用户名: 密码: 验证码:
参数化时频信号表示研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究如何表示信号,取得的成果有:1)证明了不含交叉项干扰且具有Wigner-Ville分布聚集性的时频分布不存在,并且不含交叉项干扰而聚集性充分接近Wigner-Ville分布聚集性的时频分布,亦不存在。2)提出了一种适于刻画信号中线性和非线性时变成分的参数化时频信号表示方法——FM~mlet变换,研究了FM~mlet变换的性质和指令级并行优化算法,揭示了chirplet变换、频散变换、小波变换、chirp-Fourier变换、STFT、Gabor变换、Fourier变换、余弦变换、正弦变换、Hartley变换、Laplace变换、z变换、Mellin变换、Hilbert变换、自相关函数、互相关函数,以及求信号的能量和均值运算,均是FM~mlet变换的特例,提出了适于刻画滑音信号的FM~mlet变换的另一子空间 蝴蝶子空间,以及时间和频率分辨率均达到理论值极限的“伪时频分布”的概念。3)提出了一种适于刻画Doppler信号的参数化时频信号表示方法——Dopplerlet变换,并给出了基于自适应匹配投影塔形分解法的参数化时频信号表示算法,以及Dopplerlet变换在水下航行物测距测速中的应用实例。对Dopplerlet变换的物理机制的分析表明,小波变换、STFT、Gabor变换、Fourier变换、余弦变换、正弦变换、Hartley变换、Laplace变换、z变换、Mellin变换、Hilbert变换、自相关函数、互相关函数,以及求信号的能量和均值运算,均是Dopplerlet变换在其参数取特定值时的特例。4)提出了一种基于子空间分解的多谱线增强方法,一种基于瞬时频率估计的chirp信号增强方法,以及一种基于Radon-STFT变换的chirp信号增强方法,并给出了重构信号的精度与信号采样点数的定量关系。5)定义了酉对称矩阵,导出并证明了酉对称矩阵的奇异值和奇异向量,与母矩阵的奇异值和奇异向量之间的定量关系,揭示了行(列)对称矩阵、置换对称矩阵、正交对称矩阵和酉对称矩阵四者之间的逐级包含关系,以及Givens对称矩阵、Householder对称矩阵与置换对称矩阵之间的并列关系,最后给出了酉对称矩阵奇异值分解的摄动分析,以及酉对称矩阵奇异值分解在信息检
This dissertation focuses on how to represent signals. The main contributions are as follows:1) The nonexistence theorem for cross-term free time-frequency distribution with concentration of Wigner-Ville distribution is proved. In addition, it is discovered that in general, cross-term free joint distributions with their concentrations close to that of Wigner-Ville distribution do not exist either.2) A novel parametric time-frequency representation called FM~mlet transform, which is suitable for delineating the linear and nonlinear time-varying nature of a signal, is proposed. The mathematical properties and instruction level parallel optimization of FM~mlet transform are investigated accordingly. It is shown that some of the existing integral transforms such as chirplet transform, dispersion transform, wavelet transform, chirp-Fourier transform, short-time Fourier transform, Gabor transform, Fourier transform, cosine transform, sine transform, Hartley transform, Laplace transform, z transform, Mellin transform, Hilbert transform, autocorrelation function, cross-correlation function, and the energy and mean of a signal can each be considered as a special case of the FM~mlet transform with specific parameters. Another subspace of FM~mlet transform for compactly characterizing the gliding tones, i.e., the butterfly subspace, is also presented. A "pseudo time-frequency distribution" which resolutes both time and frequency domains to their theoretical limits is advocated for simple and readable visualization of the signal's time-varying and time-invariant structures. Theoretical analysis and experimental results demonstrate that the FM~mlet-based signal representations naturally lead to highly compact solutions to a plethora of stationary and nonstationary scenarios involving especially the whistler or gliding tone-like signals.3) A novel parametric time-frequency representation called Dopplerlet transform, which is inherently well suited for Doppler signal, is proposed. The algorithm for computing parametric time-frequency representation based on matching pursuit is developed, and the application of Dopplerlet transform to estimation of the range and speed
    of an underwater vessel is presented. Physical analysis as well as theoretical predictions indicate that some of the existing integral transforms such as wavelet transform, short-time Fourier transform, Gabor transform, Fourier transform, cosine transform, sine transform, Hartley transform, Laplace transform, z transform, Mellin transform, Hilbert transform, autocorrelation function, crosscorrelation function, and the energy and mean of a signal are all special cases of the Dopplerlet transform with specific parameters. Since many interesting natural and artificial processes yield the phenomena of Doppler effect, the Dopplerlet transform may therefore enable more flexible and parsimonious representation for their time-varying nature.4) A multiple line enhancer based on subspace decomposition, and two chirp signal enhancers based on the estimated instantaneous frequency and Radon-STFT transform respectively, are proposed. A quantitative relation between the reconstruction precision and the length of the signal is also presented.5) A special architecture called unitary-symmetric matrix, which embodies orthogonal, Givens, Householder, permutation, and row (or column) symmetric matrices as its special cases, is defined. A precise correspondence of the singular values and singular vectors between the unitary-symmetric matrix and its mother matrix is derived and proved, and the corresponding perturbation analysis is conducted. As an illustration of potential, it is deducted (and the provided application to information retrieval also confirmed) that, for a class of unitary-symmetric matrices, singular value decomposition using mother matrix instead of unitary-symmetric matrix per se, can dramatically save CPU time and computer memory without the loss of numerical precision.6) The relationship between Q and R matrices of unitary-symmetric matrix and its mother matrix, is clarified and justified. Two new algorithms followed by computational costs for fast computing the QR factorization of unitary-symmetric matrix are addressed and examined, along with some qualitative results obtained from a perturbation analysis. Analytical and numerical studies also give evidence that, for a class of unitary-symmetric matrices, the strategy of QR factorization based on the surrogate, viz., the mother matrix, is far cheaper than the naive scheme of direct QR factorizing the unitary-symmetric matrix.
引文
[1] D. Gabor, "Theory of communication," J. Inst. Elec. Eng., vol. 93, no. III, pp. 429-457, 1946.
    [2] R. K. Potter, G. Kopp, and H. C. Green, Visible speech. New York: Van Nostrand, 1947.
    [3] J. Ville, "Theorie et applications de la notion de signal analytique," Cables et Transmissions, vol. 2A, pp. 61-74,1948. Translated from French by I. Selin, "Theory and applications of the notion of complex signal," RAND Corporation Technical Report T-92, CA: Santa Monica, 1958.
    [4] E. P. Wigner, "On the quantum correction for thermodynamic equilibrium," Physical Review, vol. 40, pp. 749-759, 1932.
    [5] 程乾生,信号数字处理的数学原理(第二版).北京:石油工业出版社,1996.
    [6] J. Morlet, G. Arens, E. Fourgeau, and D. Giard, "Wave propagation and sampling theory and complex waves," Geophysics, vol. 47, no. 2, pp. 222-236, 1982.
    [7] D. L. Jones and T. W. Parks, "A resolution comparision of several time-frequency representations," IEEE Trans. Signal Processing, vol. 40, no. 2, pp. 413-420, 1992.
    [8] L. Cohen, Time-frequency analysis. Englewood Cliffs, NJ: Prentice-Hall, 1995.
    [9] C. H. Page, "Instantaneous power spectra," J. Appl. Phys., vol. 23, pp. 103-106, 1952.
    [10] C. H. M. Turner, "On the concept of an instantaneous spectrum and its relationship to the autocorrelation function," J. Appl. Phys., vol. 25, pp. 1347-1351, 1954.
    [11] H. Margenau and R. N. Hill, "Correlation between measurements in quantum theory," Prog. Theor. Phys., vol. 26, pp. 722-738, 1961.
    [12] M. J. Levin, "Instantaneous spectra and ambiguity functions," IEEE Trans. Inform. Theory, vol. 10, pp. 95-97, 1964.
    [13] A. W. Rihaczek, "Signal energy distribution in time and frequency," IEEE Trans. Inform. Theory, vol. 14, pp. 369-374, 1968.
    [14] M. H. Ackroyd, "Instantaneous and time-varying spectra—An introduction," Radio Electron. Eng., vol. 239, pp. 145-152, 1970.
    [15] L. Cohen, "Generalized phase-space distribution functions," J. Math. Phys., vol. 7, pp. 781-786, 1966.
    [16] S. Qian and D. Chen, Joint time-frequency analysis. Englewood Cliffs, NJ: Prentice-Hall, 1996.
    [17] O. Rioul and P. Flandrin, "Time-scale energy distributions: A general class extending wavelet transforms," IEEE Trans. Signal Processing, vol. 40, no. 7, pp. 1746-1757, 1992.
    [18] P. Flandrin and P. Gonalvs, "Geometry of affine time-frequency distributions," Applied Computational Harmonic Analysis, vol. 3, no. 1, pp. 10—39, 1996.
    [19] K. Kodera, C. de Villedary and R. Gendrin, "A new method for the numerical analysis of time-varying signals with small BT values," Phys. Earth Planet. Interiors, vol. 12, pp. 142-150, 1976.
    [20] K. Kodera, R. Gendrin and C. de Villedary, "Analysis of time-varying signals with small BT values," IEEE Trans. ASSP, vol. 34, pp. 64-76, 1986.
    [21] F. Auger and P. Flandrin, "Improving the readability of time-frequency and time-scale representations by the reassignment method," IEEE Trans. Signal Processing, vol. 43, no. 5, pp. 1068-1089, 1995.
    [22] R. G. Baraniuk and D. L. Jones, "Signal-dependent time-frequency analysis using a radially Gaussian kernel," Signal Processing, vol. 32, no. 6, pp. 263-284, 1993.
    [23] S. Qian and D. Chen, "Signal representation via adaptive normalized Gaussian functions," IEEE Trans. Signal Processing, vol. 36, no. 1, pp. 1-11, 1994.
    [24] S. Mallat and Z. Zhang, "Matching pursuits with time-frequency dictionaries," IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3397-3415, 1993.
    [25] S. Mann and S. Haykin, "The chirplet transform—A generalization of Gabor's logon transform," Vision Interface'91, vol. 6, pp. 3-7, 1991.
    [26] S. Mann and S. Haykin, " 'Chirplets' and 'warblets': Novel time-frequency representations," Electron. Lett, vol. 28, no. 2, pp. 114-116, 1992.
    [27] D. Mihovilovic and R. N. Brace well, "Adaptive chirplet representation of signals of time-frequency plane," Electron. Lett, vol. 27, no. 13, pp. 1159-1161, 1991.
    [28] D. Mihovilovic and R. N. Bracewell, "Whistler analysis in the time-frequency plane using chirplets," J. Geophys. Res., vol. 97, no. All, pp. 17199-17204, 1992.
    [29] S. Mann and S. Haykin, "The chirplet transform: Physical considerations," IEEE Trans. Signal Processing, vol. 43, no. 11, pp. 2745-2761, 1995.
    [30] R. G. Baraniuk and D. L. Jones, "Wigner-based formulation of the chirplet transform," IEEE Trans. Signal Processing, vol. 44, no. 12, pp. 3129-3135, 1996.
    [31] 殷勤业,倪志芳,钱世锷,陈大庞,“自适应旋转投影分解法,”电子学报,vol.25,no. 4, pp. 52-58, 1997.
    [32] A. Bultan, "A four-parameter atomic decomposition of chirplets," IEEE Trans. SignalProcessing, vol. 47, no. 3, pp. 731-745, 1999.
    [33] H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, "Digital computation of thefractional Fourier transform," IEEE Trans. Signal Processing, vol. 44, no. 9, pp. 2141-2150, 1996.
    [34] V. Namias, "The fractional Fourier transform and its application in quantum mechanics,"J. Inst. Maths. Applications, vol. 25, pp. 241-265, 1980.
    [35] L. B. Almeida, "The fractional Fourier transform and time-frequency representations,"IEEE Trans. Signal Processing, vol. 42, vol. 9, pp. 3084-3091, 1994.
    [36] A. C. McBride and F. H. Kerr, "On Namias's fractional Fourier transform," IMA J.Applied Math., vol. 39, pp. 159-175, 1987.
    [37] 张贤达,保铮,非平稳信号分析与处理.北京:国防工业出版社,1998.
    [38] L.科恩,时-频分析:理论与应用.白居宪译.西安:西安交通大学出版社,1998.
    [39] A. B. Fineberg and K. L. Yu, "Time-frequency representation based cepstral processing for speech recognition," Proc. IEEE Int. Conf. Acoust., Speech and Signal Processing (ICASSP'96), vol. 1, May 7-May 10, Atlanta, GA, USA, pp. 25-28, 1996.
    [40] V. Chen and S. Qian, "Joint time-frequency transform for radar range-doppler imaging," IEEE Trans. Aerosp. Electron. Syst, vol. 34, no. 2, pp. 486-499, 1998.
    [41] V. Chen and H. Lin, "Joint time-frequency analysis for radar signal and image processing," IEEE Signal Processing Mag., vol. 16, no. 2, pp. 81-93, 1999.
    [42] J. Wang and J. Zhou, "Chirplet-based signal approximation for strong earthquake ground motion model," IEEE Signal Processing Mag., vol. 16, no. 2, pp. 94-99, 1999.
    [43] L. Stankovic and V. Katkovnik, "The Wigner distribution of noisy signals with adaptive time-frequency varying window," IEEE Trans. Signal Processing, vol. 47, no. 4, pp. 1099-1108, 1999.
    [44] M. Amin, "Interference mitigation in spread spectrum communication systems using time-frequency distributions," IEEE Trans. Signal Processing, vol. 45, no. 1, pp. 90-101, 1997.
    [45] S. Barbarossa and A. Scaglione, "Adaptive time-frequency cancellation of wideband interferences in spread-spectrum communications based on time-frequency distribution," IEEE Trans. Signal Processing, vol. 47, no. 4, pp. 957-965, 1999.
    [46] B. Friedlander and A. Zeira, "Oversampled Gabor representation for transient signals," IEEE Trans. Signal Processing, vol. 43, no. 9, pp. 2088-2094, 1995.
    [47] B. Boashash and B. Ristic, "Polynomial time-frequency distributions and time-varying higher order spectra: Application to the analysis of multicomponent FM signals and to the treatment of multiplicative noise," Signal Process., vol. 67, no. 1, pp. 1-23, 1998.
    [48] P. Loughlin (Ed.), "Special issue on time-frequency analysis," Proc. IEEE, vol. 84, no. 9, 1996.
    [49] B. Boashash (Ed.), Time-frequency signal analysis: Methods and applications. Sydney, Australia: Longman Cheshire, 1992.
    [50] L. Cohen, "Recent developments in the core of digital signal processing: Time-frequency analysis," IEEE Signal Processing Mag., vol. 16, no. 1, pp. 22-28, 1999.
    [51] A. J. E. M. Janssen, "Optimality property of the Gaussian window spectrogram," IEEE Trans. Signal Processing, vol. 39, no. 1, pp. 202-204, 1991.
    [52] P. Flandrin, "A time-frequency formulation of optimum detection," IEEE Trans. Acoust. Speech, Signal Processing, vol. 36, no. 9, pp. 1377-1384, 1988.
    [53] A. M. Sayeed and D. L. Jones, "Optimal detection using bilinear time-frequency and time-scale representations," IEEE Trans. Signal Processing, vol. 43, no. 12, pp. 2872-2883, 1995.
    [54] L. F. Wisur-Olsen and R. G. Baraniuk, "Optimal phase kernels for time-frequency analysis," Proc. IEEE Int. Conf. Acoust, Speech, Signal Processing (ICASSP'96), vol. 3, May 7-May 10, Atlanta, GA, USA, pp. 1419-1422, 1996.
    [55] S. Qian, D. Chen, and K. Chen, "Signal approximation via data-adaptive normalized Gaussian functions and its applications for speech processing," Proc. IEEE Int. Conf. Acoust., Speech and Signal Processing (ICASSP'92), San Francisco, CA, pp. 141-144, 1992.
    [56] S. Qian and D. Chen, "Signal representation in adaptive Gaussian functions and adaptive spectrogram," Proc. The 27th Annual Conference on Information Sciences and Systems, Baltimore, MD, pp. 59-65, 1993.
    [57] S. Mann and S. Haykin, "Adaptive 'chirplet' transform: An adaptive generalization of the wavelet transform," Opt. Eng., vol. 31, no. 6, pp. 1243-1256, 1992.
    [58] R. G. Baraniuk and D. L. Jones, "Shear madness: New orthonormal bases and frames using chirp functions," IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3543-3549, 1993.
    [59] R. G. Baraniuk and D. L. Jones, "Unitary equivalence: A new twist on signal processing," IEEE Trans. Signal Processing, vol. 43, no. 10, pp. 2269-2282, 1995.
    [60] A. Bultan and A. N. Akansu, "Frames in rotated time-frequency planes," Proc. IEEE Int. Conf Acoust, Speech and Signal Processing (ICASSP'99), vol. 3, March 15-March 19, Phoenix, AZ, USA, pp. 1353-1356, 1999.
    [61] R. A. Helliwell, Whistlers and related atmospheric phenomena. Stanford, California: Stanford University Press, 1965.
    [62] D. Hamar, G. Tarcsai, J. Lichtenberger, A. Smith, and K. Yearby, "Fine structure of whistlers using digital matched filtering," Ann. Geophys., pp. 119-128, 1982.
    [63] B. Boushash and H. J. Whitehouse, "Seismic applications of the Wigner-Ville distribution," Proc. IEEE Int. Symp. Circuits Syst, New York, NY, USA, pp. 34-37, 1986.
    [64] S. Krishnamachari and W. J. Williams, "Adaptive kernel design in the generalized marginal domain for time-frequency analysis," Proc. IEEE Int. Conf. Acoust., Speech and Signal Processing (ICASSP'94), vol. 3, April 19-April 22, Adelaide, Australia, pp. III-341 344, 1994.
    [65] D. L. Jones and R. G. Baraniuk, "An adaptive optimal-kernel time-frequency representation," IEEE Trans. Signal Processing, vol. 43, no. 10, pp. 2361-2371, 1995.
    [66] P. Flandrin, "Time-frequency processing of bat sonar signals," Proc. Animal Sonar Systems Symp., 1988;also in Animal Sonar-Process and Performance. P. E. Nachtigall and P. W. B. Moore (Eds). New York: Plenum, pp. 797-802.
    [67] J. C. Valiere, F. Poisson, C. Depollier, and L. Simon, "High-speed moving source analysis using chirplets," IEEE Signal Processing Lett, vol. 6, no. 5, pp. 113-115, 1999.
    [68] M. M. Goodwin and M. Vetterli, "Matching pursuit and atomic signal models based on recursive filter banks," IEEE Trans. Signal Processing, vol. 47, no. 7, pp. 1890-1902, 1999.
    [69] 李衍达,常tong,信号重构理论及其应用.北京:清华大学出版社,1991.
    [70] D. J. Thomson, "Spectrum estimation and harmonic analysis," Proc. IEEE, vol. 70, no. 9, pp. 1055-1096, 1982.
    [71] O. K. Ersoy, "A comparative review of real and complex Fourier-related transforms," Proc. IEEE, vol. 82, no. 3, pp. 429-447, 1994.
    [72] P. M. Djuric and S. M. Kay, "Parameter estimation of chirp signals," IEEE Trans. Acoust. Speech, Signal Processing, vol. 38, no. 12, pp. 2118-2126, 1990.
    [73] X. G. Xia, "Discrete chirp-Fourier transform," Proc. SPIE, vol. 38, no. 10, pp. 27-33, 1999.
    [74] I. Daubechies, Ten lectures on wavelets. Philadelphia, PA: SIAM, 1992.
    [75] S. Qian and D. Chen, "Joint time-frequency analysis," IEEE Signal Processing Mag., vol. 16, no. 2, pp. 52-67, 1999.
    [76] J. Wexler and S. Raz, "Discrete Gabor expansions," Signal Process., vol. 21, no. 3, pp. 207-220, 1990.
    [77] B. Torresani, "Wavelets associated with representations of the affine Weyl-Heisenberg group," J. Math. Physics, vol. 32, no. 5, pp. 1273-1279, 1991.
    [78] L. K. Jones, "On a conjecture of Huber concerning the convergence of projection pursuit regression," Ann. Statist., vol. 15, no. 2, pp. 880-882, 1987.
    [79] B. Boashash and P. O'Shea, "Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra," IEEE Trans. Signal Processing, vol. 42, no. 1, pp. 216-220, 1994.
    [80] B. Boashash and B. Ristic, "Polynomial time-frequency distributions and time-varying spectra: Application to the analysis of multicomponent FM signals and to the treatment of multiplicative noise," Signal Process., vol. 67, no. 1, pp. 1-23, 1998.
    [81] B. Barkat and B. Boashash, "Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD: Statistical performance in the presence of additive Gaussian noise," IEEE Trans. Signal Processing, vol. 47, no. 9, pp. 2480-2490, 1999.
    [82] B. Barkat and B. Boashash, "Design of higher order polynomial Wigner-Ville distributions," IEEE Trans. Signal Processing, vol. 47, no. 9, pp. 2608-2611, 1999.
    [83] J. Illingworth and J. Kittler, "A survey of the Hough transform," Computer Vision, Graphics, Image Processing, vol. 44, no. 10, pp. 87-116, 1988.
    [84] Qionghai Dai, Hongxing Zou, Zhixin Liu, and Yanda Li, "Properties of chirplet transform," Chinese Journal of Electronics, vol. 10, no. 4, pp. 423-427, 2001.
    [85] R. A. Altes, "The Fourier-Mellin transform and mammalian hearing," J. Acoust. Soc. Amer., vol. 63, no. 1, pp. 174-183, 1978.
    [86] L. Cohen, "The scale representation," IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3275-3292, 1993.
    [87] V. A. Uspensky, "Godel's incompleteness theorem," Theoretical Computer Science, vol. 130, no. 2, pp. 239-319, 1994.
    [88] A. Zee, Fearful symmetry. New York: Macmillan Publishing Company, 1986.
    [89] S. M. Kay, Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice Hall, 1987.
    [90] A. M. Zoubir and B. Boashash, "The bootstrap and its application in signal processing," IEEE Signal Processing Mag., vol. 15, no. 1, pp. 56-76, 1998.
    [91] A. M. Zoubir and D. R. Iskander, "Bootstrap modeling of a class of nonstationary signals," IEEE Trans. Signal Processing, vol. 48, no. 2, pp. 399-408, 2000.
    [92] B. R. Rau, D. W. L. Yen, W. Yen, et al., "The Cydra-5 departmental supercomputer: Design and philosophies, decisions and trade-offs," Computer, vol. 22, no. 1, pp. 12-34, 1989.
    [93]汤志忠,指令级并行及优化编译技术技术报告: [国家863高技术发展研究计划].北京:清华大学计算机科学与技术系,1998.
    [94] L. Qiao, Z. Z. Tang, and S. Y. Wang, "Control strategies of software pipelining: Dealing with the prologue and the epilogue of nested loops,". In: X. M. Zhou, M. Xu, S. W. Lou, et al., (Eds.), Proc. 3rd Workshop on advanced parallel processing technologies. Beijing, China: Publishing House of Electronics Industry, pp. 177-181, 1999.
    [95]乔林,软件流水领域数据相关性研究: [博士学位论文].北京:清华大学计算机科学与技术系,2001.
    [96] U. Banerjee, Dependence analysis. Norwell, MA: Kluwer Academic Publishers, 1997.
    [97] P. Flandrin, "Some features of time-frequency representations of multi-component sig nals," IEEE Int. Conf. on ASSP, San Diego (CA), pp. 41. B. 4. 1-41. B. 4. 4, 1984.
    [98] O.Kulhanek,地震图解析.刘启元等译.北京:地震出版社,1992.
    [99] G. B. Arfken, D. F. Griffing, D. C. Kelly, et al., University physics. Orlando, Florida: Academic Press, 1984.
    [100] 邹红星,周小波,李衍达,“采用Dopplerlet基函数的时频信号表示,”清华大学学报,vol.40,no.3,pp.52-54,2000.
    [101]邹红星,周小波,李衍达, “在不同特性噪声背景下Dopplerlet变换在信号恢复中的应用,”电子学报,vol.28,no.9,pp.1-4,2000.
    [102] 邹红星,戴琼海,周小波,李衍达, “Dopplerlet变换及其匹配收敛性分析,”电子与信息学报,vol.23,no.5,pp.417-424,2001.
    [103] Hongxing Zou, Qionghai Dai, Xiaobo Zhou, and Yanda Li, "Dopplerlet based time- frequency representation via matching pursuits," Journal of Electronics (China), vol. 18, no. 3, pp. 217-227, 2001.
    [104]陈永强,水下目标谱相关检测和运动参数估计的研究: [博士学位论文].北京:中国科学院研究生院,2002.
    [105] 汪源源,刘斌,吴晓峰,王威琪, “超声多普勒信号的频谱分析,”声学技术,vol.17,no.2,pp.57-62,1998.
    [106]汪源源,J.F.Peter,“频谱带宽和功率可变多普勒信号的计算机模拟,”声学技术,vol.16,no.4,pp.177-179,1997.
    [107] 姚爱平,刘鲁勤,“脉冲多普勒引信多普勒信号及最佳启动频率分析,”系统工程与电子技术,no.11,pp.17-21,1997.
    [108]谈觅舟,王永德,“一种快速多普勒频偏估值的新方法,”四川大学学报(自然科学版),vol.3,no.6,pp.702-706,1996.
    [109]尹成友,徐善驾,王东进,“无源定位中时延与多普勒估计的去耦性分析,”信号处理,vol.14,no.3,pp.216-219,1998.
    [110]贾沛璋,吴连大,“计算多普勒频偏的新算法,”天文学报,vol.41,no.4,pp.355-360,2000.
    [111]陈三宝,闫军, “基于小波变换的一种多普勒雷达目标识别方法,”武汉交通科技大学学报, vol.24,no.3,pp.233-236,2000.
    [112]张军,付强,肖怀铁,“脉冲多普勒雷达对运动目标回波信号的检测,”国防科技大学学报, vol.23,no.5,pp.53-58,2001.
    [113] 闫军,卢健,李伟,“多普勒雷达杂波背景下的一种目标分离方法,”武汉大学学报(信息科学版),vol.26,no.4,pp.320-324,2001.
    [114]程玉平,保铮,“一种改进的多普勒中心频率估计方法,”西安电子科技大学学报,vol.26,no.1,pp.44-48,1999.
    [115]汪源源,J.F.Peter,“多普勒信号分析技术的比较研究,”复旦学报(自然科学版),vol.35,no.1,pp.53-61,1996.
    [116]李忠良,“侦收多普勒雷达信号的分析处理,”上海航天,no.5,pp.14-17,2001.
    [117]张乃强,王威琪,汪源源,余建国,吴晓峰,刘斌,“超声多普勒信号准平稳分段的研究,”中国生物医学工程学报,vol.19,no.3,pp.342-347,2000.
    [118]贾永康,保铮,“利用多普勒信息的波达方向最大似然估计方法,”电子学报,vol.25,no.6,pp.71-76,1997.
    [119]张羽,汪源源,王威琪,余建国,“利用小波变换提取多普勒信号的最大频率,”复旦学报(自然科学版),vol.40,no.1,pp.29-34,2001.
    [120]张劲林,许荣庆,刘永坦,顾建政,“利用Wigner-Ville分布估计星载合成孔径雷达多普勒中心频率,”系统工程与电子技术,no.3,pp.15-18,1998.
    [121]黄浩学,吴嗣亮,“基于均匀圆阵的信号源DOA和多普勒频率估计算法,”电子学报,vol.29,no.5,pp.619-621,2001.
    [122]孙元鸿,“海上多普勒测速误差的理论研究,”现代雷达,no.2,pp.1-10,1994.
    [123]郭继杰,王清池,“水声扩谱通讯中的自适应多普勒补偿方法,”海洋技术,vol.20,no.3,pp.49-52,2000.
    [124]曲长文,“多普勒定位技术的研究,”舰船电子对抗,no.3,pp.1-5,1997.
    [125]吴敏,文必洋,赵汉青,“奇异值分解在海洋回波多普勒信息提取中的应用,”武汉大学学报(理学版),vol.47,no.5,pp.653-656,2001.
    [126]陈励军,“利用多普勒信息的多途被动定位方法,”声学技术,vol.17,pp.155-158,1998.
    [127]罗松,张云武,许江平,李苹, “多普勒效应对应用IMP算法估计目标方位的影响,”声学技术,vol.18,no.1,pp.32-34,1999.
    [128]曾娟,陈耀明,“线谱多普勒被动定位,”98全国声学学术会议论文集,pp.221-224,1998.
    [129]陈耀明, “舰船辐射噪声线谱的幅度起伏模型,”声学学报,vol.21(4增刊),pp.580-586,1996.
    [130]吴国清,李靖,“舰船噪声识别(II) 线谱的唯一性和稳定性,”声学学报,vol.24,no.1,pp.6-11,1999.
    [131]吴国清,陈永强,“Dopplerlet匹配投影在水下航行物测距测速中的应用,”声学学报(稿号:012466,已录用).
    [132]吴国清等, “水中目标的噪声倒谱测深测距方法,”中国,国防专利,00114709.92000—01—27.
    [133]张贤达,现代信号处理.北京:清华大学出版社,1995.
    [134] D. W. Griffin, J. S. Lim, "Signal estimation from modified short-time Fourier transform,"IEEE Trans. Acoust., Speech, Signal Processing, vol. 32, no. 4, pp. 236-243, 1984.
    [135] S. H. Nawab and T. F. Quatieri, "Short-time Fourier transform," In: J. S. Lim andA. V. Oppenheim (Eds.), Advanced Topics in Signal Processing. Englewood Cliffs, NJ:Prentice-Hall, pp. 289-337, 1988.
    [136] B. D. O. Anderson and J. B. Moore, Optimal filtering. Englewood Cliffs, NJ: Prentice-hall,1979.
    [137] D. L. Snyder, The state-variable approach to continuous estimation with applications toanalog communication theory. Cambridge MA: MIT Press, 1969.
    [138] B. Widrow and J. R. Glover, "Adaptive noise cancelling: Principles and applications,"Proc. IEEE, vol. 63, no. 12, pp. 1692-1716, 1975.
    [139] R. L. Streit and R. F. Barrett, "Frequency line tracking using hidden Markov models,"IEEE Trans. ASSP, vol. 38, no. 4, pp. 586-598, 1990.
    [140] I. Vincent, F. Auger, and C. Doncarli, "A comparative study between two instantaneousfrequency estimators," Proc. Eusipco-94, vol. 3, pp. 1429-1432, 1994.
    [141] J. C. Wood and D. T. Barry, "Radon transformation of time-frequency distributions foranalysis of multicomponent signals," IEEE Trans. Signal Processing, vol. 42, no. 11, pp.3166-3177, 1994.
    [142] J. C. Wood and D. T. Barry, "Linear signal synthesis using the Radon-Wigner transform,"IEEE Trans. Signal Processing, vol. 42, no. 8, pp. 2105-2111, 1994.
    [143] P. J. Bickel, "Minimax estimation of a normal mean subject to doing well at a point,"In: M. H. Rizvi, J. S. Rustagi, and Siegmund (Eds), Recent advances in statistics. NY:Academic Press, pp. 511-528, 1983.
    [144] D. L. Donoho and I. M. Johnstone, "Ideal spatial adaption by wavelet shrinkage,"Biometnka, vol. 81, no. 3, pp. 425-455, 1994.
    [145] G. H. Golub and C. F. Van Loan, Matrix computations. Baltimore, Maryland: JohnsHopkins University Press, 1983.
    [146] C. C. MacDuffee, The theory of matrices. Berlin: Springer, 1933.
    [147] B. De Moor and G. H. Golub, "Generalized singular value decompositions: A proposal fora standardized nomenclature," ESAT-SISTA report 1989-10, April 1989, Department ofElectrical Engineering, Katholieke Universiteit Leuven, Belgium. (Also Numerical Analysis Project Manuscript NA-89-04, Department of Computer Science, Stanford University.)
    [148] L. Autonne, "Sur les groupes lineaires, reels et orthogonaux," Bull. Soc. Math., France,vol. 30, pp. 121-133, 1902.
    [149] C. Eckart and G. Young, "A principal axis transformation for non-Hermitian matrices,"Null Amer. Math. Soc, vol. 45, pp. 118-121, 1939.
    [150] C. F. Van Loan, "Generalizing the singular value decomposition," SIAM J. Numer. Anal.,vol. 13, pp. 76-83, 1976.
    [151] C. C. Paige and M. A. Saunders, "Towards a generalized singular value decomposition,"SIAM J. Numer. Anal, vol. 18, pp. 398-405, 1981.
    [152] J. C. Doyle, "Analysis of feedback systems with structured uncertainties," Proc. IEE, vol.129, pp. 242-250, 1982.
    [153] K. V. Fernando and S. J. Hammarling, "A product induced singular value decomposition(PSVD) for two matrices and balanced realization," Proc. Conference on Linear Algebra inSignals, Systems and Controls, Society for Industrial and Applied Mathematics (SIAM),PA: Philadelphia, pp. 128-140, 1988.
    [154] H. Zha, "The restricted singular value decomposition ol matrix triplets," SIAM J. MatrixAnal. Appl, vol. 12, pp. 172-194, 1991.
    [155] H. F. Deprettere (Ed.), SVD and signal processing: Algorithm, applications and architectures. North Holland: Elsevier Science Publishers, 1988.
    [156] R. Vaccaro (Ed.), SVD and signal processing, II: Algorithms, analysis and applications.Netherlands: Elsevier Science Publishers, 1991.
    [157] M. J. Atallah, "On symmetry detection," IEEE Trans. Computers, vol. 34, no. 7, pp.663-666, 1985.
    [158] H. Zabrodsky, S. Pelega, and D. Avnir, "Symmetry as a continuous feature," IEEE Trans.Pattern Analysis and Machine Intelligence, vol. 17, no. 12, pp. 1154-1166, 1995.
    [159] G. Marola, "On the detection of the axes ol symmetry ol symmetric and almost symmetricplanar images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 1,pp. 104-108, 1989.
    [160]卢春雨,张长水,闻方,阎平凡,“基于主元分析的对称性检测,”电子学报,vol.27,no.5,pp.25-28,1999.
    [161]邹红星,王殿军,戴琼海,李衍达,“延拓矩阵的奇异值分解,”科学通报,vol.45,no.14,pp.1560-1562,2000.
    [162] H. Zou, D. Wang, Q. Dai, and Y. Li, "SVD for row or column symmetric matrix," Chinese Science Bulletin, vol. 45, no. 22, pp. 2042-2044, 2000.
    [163]邹红星,王殿军,戴琼海,李衍达,“延拓矩阵的奇异值分解,”电子学报,vol.29,no.3,pp.289-292,2001.
    [164] V. C. Klema and A. J. Laub, "The singular value decomposition: Its computation andsome applications," IEEE Trans. Automatic Control, vol. 25, pp. 164-176, 1980.
    [165] G. W. Stewart, Introduction to matrix computation, New York: Academic Press, 1973.
    [166] G. W. Stewart, "Perturbation theory for singular value decomposition," In: SVD andsignal processing, II: Algorithms, analysis and applications (Ed. R. Vaccaro). Netherlands:Elsevier Science Publishers, 1991.
    [167] H. Weyl, "Das asymptotische verteilungsgestez der eigenwert linearer partieller differen-tiagleichungen (mit einer Anwendung aul der Theorie der Hohlraumstrahlung)," Mathe-matische Annalen, vol. 71, pp. 441-479, 1912.
    [168] J. G. Carbonell, Y. Yang, R. E. Frederking, et al., "Translingual information retrieval: Acomparative evalution," IJCA'97, pp. 708-714, 1997.
    [169] V. Vapnik, The nature of statistical learning theory. New York: Springer, 1995.
    [170] 路海明,徐晋晖,卢增祥,李衍达,“一种基于奇异值分解的双语信息过滤算法,” 中文信息学报,, vol. 13, no. 3, pp. 18-25, 1999.
    [171] G. Salton, Automatic text processing: The transformation, analysis, and retrieval of information by computer. Pennsylvania: Addison-Wesley, 1989.
    [172] G. W. Stewart, "The decompositional approach to matrix comuptation," Computing in Science & Engineering, vol. 2, no. 1, pp. 50-59, 2000.
    [173] B. N. Parlett, "The QR algorithm," Computing in Science & Engineering, vol. 2, no. 1, pp. 38-42, 2000.
    [174] S. Prasad and B. Chandna, "Direction-ol-arrival estimation using rank revealing QR factorization," IEEE Trans. Signal Processing, vol. 39, no. 5, pp. 1224-1229, 1991.
    [175] X. Li and H. Fan, "QR factorization based blind channel identification and equalization with second-order statistics," IEEE Trans. Signal Processing, vol. 48, no. 1, pp. 60-69, 2000.
    [176] A. Pandian, K. Parthasarathy, and S. A. Soman, "Towards faster Givens rotations based power system state estimator," IEEE Trans. Power Systems, vol. 14, no. 3, pp. 837-843, 1999.
    [177] M. Martone, "Complex scaled tangent rotations (CSTAR) for fast space-time adaptive equalization of wireless TDMA", IEEE Trans. Communications, vol. 46, no. 12, pp. 1587-1591, 1998.
    [178] C. J. Zarowski, X. Ma, and F. W. Fairman, "QR-factorization method for computing the greatest common divisor of polynomials with inexact coefficients," IEEE Trans. Signal Processing, vol. 48, no. 11, pp. 3042-3051, 2000.
    [179] X. W. Chang, C. C. Paige, and G. W. Stewart, "Perturbation analyses for the QR factorization," SIAM J. Matrix Anal. Appl, vol. 18, no. 3, pp. 775-791, 1997.
    [180] J. G. Sun, "Perturbation bounds for the Cholesky and QR factorization," BIT, vol. 31, pp. 341-352, 1991.
    [181] J. G. Sun, "On perturbation bounds for the QR factorization," Linear Algebra Appl., vol. 215, pp. 95-112, 1995.
    [182] M. B. Green, J. H. Schwarz, and E. Witten, Superstring theory. Cambridge: Cambridge University Press, 1988.
    [183] M. Kaku, Introduction to superstrings and M-theory. New York: Springer, 1999.
    [184] P. C. W. Davies and J. Brown (Eds.), Superstrings—A theory of everything? Cambridge: Cambridge University Press, 1988.
    [185] A. V. Oppenheim and R. W. Schafer, Digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.
    [186] D. Takahashi, "An extended split-radix FFT algorithm," IEEE Signal Processing Lett, vol. 8, no. 5, pp. 145-147, 2001.
    [187] D. H. Wolpert and W. G. Macready, No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe, NM: The Santa Fe Institute, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700