direct injection SI gasoline engine SAE Paper:2000-01-1902,2000.
    [63]Johnson E,Stovell C,Matthews R.D.,et al.Effects of fuel parameters on ftp emissions of a 1998 Toyota with a direct injection spark ignition engine SAE Paper:2000-01-1907,2000.
    [64]Matthews R.D.,Stovell C,Larsen B,et al.Effects of load on emissions and Nox trap/catalyst efficiency for a direct-injection,spark-ignition engine SAE Paper:1999-01-1528,1999.
    [65]Koike M,Saito A,Tomoda T,et al.Research and development of a new direct injection gasoline engine.SAE Paper:2000-01-0530,2000.
    [66]Han Z,Yi J,Trigui N.Stratified mixture formation and piston surface wetting in a DISI engine.SAE Paper:2002-01-2655,2002.
    [67]Baumgarten H,Wolters P,Geiger J,et al.Vehicle application of a 4-cylinder tumble DISI engine SAE Paper:2001-01-0735,2001.
    [68]Baumgarten H,Geiger J,Wolters P.Development of a charge motion controlled combustion system for DI SI engines and its vehicle application for EU-4 emission regulations.SAE Paper:2000-01-0257,2000.
    [69]Geiger J,Grigo M,Lang O,et al.Direct injection gasoline engines combustion and design.SAE Paper:1999-01-0170,1999.
    [70]Grigo M,et al.Charge motion controlled combustion system for direct injection SI engines[A].Proceedings of global powertrain conference on adcanced engine design and performance[C].1998:66-75.
    [71]Eichlseder H,Baumann E,Muller P,et al.Potential and risks of gasoline direct injection engines for passenger cardrivelines[J].MTZ worldwide,2000,61(3):2-5.
    [72]Birch S.Direct gasoline injection from Renault[J].Automotive Engineering,1999,728-29.
    [73]Karl G,Kemmler R,Bargende M,et al.Analysis of a direct-injected gasoline engine.SAE Paper:970624,1997.
    [74]Ogawa K,Komoriya I,Tagami H,et al.A study on schockless combustion change control of direct injection gasoline engine.SAE Paper:2004-01-2940,2004.
    [75]Yamauchi T,et al.Numerical analysis of stratified mixture formation in direct injection gasoline engines[A].Proceedings of direktinspritzung im ottomotor[C].1998:166-185.
    [76]Luttermann C,Mahrle W.BMW high precision fuel injection in conjunction with twin-turbo technology:A combination for maximum dynamic and high fuel efficiency SAE Paper:2007-01-1560,2007.
    [77]Katashiba H,Honda T,Kawamoto M,et al.Improvement of center injection spray guided DISI performance.SAE Paper:2006-01-1001,2006.
    [78]Ortmann R,Arndt S,Raimann J,et al.Methods and analysis of fuel injection,mixture preparation and charge stratification in different direct injected SI engines.SAE Paper:2001-01-0970,2001.
    [79]Maunula T,Vakkilainen A,Heikkinen R,et al.NoDx storage and reduction on differentiated chemistry catalysts for lean gasoline vehicles SAE Paper:2001-01-3665,2001.
    [80]Lavy A.J.,Rohr F,Armaroli T,et al.Sulfated and desulfated lean NOx-trap characterization for optimized management strategy in gasoline applications SAE Paper:2006-01-1068,2006.
    [81]李勤.现代内燃机排放污染物的测量与控制[M].机械工业出版社,1998年12月.
    [82]in:http://world.honda.com/history/challenge/1972introducingthecvcc/photo03/,2009.5.
    [83]Date T,Yagi S.Research and development of Honda CVCC engine.SAE Paper:740605,1974.
    [84]Date T,Nomura T.Research and development of the carburetor for the CVCC engine.SAE Paper:800507,1980:
    [85]Yagi S,Date T,Inoue K.Nox emission and fuel economy of the Honda CVCC engine.SAE Paper:741158,1974.
    [86]杨嘉林.汽车发动机研制的新动向-缸内直喷式汽油机[J].中国机械工程,1997,8(1):9-12.
    [87]Zhao F.Q.,Yoo J.H.,Lai M.C.In-cylinder spray/wall interactions of a gasoline direct-injection engine[A].Proceedings of ILASS-America[C].1997.
    [88]蒋德明.高等内燃机原理[M].西安:西安交通大学出版社,2002.
    [89]Miyajima A,Okamoto Y,Kadomukai Y,et al.A study on fuel spray pattern control of fuel injector of gasoline direct injection engines.SAE Paper:2000-01-1045,2000.
    [90]董辉.汽车电子技术与应用[M].北京:北京理工大学出版社,1998.67-70.
    [91]马潮,詹卫前.ATmega8原理及应用手册[M].北京:清华大学出版社,2003.
    [92]丁化成,耿德根.AVR单片机应用设计[M].北京:北京航空航天大学出版社,2002.
    [93]康华光,陈大钦.电子技术基础(模拟部分)[M].北京:高等教育出版社,1999.
    [94]姚国平,舒华,姚建军.汽车电控系统结构原理检修[M].北京:人民邮电出版社,2002.
    [95]宋福昌等.汽车传感器识别与检测图解[M].北京:电子工业出版社,2003.
    [96]周龙保.内燃机学[M].北京:机械工业出版社,2000.7.
    [97]Evans R.L.Combustion chamber design for a lean-bum SI engine.SAE Paper:921545,1992.
    [98]周玉明,胡健丽,刘家全.缸内汽油直喷稀薄燃烧技术[J].内燃机,2004,4 35-38.
    [99]蒋德明.内燃机燃烧与排放[M].西安:西安交通大学出版社,2001.
    [100]初纶孔.柴油机供油与雾化[M].大连:大连理工大学出版社,1989.46-62.
    [101]H Zhao,N Ladommatos.Optical diagnostics for in-cylinder mixture formation measurements in IC engines[J].Prog.Energy Combust.Sci.,1998,24 297-336.
    [102]Hua Zhao,Nicos Ladommatos.Engine combustion instrumentation and diagnostics[M].Warrendale:Society of automotive engineers,Inc.,2001.395-446.
    [103]Kim J.U.,Golding B,Schock H.J.,et al.Exciplex fluorescence visualization systems for pre-combustion diagnosis of an automotive gasoline engine.SAE Paper:960826,1996.
    [104]A R Charplyvy.Non-intrusive measurements of vapor concentrations inside sprays[J].App.Opt.,1991,20(15):63-88.
    [105]J A Drallmeier,R E Peters.Experimental investigation of fuel spray vapor phase characterization[J].Atomization and Sprays,1991,1 63-88.
    [106]T P Billings,J A Drallmeier.A detailed assessment of the infrared extinction technique for hydrocarbon aapor measurements in a controlled two-phase flow[J].Atomization and Sprays,1994,4 99-121.
    [107]Tie Li,M Yamakawa,Keiya Nishida,Yu Yin Zhang,H Hiroyasu.Spray and mixture formation processes by high-pressure swirl injector for DISI engine-analyses based on Laser Absorption Scattering(LAS) measurements[A].CD-ROM of ICLASS 2003[C].2003.
    [108]S Suzuki,Keiya Nishida,H Hiroyasu.Simultaneous concentration measurement of vapor and liquid in an evaporating diesel spray.SAE Paper:930863,1993.
    [109]C F Bohren,D R Huffman.Absorption and scattering of light by small particles[M].New York:John Wiley & Sons,1983.
    [110]Bohren C.F.,Huffman D.R.Absorption and scattering of light by small particles[M].New York:John Wiley and Sons,1983.
    [111]Kerker M.The Scattering of Light,and Other Electromagnetic Radiation[M].New York:Academic Press,1969.
    [112]Van de Hulst H.C.Light scattering by small particles[M].New York:Dover,1981.
    [113]Twomey S,Howell H.B.The relative merit of white and monochromatic light for the determination of visibility by backscattering measurements[J].App.Opt.,1965,4(4):501.
    [114]Gumprecht K.O.,Sliepcevich C.M.Scattering of light by large apherical particles[J].Journal of Physical Chemistry,1953,57 90.
    [115]Williams A.Combustion of droplets of liquid fuels:a review[J].Combustion and flame,1973,21 1-31.
    [116]Law C.K.Recent advances in droplet vaporization and combustion[J].Progress in energy and combustion science,1982,8 172-201.
    [117]Kamimoto T,Ahn S.K.,Chang Y.J.,et al.Measurement of droplet diameter and fuel concentration in a non-evaporating diesel spray by means of an image analysis of shadow photographs.SAE Paper:840276,1984.
    [118]Kondo N,Suzuki T,Sakakura Y,et al.Combustion monitoring by use of the spark plug for DI engine.SAE Paper:2001-01-0994,2001.
    [119]Han Z,Xu N,Trigui N.Spray/wall interaction models for multidimensional engine simulation[J].International Journal of Engine Research,2000,1 127-146.
    [120]Kong S.C.Drop/wall interaction criteria and their applications in diesel spray modeling[J].Atomization and Sprays,2007,17(6):473-499.
    [121]LeVeque,Randall.Finite volume methods for hyperbolic problems[M].Cambridge University Press,2002.
    [122]Patankar S.V.,Spalding D.B.A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows[J].International Journal of Heat Mass Transfer,1972,15 1787-1806.
    [123]Dukowicz J.K.A particle-fluid numerical model for liquid sprays[J].Journal of computational physics,1980,35 229-253.
    [124]周光垌,严宗毅.流体力学(下册,第2版)[M].北京:高等教育出版社,2000.
    [125]Yakhot V,Orszag S.A.Renormalization group analysis of turbulence.I.basic theory.[J].Journal of scientific computing,1986,1 3-50.
    [126]Dukowicz J.K.Quasi-steady droplet change in the presence of convection[A].Informal report Los Alamos Scientific Laboratory,LA7997-MS[C].1979.
    [127]Namber J.D.,Reitz R.D.Modeling engine spray/wall impingement.SAE Paper:880107,1988.
    [128]Mundo C,Sommerfeld M,Tropea M.C.Experimental studies of the deposition and splashing of small liquid droplets impinging on a flat surface[A].ICLASS-94 Rouen[C].France:1994.
    [129]Bai C,Gosman A.D.Development of methodology for spray impingement simulation.SAE Paper:950283,1995.
    [130]O'Rourke P.J.,Amsden A.A.SAE Paper.A spray/wall interaction submodel for the KTVA-3 wall film model.SAE Paper:2000-01-0271,2000.
    [131]Alters D.C.,Bardasz E,Schiferl E.A.,et al.A comparison of gasoline direct injection and port fuel injection vehicles;Part Ⅱ—lubricant oil performance and engine wear.SAE Paper:1999-01-1498,1999.
    [132]Fujieda M,Siraisi T,Oosuga M.Influence of the spray pattern on combustion characteristics of the direct injection SI engine[A].Proceedings of ILASS-Japan[C].1995.
    [133]M Skogsberg,P Dahlander,R Lindgren,I Denbratt.Effects of injector parameters on mixture formation for multi-hole nozzles in a spray-guided gasoline DI engine.SAE Paper:2005-01-0097,2005.
    [134]Stiesch G.Modeling engine spray and combustion processes[M].Berlin:Springer-Verlag,2003.
    [135]Muler T,Chaves H,Obermeier F.Fuel deposition on wall impingement of a spray.SAE Paper:961207,1996.
    [136]Huh K.Y.,Gosman A.D.A phenomenological model of diesel spray atomization[A].Proceedings of the International Conference on Multiphase Flows[C].Tsukuba,Japan:1991:24-27.
    [137]Huh K.Y.,Lee E,Koo J.Y.Diesel spray atomization model considering nozzle exit turbulence conditions[J].Atomization and Sprays,1998,8 453-469.
    [138]Yue Y,Powell C.F.,Poola R,et al.Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption[J].Atomization and Sprays,2001,11 471-490.
    [139]MacPhee A.G.,Tate M.W.,Powell C.F.X-ray imaging of shock waves generated by high-pressure fuel sprays[J].Science,2002,295 1261-1263.
    [140]Tanner F.X.,Feigl K.A.,Ciatti S.A.,et al.Structure of high-velocity dense sprays in the near-nozzle region[J].Atomization and Sprays,2006,16 579-597.
    [141]O'Rourke P.J.Statistical properties and numerical implementation of a model for droplet dispersion in turbulent gas[J].Journal of computational physics,1989,83.
    [142]O'Rourke P.J.,Bracco F.V.Modeling of drop interactions in thick sprays and a comparison with experiments[J].IMechE,1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700