用户名: 密码: 验证码:
希尔伯特—黄变换局瞬信号分析理论的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
希尔伯特-黄变换(HHT)是上世纪末Huang等人首次提出的一种新的信号分析理论。它的主要创新是固有模态(IMF)概念的提出和经验筛法(EMD)的引入。通过EMD,将信号分解成IMF(一般为有限数目)的和,对每个IMF进行Hilbert变换就可以获得有意义的瞬时频率,从而给出频率变化的精确表达。信号最终可以被表示为时频平面上的能量分布,称为Hilbert谱。进而还可以得到信号的边际谱。HHT是基于信号局部特征的和自适应的,因而是高效的。它特别适用于分析大量频率随时间变化的非线性、非平稳信号。变化的频率是现实生活中人们经常直观感觉到的现象,HHT的根本目的就是描述和揭示这种时变频率现象及其规律,即求信号的瞬时频率。但为了获得信号某一时刻的瞬时频率值,HHT自适应地利用了信号在该时刻的局部信息。本文将这种表现为瞬时值,实际上自适应地隐含了信号局部信息的量称为局瞬量,将这种获得局瞬量的信号分析理论称为局瞬信号分析。为了体现这一特点,本文将HHT进一步称为希尔波特-黄变换局瞬信号分析(HHT-LISA)。
    HHT-LISA具有重要的理论价值和广阔的应用前景,已在一些实际工程领域中获得了有效的应用。但HHT的第一篇公开文献直到1998年才发表,因而这一理论出现的时间还很短暂,其完善和发展还有诸多工作要做。本文在Huang等人的前期研究工作基础上,采用物理意义、理论推导和编程验证相结合的研究方法,对HHT-LISA展开了较为深入和全面地研究,取得了一定的研究成果,将HHT-LISA理论向前推进了一步。
    HHT-LISA是现阶段一个全新的研究课题。对变化频率的研究虽然很早就已经开始,但后来的工作大都转向通过对信号的时频联合分析间接揭示这一现象,且都采用积分方法,它们的最终理论依据都基于傅里叶分析。傅里叶分析是发展最早和最成熟的信号分析理论,也是首先采用频谱分析信号的方法。但傅里叶分析中的频率是用全局的正弦波定义的,与时间无关。用傅里叶变换分析时变频率的信号会出现虚假信号和假频等缺陷。用基于傅里叶分析理论的时频联合分析也必然遭受同样的局限。并且,由于受Heisenberg不确定原理的限制,时频分析不能达到精确描述频率随时间变化的目的。HHT-LISA直接研究瞬时频率和对其规律进行精确地描述,且采用微分方法,因而其应用价值大为提高。当然研究难度也大为增加。为了对这一全新的课题进行彻底而全面的研究,在对HHT-LISA进行直接
    
    介绍和研究之前,本文首先对信号分析、傅里叶分析和时频分析进行了回顾。深入分析了傅里叶分析和时频分析与人们直观感觉上的差异及其原因。这些工作表明了人们对瞬时频率分析理论的渴望和研究的困难。
    之后,本文对HHT提出的历史背景进行了较详细地回顾。全面地介绍了HHT的主要依据、基本概念、基本方法、分析步骤、和分解的理想模型等;分析了HHT的明显创新性。在这些回顾的基础上,提出了“局瞬”这一新概念,从而深刻和准确地揭示了瞬时频率概念的本质属性,暗示了瞬时频率分析的方法和途径,阐释了长期以来人们感到瞬时频率概念难以把握的根源,也体现了HHT的根本特点。针对IMF的描述性定义,提出了IMF应满足的本征条件,从而初步用数学关系式给出了IMF的数学模型,基于该模型较为成功地论证了IMF局部对称性的必要性和用极值点拟合IMF包络线的合理性。针对经验筛法的理论还不够完善问题,提出和论证了Hilbert变换的局部乘积定理,该定理进一步给出了经验筛法的理论依据。提出了“自适应多分辨”和“恒定多分辨”概念,这两个概念概括了经验筛法和小波变换的根本区别。另外还总结了HHT的十四个特点;给出了Hilbert谱的进一步表示;改善了经验筛法的终止条件;对瞬时频率的算法作了比较,提出了选择恰当方法的意见等。
    包络线和均值曲线的拟合是HHT-LISA的关键问题,它在很大程度上将影响到新理论和新方法的成熟和推广应用,因而对其研究具有重要意义。本文首先分析出了HHT-LISA中曲线拟合所要求的性质;总结了文献中采用的三次样条插值法的不足,因而引入了一种光滑性虽然更差,但自适应更好的插值法——阿克玛法。然后基于抛物线参数样条拟合法的原理,提出了一种新的插值法——分段幂函数法,用三种插值法的仿真试验和比较说明了新插值法的优点。但以上这些曲线拟合法都只具有低阶光滑性,不能提高光滑性,或者,为了提高光滑性,就会造成更为严重的过冲和欠冲问题;这些方法也不是从频率要求方面出发提出的。为了更深入地研究和解决HHT-LISA中的曲线拟合问题,本文对非均匀采样信号的重构算法进行了研究,在分析了文献中的一些非均匀采样信号重构算法的不足之后,基于内插函数,提出了一定带宽条件下非均匀采样信号的一种重构算法——解方程组法,这一方法简单有效。仿真试验验证了这一重构算法的正确性。
    筛法是HHT-LISA的核心问题,它需要得到信号的均值曲线。Huang等人在提出HHT时首先采用的方法是用三次样条曲线分别拟合信号的极大值和极小值点作为上、下包络线,对上、下包络线求平均得到均值曲线。这种通过拟合包络线得到均值曲线的方法每次筛选都需要经过两次曲线拟合,因而很费机时,也容易造
    
    成过
The Hilbert-Huang transform (HHT) is a new theory, which is first developed by Huang et al at the end of last century, for the signal analysis. The main innovations embodied in this method are the present of the concept of the intrinsic mode (IMF) and introduction of the method of empirical sifting method (EMD). A signal is first decomposed into often finite IMFs by the EMD, and then, with the Hilbert transform, the meaning instantaneous frequencies of every IMF is obtained which give precise description of the varying frequency. The final presentation of the result is an energy-frequency-time distribution, designated as the Hilbert spectrum. We can also further get marginal spectrum of the signal. The HHT is highly efficient since it is based on the local characteristic of a signal and adaptive. It is very applicable to analyze nonlinear and non-stationary signal which frequency is variable with time. The varying frequency is a natural phenomenon in the actual life that is often felt by people. The essential aim of the HHT is to describe this phenomenon and uncover its law, that is, to look for the instantaneous frequency of a signal. However, the HHT adaptively takes advantage of the local information of a signal at a certain time to obtain the instantaneous frequency of the signal at that time. The amount, which appears an instantaneous value but in fact has adaptive local information of a signal, is called Local-instantaneous amount in this paper, and the signal analysis theory by which some Local-instantaneous amounts is obtained is called Local-instantaneous signal analysis. For showing this characteristic, this paper further calls the HHT as the Hilbert-Huang transform Local-instantaneous signal analysis (HHT-LISA).
    The HHT-LISA has important theoretical value and widely applying perspective. It has effectively been applied in some actual engineering problems. However, this theory appears very late since its first public literature wasn't published until 1998. Many works need to be done to perfect and improve it. Based on the former works done by Huang et al, using the study method of jointing physical meaning, theoretical induction and program validation, this paper relatively deeply and thorough studied the HHT-LISA. Some achievements are achieved and the HHT-LISA was further perfected.
    The HHT-LISA is a new problem in all at present moment. Although the studies on the varying frequency were begun very early, most of these subsequent works are translated to indirectly uncover this phenomenon by time-frequency joint analysis and
    
    adopt integral method to analyze it. These works are all based on the Fourier analysis theory. The Fourier theory is earliest and most perfect one for signal analysis, and it also first adopted frequency spectrum analysis method. However, the frequency of the Fourier analysis is independent of time since it is defined by a whole sine signal. Fourier analysis will suffer the shortcomings such as dummy signal and dummy frequency. Certainly, the time-frequency joint analysis of a signal based on the Fourier analysis theory will also suffer the same shortcomings. They can't also arrive at the aim to precisely describe the law of varying frequency with time because of the Heisenberg indefinite principle. The HHT-LISA directly studies instantaneous frequency and precisely describes its law. Furthermore, it adopts differential method to analyze it, so its applied value is largely increased. Of course the difficult degree is also largely increased. In order to deeply and detailedly study this all-new problem, this paper first gives a introduction to the historical perspective of signal analysis, Fourier analysis and time-frequency analysis before direct introduction and study on the HHT-LISA. The difference between people's straight feel and the result of Fourier analysis and time-frequency analysis and its reason are deeply analyzed in this paper. These works shows people's thirst for the instantaneous frequency analysis theory and the difficulty to obtain it.
    Subsequent
引文
[1] J.Carson and T.Fry, Variable Frequency Electric Circuit Theory with Application to the Theory of Frequency Modulation, J.Bell System Tech., 1937, 16:514-540
    [2] 邹红星,周小波,李延达,时频分析:回溯与前瞻, 电子学报,2000,28(9):78-84
    [3] N.E.Huang, Computer Implicated Empirical Mode Decomposition Method, Apparatus, and Article of Manufacture, U.S., U.S. Provisional Application, No.60/023,822, 1996
    [4] N.E.Huang, The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis, J. Proc. R. Soc. Lond. A, 1998, 454:903-995
    [5] 钟佑明,秦树人,汤宝平,一种振动信号新变换法的研究,振动工程学报(已录)
    [6] 陈后金,李丰,信号与系统,北京:中国铁道出版社,1998
    [7] 阎鸿森,王新凤,田惠生,信号与线性系统,西安:西安交通大学出版社,1999
    [8] 谭善文,多分辨希尔波特-黄(Hilbert-Huang)变换方法的研究,重庆:重庆大学博士学位论文,2001
    [9] A.V.Oppenheim, A.S.Wilsky, and I.T.Young, Signal and Systems, Prentice-Hall, Inc., 1993
    [10] A.V.奥本海姆等箸,刘树棠译,信号与系统,西安:西安交通大学出版社,1985
    [11] 张贤达,保铮,非平稳信号分析与处理,北京:国防工业出版社,1999
    [12] K.C.Chui, Approximation Theory and Functional Analysis, Boston, Academic press, 1991
    [13] C.D.Champency, A Handbook of Fourier Theorems, Cambridge university press, 1987
    [14] Shie Qian and Dapang Chen, Joint Time-Frequency Analysis, IEEE signal Processing Magazine, 1999, 16(2): 52-67
    [15] 秦前清,杨宗凯,实用小波分析,西安:西安电子科学出版社,1994
    [16] R.L.Rabiner, W.R.Schafer, Digital Processing of Speech Signals, Englewood Cliffs, NJ: Prentice Hall, 1978
    [17] R.Kooening, K.H.Dunn, Y.L.Lacy, The Sound Spectrograph, J. Acoust. Soc.Amer, 1946,18:19-49
    [18] H.Hermens,K.Boom,G.Zilvold, The Clinical Use of Surface ECG. Electromyography, Clin. Neurophys, 1984, 24:243-246
    [19] F.Casacuberta, E.Vidal, A Nonstationary Model for Analysis of Transient Speech Signals, IEEE on ASSP, 1987, 35(2):226-228
    [20] W.Gersch, Modeling Multivariate Covariance Nonstationary Time Series and Their Dependency Structure: an Application to Human Epileptic Even EEG Analysis, IEEE on ICASSP, 1985:401-406
    
    
    [21] W.S.Knight, R.G.Pridham, S.M.Kay, Digital Signal Processing for Sonar, Proc.IEEE 1981, 69(11): 1451-1506
    [22] V.C.Chen, S.Qlan, Joint Time-Frequency Transform for Radar Range-Doppler Imaging, IEEE Trans. On Aerosp. Elec. Syst., 1998, 34(2): 486-499
    [23] P.Rao, F.Talor, Real-Time Monitoring of Vibration Using the Wigner-Distribution, Sound and Vibration, May.1990: 22-25
    [24] C.H.Page, Instantaneous Power Spectrum. J.Appl. Phys., 1952, 23:103-106
    [25] L.Cohen, Time Frequency Analysis, Englewood Cliffs, NJ:Prentice-Hall, 1995.
    [26] D.Gabor, Theory of Communication, J. Inst. Elec. Eng., 1946, 93:429-457
    [27] R.K.Potter, et al, Visible Speech, New York: Van Nostrand, 1947
    [28] J.W.Pitton, K.Wang, B.Juang, Time-frequency Analysis and Auditory Modeling for Automatic Recognition of Speech, Proc.IEEE, 1996, 84(9): 1199-1215
    [29] J.M.Colombi,et al, Auditory Model Representation and Comparison for Speaker Recognition, IEEE on ICASSP, 1993:1914-1917
    [30] J.Pitton, L.Atlas, P.Loughlin, Applications of Positive Time-frequency Distributions to Speech Processing, IEEE Trans. On Speech Audio Process, 1994, 2(4): 554-566
    [31] K.Nath, Y.Lee, H.Silverman, A Time-varying Analysis Method for Rapid Transitions in Peech. IEEE Trans. On Signal Process, 1991, 39:815-824.
    [32] M.Barland, J.M.Bruneau, M.L.Dara, Sonar Reverberation Synthesis Using Nonstationary Autoregressive Modeling, IEEE on ICASSP, 1990: 2935-2938
    [33] G.C.Gaunaurd, H.C.Strifors, Signal Analysis by Means of Time-frequency (Winger-type) Distribution-Application to Sonar and Radar Echoes. Proc. IEEE, 84(9),1996: 1231-1248
    [34] 黄得双,毛二可,韩月秋,小波变换应用于雷达信号处理的潜力和展望,北京理工大学学报,1995,15(2):186-191
    [35] 张中民,卢文祥,杨叔子等,基于小波系数包络谱的滚动轴承故障诊断,振动工程学报,1998,11(1):65-69
    [36] 徐金梧,徐科,小波变换在滚动轴承故障诊断中的应用,机械工程学报,1997,9(2):51-55
    [37] D.P.McFadden and T.G.Zheng, Application of the Wavelet Transform to the Early Detection of Gear Failure by Vibration Analysis. Report OUEL1999/93 Department of Engineering Science, University of Oxford, 1993
    [38] 孟庆丰等,匹配追踪信号分解域网傅机械故障特征提取技术研究,西安交通大学学报,2001,35(7):7696-699
    林京,屈梁生,基于连续小波变换的信号检测技术与故障诊断,机械工程学报,2000,
    
    [39] 36(12):95-100
    [40] 傅勤毅等,滚动轴承故障特征的小波提取方法,机械工程学报,2001,37(2):30-32
    [41] 徐科,杨德斌,徐金梧,小波变换在齿轮局部缺陷诊断中的应用,机械工程学报,1999,35(3):105-107
    [42] J.W.Staszewski, Application of the Wavelet Transform to Fault Detection in a Gear, Mechanical Systems and Signal Processing, 1994,8(3):289-307
    [43] 耿中行,屈梁生,小波包的平移算法与振动信号处理,振动工程学报,1996,9(2):145-152
    [44] G.T.Zheng, P.D.McFadden, A Time-frequency Distribution for Analysis of Signals with Transient Components and Its Application to Vibration Analysis. Transaction of the ASME, July 1999,121:328-333
    [45] D.E.Newland, Wavelet Analysis of Vibration, part 1:Theory, J. Vibration and Acoustics, 1994,116(10): 409-416
    [46] D.E.Newland, Wavelet Analysis of Vibration, part 2:Wavelet Maps, J. Vibration and Acoustics, 1994,116(10):417-425
    [47] I.G.Zheng,,D.P.McFadden, Windows Fourier Transform of Mechanical Vibration Signal. Report OUEL2036/94 Department of Engineering Science, University of Oxford, 1993
    [48] 章珂,刘贵忠等,二进小波变换方法的地震信号分时分频去噪处理,地球物理学报,1999,16(2):94-99
    [49] L.Stankovic, V.Katkovnik, The Wigner Distribution of Noisy Signals with Adaptive Time-frequency Varying Window. IEEE Trans. On Signal Processing, 1999,47(4):1099-1108.
    [50] V.Chen, CFAR Detection and Extraction of Unknown Signal in Noise with Time-frequency Gabor Transform, Proc. SPIE on Wavelet Application, April, 1996, 2762:285-294.
    [51] B.Boashash, B.Ristic,Polynomial Time-Frequency Distributions and Time-varying Higher-order Spectra: Application to the Analysis of Multicomponent FM Signal and to the Treatment of Multiplicative Noise, Signal Processing, 1998,67(1):1-23
    [52] H .Guo, H.Odegard, E.J.Burrns, et al, Noise Reduction Using an Undecimated Discrete Wavelet Transform, IEEE Trans. On Signal Processing Letters, 1996,3(1):10-12
    [53] 何焰兰,苏勇,高永楣,一种自适应小波去噪法, 电子学报,2000, 28(10):138-140
    [54] Y.Yu, B.J.Weaver,et al, Wavelet Transform Domain Filters: a Spatial selective Noise Filtration Technique, IEEE Trans. On Image Processing, 1994, 3(6):747-757
    [55] 孔祥维,王敬,宫平,基于小波变换的舰船雷达信号去噪方法,大连理工大学学报,2000, 40(3):371-374
    
    
    [56] M.G.Amin, Interference Mitigation in Spread Spectrum Communication Systems Using Time-frequency Distributions, IEEE Trans. On Signal Processing, 1997,45(1):90-101
    [57] S.Barbarossa, A.Scaglione, Adaptive Time-frequency Cancellation of Wideband Interferences in Spread-spectrum Communications Based on Time-frequency Distributions, IEEE Trans. On Signal Processing, 1999, 47(4): 957-965.
    [58] V.Chen and S.Qian, Time-frequency Transform vs Fourier Transform for Radar Imaging, Proc. IEEE SP Intrnational Symposium on Time-frequency and Time-Scale Analysis, June 1996:389-392
    [59] L.M.Bernardo, D.D.Soates, Fractional Fourier transform and imaging, J.Opt.Soc.Amer.A, 1994,110:517-522
    [60] G.J.Daugman, Complete Discrete2-D Gabor Transforms by Neural Networks for Image Analysis and Compressions, IEEE Trans. Acoust., Speech,Signal Processing, 1988,36:1169-1179
    [61] T.Ebrahimi, M.Kunt, Image Ccompression by Gabor Expansion, Opt.Eng., 1991,30:873-880
    [62] K.Kohlmann, Corner Detection In natural Images Based on the 2-D Hilbert Transform, Signal Processing, 1996,48:225-234
    [63] M.Porat, V.Y.Zeevi, The Generalized Gabor Scheme of Image Representation in Biological and Machine Vision, IEEE Trans. Patt. Anal. Mach. Intell, 1988, 10:452-468
    [64] D.J.Willasenor, B.Belzer, J.Liao, Wavelet Filter Evaluation for Image Compression, IEEE Trans. Image Processing, 1995,4:1053-1060
    [65] B.Fridlander and B.Porat, Detection of Transient Signal by the Gabor Representation, IEEE Trans. On Acoust., Speek, Signal Processing, 1989, 37(2):169-180
    [66] 范中,田立生,利用子波变换检测瞬时信号,电子学报,1996,24(1):78-82
    [67] B.Friedlander, B.Porat, Detection of Transient Signals by Gabor Representation, Acoust., Speech,Signal Processing, 1989, 37:169-179
    [68] W.Li, Wigner Distribution Method Equivalent to Dechirp Method for Detecting a Chirp Signal, IEEE Trans. Acoust., Speech,Signal Processing, 1987,35:1210-1211
    [69] 李惠粉,蒋向前,李住,小波理论的发展及其在表面功能评定中的应用,现代计量测试 ,2001,5:5-8
    [70] 陈庆虎等, 小波滤波的频率结构分析及其在表面形貌分析中的应用,武汉交通大学学报,1998,22(3):231-233
    [71] 陈庆虎,李柱,表面粗糙度评定的小波基准线,计量学报,1998,19(4):254-257
    [72] 陈庆虎,李柱,表面粗糙度提取的小波频谱法,机械工程学报,1999,35(3):541-543
    Qinghu Chen, Shinian Yang, Zhu Li, Surface Roughness Evaluation by Using Wavelets
    
    [73] Analysis, Precsion Engineering, 1999,23:209-212
    [74] X.Q.Jiang, L.Blunt and K.J.Stout, Development of a Lifting Wavelet Representation for Characterization of Surface Topography, Proc. R. Soc. Lond. A, 2000,456:2283-2313
    [75] P.Bonato, M.Knaflitz, Time-frequency Analysis of Surface Myoelectric Signal Recorded during Dynamical Contractions, IEEE on Eng. Med. Biol. Mag., 1996, 12:102-110
    [76] Y.Wang, H.Ling, V.C.Chen, ISAR Motion Compensation Via Adaptive Joint Time-Frequency Technique, IEEE Trans. On Aerospace Electron. Sys., 1998, 34(2):36-43
    [77] F.Laterza, G.Olmo, Analysis of EMG Signal by Means of the Matched Wavelet Transform, Electron Lett.vol. 1997, 33:357-359
    [78] L.M.Hilton, Wavelet and Wavelet Packet Compression of Electrocardiograms, IEEE Trans. Biomedical Eng., 1997, 44:394-401
    [79] R.Sclabassi, et al, Time-frequency Domain Problems in the Neurosciences. In: Time-frequency Signal Analysis-Methods and Application(Ed. By B.Boashash), New York: Longman Cheshire, 1991
    [80] G.Olmo, F.Laterza, L.Lo Presti, Matched Wavelet Approach in Stretching Analysis of Electrically Evoked Surface EMG Signal, Signal Processing, 2000, 80:671-681
    [81] M.Unser, A.Aldroubi, A Review of Wavelets in Biomedical Applications. Proc. IEEE, 1996, 84:626-638
    [82] 马金奎等,基于小波分析的滚动轴承参数识别研究,机械工程学报,2000,36(5):81-88
    [83] 邹红星,周小波,李衍达,在不同噪声背景下Dopplerlet变换在信号恢复中的应用,电子学报,2000,28(9):1-4
    [84] K.Ramchandran, M.Vetterli and C.Herley, Wavelet, Subband Coding, and Best Bases, Proc. IEEE, 1996, 84:541-560
    [85] M.User, Texture Classification and Segmentation Using Wavelet Functions, IEEE Trans. On Imaging Processing, 1995, 4:1549-1560
    [86] 杨志家,赵光宙,一种定量估计混沌信号中信噪比的方法,信号处理,1999,15(3):226-229
    [87] 张子瑜等,基于Hough变换的任意时频分布线条特征提取,电子学报,2001,29(4):433-435
    [88] P.V.C. Hough, Method and Means for Recognizing Complex Patterns, U.S. Patent 3069654,1962
    [89] H.D.Ballard, Generalizing the Hough Transform to Detection Arbitrary Shapes, Pattern Recognition, 1995, 37(5): 1582-1588
    S.G.Mallat, S.Zhong, Singularity Detection and Processing with Wavelet, IEEE Trans. On IT,
    
    [90] 1992,38(2): 617-643
    [91] S.S.Abeysekera, B.Boashash, Methods of Signal Classification Using the Imagines Procedured by the Wigner-Ville Distribution, Pattern Recognition Letters, 1991,12:717-729
    [92] V.Namias, The Fractional Fourier Transform and Its Application in Quantum Mechanics, J.Inst. Math. Its Appl., 1980, 25:241-265
    [93] B.Samimy, G.Rizzoni, Mechanical Signature Analysis Using Time-frequency Signal Processing: Application to Internal Combustion Engine Knock Detection, Proc. IEEE, 1996, 84:1330-1343
    [94] M.H.Teager, Some Observations on Oral Air Flow during Phonation, IEEE Trans. Acoust., Speech, Signal Processing, 1980,28:599-601
    [95] A.V.Vecchiaa, Periodic Autoregressive-moving Average (PARMA) Modeling with Applications to Waterresources, Water Resources Bull, 1985, 21:721-730
    [96] V.Namias, The Fractional Order Fourier Transform and Its Application to Quantum Mechanics, J. Inst. Math. Applicat. 1980, 25:241-265
    [97] 王国利,郝艳捧,李彦明,基于自适应谱的局部方电信号时频特性分析,西安交通大学学报,2001,35(8):790-794
    [98] 方力先,陈仲仪,小波变换在反应堆跌落物质梁估计中的应用研究,机械工程学报,2000, 36(1):1-4
    [99] 林敏,陈希武,周兆经,基于正交小波包的瞬时频率检测,计量学报,2000,21(3):227-231
    [100] 李建平,小波分析与信号处理--理论、应用及软件实现, 重庆:重庆出版社,1997,12:104-124
    [101] B.H.Barbara, The World According to Wavelets: the Story of a Mathematical Technique in the Making, A K Peters Ltd., 1998:90-95
    [102] E.P.Wigner, On the Quantum Correction for Thermodynamic Equilibrium, Physical Review, 1932, 40:749-759
    [103] J.Ville, Theorie et Applications de La notion de Signal Analytique, Cables et Transmission, 1948, 2A: 61-74
    [104] C.H.Page. Instantaneous Power Spectra., J. Appl.Phys.,1952, 23:103-106
    [105] L.Cohen, Time-frequency Distributions-A Review, Proc. IEEE, 1989,77:941-981.
    [106] L.Cohen, Generalized Phase-space Distribution Functions, J. Math. Phys., 1966, 7:781-786
    [107] J.Morlet, G.Arens, E.Fourgeau, and D.Giard, Wave Propagation and Sampling Theory--Part Ⅱ: Sampling Theory and Complex Waves, Geophysics, 1982, (2):222-236
    S.Mann, S.Haykin, Chirplets and Wavelets: Novel Time-frequency Methods, Electronic
    
    [108] Letters, 1992, 28:114-116
    [109] D.Mihovilovic, R.N.Bracewell, Whistler Analysis in the Time-frequency Plane Using Chirplets, J. Geophysical Reasearch, 1992,97:17 199-17 204
    [110] S.G.Mallat, Zhifeng Zhang, Matching Pursuits with Time-frequency Dictionaries, IEEE Trans. Signal Processing, 1993,41(12): 3397-3415.
    [111] 石钧,多小波:理论和应用,信号处理,1999,15(4):329-334
    [112] V.Strela, Multiwavelets: Theory and Application. Doctoral thesis, U.S., Massachusetts Institude of Technology, 1996.
    [113] 易光初,程俊,信号的广义时频表示,电子学报,1993,21(10):20-26
    [114] L.Auslander, C.Buffalano, A comparison of the Using a bank of the Gabor and Short-time Fourier Transform for Signal Detection and Feature Extraction in Noisy Environment, Proc. SPIE Conf., Nov. 1990,1348:230-247
    [115] M.J.Bastiaans, Gabor's Expansion of a Signal into Gaussian Elementary Signals, Proc. IEEE, 1980,68:358-539
    [116] 张贤达,现代信号处理,北京:清华大学出版社,1999
    [117] I.H.Choi,J.W.Williams, Improved Time-frequency Representation of Multicomponent Signals Using Exponential, IEEE Trans. Acoust., Speech, Signal Processing, 1989,37:862-871.
    [118] J.Jeong,J.W.Williams, Kernel Design for Reduced Interference Distributions, IEEE Trans. Signal Processing,1992,40:402-412
    [119] J.W.Williams, J.Jeong, New Time-frequency Distributions: Theory and Application, In: Proc. IEEE ICASSP-89, 1989: 1243-1247
    [120] Y.Zhao, Y Atlas, Marks R. The Use of Cone-shaped Kernels for Generalized Time-frequency Representations of Nonstationary Signals, IEEE Trans. Acoust., Speech, Signal Processing, 1990,38:1084-1091.
    [121] F.Auger, P.Flandrin, Improving the Readability of Time-frequency and Time-scale Representations by the Reassignment Method, IEEE Trans. Signal Processing, 1995, 43:1068-1089
    [122] L.Cohen T.E.Posch, Positive Time-frequency Distribution Functions, IEEE Trans. Acoust., Speech, Signal Processing, 1985, 33:31-38
    [123] 邹红星等, 不含交叉干扰且具有WVD聚集性的时频分布之不存在性,中国科学(E辑),2001,31(4):348-354
    [124] L.B.Alemedia, The Fractional Fourier Transform and Time-frequency Representations, IEEE Trans. Signal Processing, 1994, 42:3084-3091
    
    
    [125] A.C.McBride, F.H.Kerr, On Namias's Fractional Fourier Transform, IMA J. Appl.Math., 1987, 39:159-175
    [126] 崔锦泰著,程正兴译,小波分析导论,西安:西安电子科技大学出版社,1994
    [127] Youming Zhong, Shuren Qin and Baoping Tang, A Virtual Wavelet Analyzer Based on the Direct Algorithm, The 5th ISMTII (international confference), Kailuo, Sept. 2001:325-340
    [128] 钟佑明,汤宝平,秦树人,基于直接算法的虚拟式小波变换信号分析仪,重庆大学学报(自然科学版),2002,25(3):10-14
    [129] S.Qian, D.Chen, Signal Representation Using Adaptive Normalized Gaussian Function, Signal Processing, 1994, 36(1): 1-11
    [130] D.Mihovilovic,R.N.Bracewell, Adaptive Chirplet Representation of Signals on Time-frequency Plane, Electronics Letters, 1991,27:1159-1161
    [131] S.Mann, S.Haykin, The Chirplet Transform: Physical Considerations, IEEE Trans. Signal Processing, 1995,43:2745-2761
    [132] R.G.Baraniuk, D.L.Jones, Wigner-based Formulation of the Chirplet Transform, IEEE Trans. Signal Processing, 1996, 44:3129-3135
    [133] 殷勤业,倪志芳,钱世锷,自适应旋转投影分解法,电子学报,1997,25(4):52-58
    [134] A.Bultan, A Four-parameter Atomic Decomposition of Chirplets, IEEE Trans. Signal Processing, 1999, 47(3):731-745
    [135] 王盛利等,一种新的变换--匹配傅立叶变换,电子学报,2001,29(3):403-405
    [136] 钟佑明,秦树人,汤宝平,傅立叶变换与小波变换的统一数学模型,机械工程学报,(已录)
    [137] B.Boashash, Estimating and Interpreting The Instantaneous Frequency of a Signal-Part 1:Fundamentals, Proc. IEEE, April 1992, 80(4): 520-538
    [138] B.Van der Pol, The Fundamental Principles of Frequency Modulation, Proc. IEEE, 1946,93(Ⅲ): 1002-1016
    [139] J.Shekel, Instantaneous' Frequency, Proc. IRE 1953,41: 548
    [140] L.Mandel, Interpretation of Instantaneous Frequencies, Amer.J.Phys, Oct.1974,42:840-846
    [141] B.M.Priestley, Nonlinear and Non-stationary Time-series Analysis, London, UK:Academic Press,1988
    [142] L.Cohen.L and C.Lee, Instantaneous Frequency, Its Standard Deviation, and Multicomponent Signals, Proc. SPIE, 1988, 975:186-208,
    [143] G.Jones and B.Boashash, On the Concepts of Instantaneous Frequency, Time-delay, Instantaneous Bandwidth, and their Relation to Time-frequency Distribution, Proc IEEE ICASSP'90, 1990: 2467-2470
    
    
    [144] A.Rihaczek, Signal Energy Distribution in Time and Frequency, IEEE Trans. Inform. Theory, 1968, 14:369-374
    [145] D.Vakman, On the Definition of Concepts of Amplitude, Phase and Instantaneous Frequency of a Signal, Trans. Radio Eng. Electron. Phys., 1972.17(5):754-759
    [146] D.Vakman and L.Vainshtein, Amplitude, Phase, Frequency-fundamental Concepts of Oscillation Theory, Sov. Phys. Usp., 1978, 20:1002-1016
    [147] Oppenheim et al, Nonliear Filtering of Multiplied and Convolved Signals, IEEE Tans. Audio Electroacoust, 1968,16(3): 437-466.
    [148] L.Fink, Relations between the Spectrum and Instantaneous Frequency of a Signal [English translation], Problemy Peredachi Informatsii, 1966, 2:26-38
    [149] M.Gupta, Definition of Instantaneous Frequency and Frequency Measurability, Amer. J. Phys., 1975, 43:1087-1088
    [150] W.P.Torres and T.F.Quatieri, Estimation of Modulation Based on FM-to-AM Transduction:Two-Sinusoid Case, IEEE Trans. SP, 1999, 47(11):3084-3097,
    [151] D.Wei and A.Bovik, On the Instantaneous Frequencies of Multicomponent AM-FM Signals, IEEE Signal Processing Lett., 1998,5: 84-86
    [152] P.M.Oliveira and N.Barroso, Instantaneous Frequency of Multicomponent Signal. IEEE Signal Processing Lett., 1999,6: 81-83
    [153] N.E.huang, Z.Shen, S.R.Long, A new View of Nonlinear Water Waves: the Hilbert Spectrum, J. Annu. Rev. Fluid Mech., 1999, 31:417-457
    [154] N.E.huang, H.H.Shin,S.R.Long, The Ages of Large Amplitude Coastal Seiches on the Caribbean Coast of Puerto Rice, J.Phy. Oceanograhy, Aug,2000, 30(8):2001-2012
    [155] X.Zhu, Z.Shen, S.D.Eckermann, et al, Gravity Wave Characteristics in the Middle Atmosphere Derived from the Empirical Mode Decomposition Method, J.Geophys. Res., 1997, 102:16,,545-16,561
    [156] W.Huang, Z.Shen, N.E.Huang, Y.C.Fung, Engineering Analysis of Biological Variables: an Example of Blood Pressure over 1 Day, Proc. Natl. Acad. Sci. USA, 1998, 95:4816-4821
    [157] W.Huang, Z.Shen, N.E. Huang, and Y.C.Fung, Nonlinear Indicial Response of Complex Nonstationary Oscillations as Pulmonary Pretension Responding to Step Hypoxia, Proc. Natl. Acad. Sci., USA, 1999, 96:1834-1839
    [158] K.Huang,US Patent Application, US, Serial No. 09-210693. Fielder December 14,1998
    [159] K.Tabor, J.Pinzon, M.Brown, J.Compton et al, Relationship between Tropical Sea Surface Temperature Oscillations and Vegetation Dynamics in Northeast Brazil during 1981 to 2000, Submitted to IEEE Transactions on Geoscience and Remote Sensing, 05-2001
    
    
    [160] 余泊,自适应时频分析方法及其在故障诊断中的应用,大连:大连理工大学博士学位论文,1998
    [161] 张海勇,基于局域波法的非平稳随机信号分析中若干问题的研究,大连:大连理工大学博士学位论文,2001
    [162] 盖强,局域波时频分析方法的理论研究与应用,大连:大连理工大学博士学位论文,2001
    [163] Youming Zhong, Shuren Qin, HHT and a New Removing Noise Method, International Conference ISIST2002, 2002(已录)
    [164] 钟佑明,秦树人,汤宝平,Hilbert-Huang变换中的理论研究,振动与冲击(已录)
    [165] Youming Zhong, Shuren Qin and Baoping Tang, Researches on the Discrete Time Algorithm of the Wavelet Decomposition, International Conference ISIST2002, 2002(已录)
    [166] L.科恩著,白居宪译,时-频分析:理论与应用,西安:西安交通大学出版社,2000
    [167] J.P.Loughlin, Spectrographic Measurement of Instantaneous Frequency and the Time-dependent Weighted Average Instantaneous Frequency, J. Acoust. Soc. Am. 1999,105 (1): 264-274
    [168] B.Boashash, G.Jones, Q.S.Shea, Instantaneous Frequency of Signals:Cconcepts, Estimation Techniques and Applications, Proc SPIE 1154, 1989:382-400
    [169] E.C.Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford University Press, 1948
    [170] J.S.Bendat & A.G.Piersol, Random data: Analysis and Measurement Procedures, 2nd edn. New York: Wiley. 1986
    [171] N.E.Huang, Nonlinear Evolution of Water Waves: Hilbert's view. Proc. Int. Symp, Experimental Chaos. 2nd. Ed. W Ditto et al 327-41, World Scientific, 1995
    [172] R.S.Long,et al, The Hilbert Techniques: an Alternate Approach for Non-steady Time Series Analysis, IEEE Geoscience Remote Sensing Soc. Lett., 1995,3: 6-11
    [173] S.Q.Rice, Mathematical Analysis of random Noise. III. Statistical Properties of Random Noise Currents, J. Bell Sys. Tech., 1945, 24: 46-108.
    [174] S.Q.Rice, Mathematical Analysis of Random Noise IV. Noise through Nonlinear Devices, J.Bell Sys. Tech., 1945, 24:109-156.
    [175] M.S.Longuet-Higgins, The Instabilities of Gravity Waves of Niter Amplitude in Deep Water. II. Subharmonics, Proc. R. Soc. Lond. A, 1978,360: 489-505.
    [176] K.W.Melville, Wave Modulation and Breakdown, J. Fluid Mech. 1983,128: 489-506.
    [177] P.E.Bedrosian, Product Theorem for Hilbert Transform, Proc. IEEE, 1963,51:686-689
    [178] G.P.Drazin, Nonlinear Systems, Cambridge, UK: Cambridge Univ, Press
    
    
    [179] S.Q.Rice, Mathematical Analysis of Random Noise, J. Bell Sys. Tech., 1944, 23: 282-310, Part Ⅱ.Power Spectrum and Correlation Functions, J. Bell Sys. Tech., 1944, 23: 310-332.
    [180] W.Nho, J.P.Loughlin, When Is Instantaneous Frequency the Average Frequency at Each Time, IEEE Signal Processing Lett., April 1999, 6(4):78-80
    [181] S.Kay, Modern Spectral Estimation, Englewood Cliffs, NJ: Prentice-Hall, 1988:50
    [182] M.Sansal, S.A.Kayhan, IF and GD Estimation from Evolutionary Spectrum, Signal Processing, 2001,81:197-202
    [183] J.F.Harris, Exact FM Detection of Complex Time Series, Proc. ISSPA'87, Brisbance Australia, 1987:70-73
    [184] B.Boashash. Estimating and Interpreting The Instantaneous Frequency of a Signal-Part 2: Algorithms and Applications. IEEE Proc. , April 1992,.80(4):541-568
    [185] 施妙根,顾丽珍,科学和工程计算基础,北京:清华大学出版社,1999:181-183
    [186] 徐士良,计算机常用算法,北京:清华大学出版社,1995:191-196
    [187] 初仁欣,赵伟,王廷云,一类非均匀采样信号的内插重构算法, 计量学报, 2000,21(3):210-215
    [188] J.J.Clark, M.R.Palmer, Lawrence D P. A Transformation method for the Reconstruction of Functions from Nonuniformly Spaced samples, IEEE Trans. Acoust., Speech, Signal Processing, 1985, 33(4):1151-1165
    [189] F.Marvasti F, M.Analoui, M.Gamshadzahi, Recovery of signals from nonuniform Samples Using Iterative Methods, IEEE Trans, Signal Processing, 1991, 39(4): 872-878
    [190] Y.Park, M.Soumekh, Reconstruction from Unevenly Spaced Sampled Data Using the Iterative Methods, IEEE Trans. Signal Processing, 1995,43(1): 303-307.
    [191] M.Soumekn, Band-limited Interpolation from Unevenly Spaced Sampled Data, IEEE Trans. Acoust.,Speech,Signal Processing,1988,36(1):110-122
    [192] P.Marziliano, M.Vetterli, Reconstruction of Irregularly Sampled Discrete-time Bandlimited Signals with Unknown Sampling, IEEE Trans. Signal Processing, 2000,48(12): 3462-3471.
    [193] 钟佑明,秦树人,汤宝平,关于DFT中的延拓原理及计算结果物理意义的一些讨论,振动与冲击,2001,.20(4):1-4
    [194] 钟佑明,汤宝平,秦树人,离散傅立叶变换(DFT)计算中一些问题的论证,重庆大学学报(自然科学版),2001,24(3):1-4
    [195] 陈志奎,工程信号中的小波基和小波变换分析仪系统的研究,重庆:重庆大学博士学位论文,1998
    
    
    [196] Shuren Qin, Youming Zhong and Baoping Tang, Research on Problems in the Implementation of the Direct Algorithm of Wavelet Transform,J. Mechanical Engineering of china (English Edition) (Have submitted)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700