用户名: 密码: 验证码:
MIMO雷达角度估计及角闪烁抑制技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(Multiple Input Multiple Output,MIMO)雷达是目前国际雷达领域的研究热点,它利用波形分集增益来提高雷达系统性能。根据天线阵元在空间的分布,MIMO雷达可分为共置MIMO雷达和分置MIMO雷达。共置MIMO雷达可形成虚拟孔径,增加系统的自由度,在目标角度估计和干扰抑制等方面具有明显优势。分置MIMO雷达利用空间分集增益,通过不同方位观测目标,可以有效对抗扩展目标RCS衰落和角闪烁,提高目标检测和角度估计性能。本文主要对共置MIMO雷达的高精度角度估计算法、分置MIMO雷达的角闪烁抑制方法进行了研究。本文工作详细内容如下:
     1、共置MIMO雷达角度超分辨估计
     (1)非理想噪声下单基地MIMO雷达相干目标角度估计算法。研究一种双子阵接收的雷达布阵方式,利用噪声的空间有限相关性消除非理想噪声的影响,采用二维前向平滑算法恢复协方差矩阵的秩,最后给出了基于PM的二维DOA估计算法,该方法避免了角度兼并且具有良好的性能。
     (2)扩展孔径双基地MIMO雷达高精度波离角(DOD)和波达角(DOA)联合估计。发射和接收阵列阵元均采用成对形式,阵元对内部间距不大于半波长,相邻阵元对间距远大于半波长以支持孔径扩展。算法采用波达方向矩阵法获得目标模糊高精度DOD和DOA估计以及参考低精度DOD和DOA估计,最后利用参考低精度估计对高精度模糊估计解模糊得到目标高精度DOD和DOA估计。该算法可自动配对,无需额外阵元即可提高目标定位精度。推导了此种阵列下的克拉美罗界(CRB),揭示了该算法的性能。
     2、双基地MIMO雷达低复杂度DOD和DOA联合估计算法
     提出了一类降低接收数据协方差矩阵维数的称为接收-发射-接收(RTR)的方法,并且给出了其中两种典型算法:RTR-MUSIC和RTR-ESPRIT。RTR-MUSIC算法首先把经过匹配分离后的信号排成矩阵形式而非传统的向量阵形,因此大大降低了协方差矩阵的维数。算法利用1维接收MUSIC得到DOA预估计,随后分别利用发射MUSIC和接收MUSIC算法得到目标的高精度DOD和DOA估计,在每两次MUSIC算法之间分别构造正交投影算子对接收数据进行接收波束形成和发射波束形成,最后数据协方差矩阵包仅含有一个目标,故估计DOD和DOA结果可自动配对,该方法运算量甚至低于传统ESPRIT算法,且具有很高的精度。提出的RTR-ESPRIT方法克服了RTR-MUSIC无法直接利用ESPRIT算法的缺点,避免了一维搜索,可以直接得到目标角度估计的闭式解,进一步降低了运算量,实现DOD和DOA估计自动配对,理论证明了该方法还可以用于相干信号和单快拍,无需平滑处理,避免了精度损失。上述两种方法适用性强,更切合工程应用。
     3、基于电磁矢量传感器共置MIMO雷达高分辨阵列信号处理
     (1)首先把矢量传感器应用于共置MIMO雷达,提出了一种发射采用常规阵列,接收采用矢量传感器的雷达系统,在建立该系统模型基础上,利用矢量传感器特性分别研究了基于一维最佳子空间拟合算法和一维MUSIC算法的两种不同的扩展孔径方法,这两种方法都可以适用线性不等间距阵列结构,无需额外的配对算法和多维搜索,对接收阵列最小间距没有要求,大大提高了目标角度估计精度。文章推导了此种阵列下的CRB,揭示了算法的性能。
     (2)多目标DOD、DOA、极化辅角和极化相位差联合估计。针对该问题,论文给出3种联合估计算法:4D-MUSIC算法、ESPRIT算法和迭代1维MUSIC算法。其中4D-MUSIC算法利用噪声子空间与信号子空间的正交性,但是需要4维搜索。ESPRIT算法无需搜索,但是估计精度较低。迭代MUSIC算法首先利用矢量传感器的内在结构特点获得目标DOA预估计,随后采用MUSIC算法对DOD和DOA分别进行1维搜索获得目标角度的高精度估计,最后给基于ESPRIT的目标极化估计算法。迭代MUSIC算法仅需一维搜索,运算复杂度低,可用于不规则阵列,具有高的估计精度。最后推导了DOD,DOA和极化联合估计的CRB。
     4、分置MIMO雷达角闪烁抑制。
     (1)角闪烁抑制方法。首先建立了分置MIMO雷达角闪烁确定性模型,研究了角闪烁噪声在MIMO雷达下的概率密度分布,讨论了发射天线个数与抑制角闪烁性能之间的关系,在发射阵元数固定时给出了角闪烁误差超出目标本身范围的概率,在理论基础上推导出MIMO雷达对角闪烁抑制能力,证明了角闪烁与目标RCS之间的负相关性,给出了基于RCS自适应加权的4种方法,推导了线性加权后的角闪烁概率分布密度表达式。
     (2)角闪烁噪声下的目标跟踪。建立了分置MIMO雷达角闪烁统计性模型,根据角闪烁特性给出了基于EKF的多模交互(IMM)滤波器,该算法能够有效利用分置MIMO雷达的空间分集增益,仿真表明MIMO雷达仅仅比传统雷达多2个发射阵元,跟踪均方根误差就可以减少30.2%。最后给出了一种机动目标跟踪方法:自适应加权UKF-IMM,该算法首先根据机动目标运动轨迹的多样性结合高精度的UKF滤波器进行UKF-IMM滤波,其次基于拉格朗日乘数法推导了一种自适应加权融合多观测信号方法。
Multiple-input multiple-output (MIMO) radar has been a hot topic in the radar field recently. It uses waveform diversity to improve the radar system performances. According to the spatial distribution of antennas, MIMO radar can be categorized into two types, MIMO radar with collocated antennas (collocated MIMO radar) and that with widely separated antennas (statistical MIMO radar). The collocated MIMO radar can form a virtual aperture, increase the degrees of freedom, and offer better parameter estimation and interference and jamming suppression. Statistical MIMO radar enjoys spatial diversity to against RCS fluctuation and angle glint, and it can improve target detection and angle estimation performance. The problems of angle estimation of MIMO radar with collocated array antennas and angle glint suppression of widely MIMO radar are discussed herein. The main works are summarized as follows:
     1、High precision angle estimation for collocated MIMO radar
     (1) Angle estimation of coherent sources in non-ideal noise for monostatic MIMO radar. The geometry of two sub-receiver arrays is proposed. The non-ideal noise is eliminated by exploiting spatial limited correlation of noise. A two-dimensional (2D) forward spatial smoothing algorithm is utilized to recovery the full rank of covariance matrix. And a2D DOA estimation algorithm is addressed based on propagator method. The proposed method avoids the angle-ambiguity and has a good performance.
     (2) Joint direction of departure (DOD) and direction of arrive (DOA) estimation method of multi-target for extended-aperture bistatic MIMO radar. The transmit and receive array elements are composed of mated element antennas, respectively. The internal mated elements spacing is no more than a half-wavelength and the adjacent paired elements spacing farther apart than a half-wavelength to support extended-aperture. The DOA matrix method is employed to obtain the highly accurate but ambiguous DOD and DOA estimations and the low accurate but unambiguous reference DOD and DOA estimations. The high accurate DOD and DOA estimations are extracted from the ambiguous DOD and DOA estimations resolved by reference DOD and DOA estimations. The algorithm can be paired automatically and increased the target estimation accuracy with no additional elements. The CRB of the MIMO radar arrays is derived, which reveals the performance advantage of the proposed algorithm.
     2、Low computational complexity angle estimation for bistatic MIMO radar
     A class of receive-transmit-receive (RTR) method to reduce the dimension of the data covariance matrix is studied. Two typical algorithms, namely RTR-MUSIC and RTR-ESPRIT, are proposed to illuminate this kind of method. The proposed RTR-MUSIC algorithm arranges the isolated data in a matrix form rather than the traditional vector form, greatly reducing the dimension of the covariance matrix. The initial DOA estimations are got by exploiting a1D receive-MUSIC. And then the accurate DOD and DOA estimations are obtained by exploiting two1D transmit-MUSIC and receive-MUSIC algorithms, respectively. Between each of the two MUSIC algorithms, a receive spatial beamforming process and a transmit spatial beamforming process are implemented by orthogonal projection operators. The DOD and DOA estimations are automatically paired because the final covariance matrix contains only one target. The proposed algorithm has low computational complexity which is even lower than that of traditional ESPRIT algorithm and high accuracy. The RTR-ESPRIT method overcomes the shortcoming of the RTR-MUSIC algorithm which cannot directly use ESPRIT. DOD and DOA estimations can be solved in a close form and paired automatically. The RTR-ESPRIT method avoids the one-dimensional search and further reduces the computational complexity. This method is also proved to be applicable to the case of coherent signals and single snapshot, without requiring of smoothing thus avoiding loss of estimation accuracy. The two methods aforementioned have strong applicability and are beneficial for engineering applications.
     3、High resolution array signal processing methods for bistatic MIMO radar with electromagnetic vector sensors
     (1) A novel bistatic MIMO radar system with multiple conventional transmit sensors and multiple receive electromagnetic vector sensors is introduced. Based on the system model, two methods based on1D optimal weighted subspace fitting and1D MUSIC are proposed to extend arrive aperture by utilizing the internal structure features of the vector sensors. The two methods are suitable for irregular array geometry, and require neither additional parameter pairing nor mult-dimensional searching. The minimum distance of the receive array is not demanded, so the accuracy of target angle is greatly improved. The Cramer-Rao bound (CRB) of the array is derived, which reveals the performance advantage of the proposed methods.
     (2) Joint estimations of DOD, DOA, polarization angle and phase difference. Three joint parameter estimation algorithms, namely, four-dimensional (4D) MUSIC, ESPRIT and iterative1D-MUSIC are proposed.4D-MUSIC obtains parameter estimations by usage of the orthogonality between noise subspace and signal subspace, but requires4D search. ESPRIT algorithm has no need to search, but it gets low accuracy. The iterative MUSIC algorithm first uses the internal structure of the vector sensors to obtain a set of initial DOA estimates, and then two1D-MUSIC searches are employed to get the DOD and DOA estimations in succession. Finally, a polarization ESPRIT algorithm is proposed for polarization estimation. The iterative1D-MUSIC algorithm is suitable for irregular array geometry, enjoys low computational complexity due to only1D search, and has high estimation accuracy. And the CRB of joint DOD, DOA and polarization estimation is derived.
     4、Angle glint suppression for statistical MIMO radar
     (1) Angle glint suppression method. The target glint deterministic model for the MIMO radar system is set up. And glint probability distribution density is derived. The relationship between the number of transmit antennas and glint suppression performance is discussed. The probability of angle measurement error that falls beyond the target region with fixed number of antennas is deduced. Based on the corresponding theoretics, the angle glint suppression ability of MIMO radar is demonstrated. The negative correlation between the target glint deviation and RCS is proved. Four angle glint suppression methods are proposed. The probability density function of angle glint after RCS linear weighting is deduced.
     (2) Target tracking with glint noise. An interacting multiple model (IMM) estimator based on extended Kalman filter (EKF) according to glint feature is designed based on the glint statistical model for MIMO radar. The algorithm can take advantage of the MIMO radar spatial diversity gain. Simulation results show that MIMO radar with only2more transmit elements can reduce the tracking RMSE by30.2%compared with conventional radar. Finally, a maneuvering target tracking method named adaptive weighted unscented Kalman filter IMM is presented. The UKF-IMM filters based on the diversity of maneuvering target trajectory with the UKF filter are employed. An adaptive weighted fusion method of multi-observed signal based on Lagrange multiplier rule is derived.
引文
[1]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社,2005
    [2]Skolnik M I. Radar handbook.3rd ed. New York: McGraw-Hill,2008
    [3]何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析.电子学报,2005,33(12A):2441-2445
    [4]Fishler E, Haimovich A, Blum R, et al. MIMO radar: an idea whose time has come. IEEE Radar Conference,2004:71-78
    [5]Lehmann N H, Fishler E, Haimovich A M, et al. Evaluation of transmit diversity in MIMO-radar direction finding. IEEE Transactions on Signal Processing,2007, 55(5):2215-2225
    [6]Fishler E, Haimovich A, Blum R, et al. Performance of MIMO radar systems: advantages of angular diversity.38th Asilomar Conference on Signals, Systems and Computers,2004:305-309
    [7]Haimovich A, Fishler E, Blum R, et al. Statistical MIMO radar. The Annual Adaptive Sensor Array Processing Workshop,2004:1-14
    [8]Li J, Stoica P. MIMO radar signal processing. New York: John Wiley & Sons, Inc., 2009
    [9]Li J, Stoica P. MIMO radar with colocated antennas. IEEE Signal Processing Magazine,2007,24(5):106-114
    [10]Deng H. Waveform design for MIMO radar with low probability of intercept (LPI) property. IEEE International Symposium on Antennas and Propagation,2011: 305-308
    [11]Rabideau D J, Parker P. Ubiquitous MIMO multifunction digital array radar.37th Asilomar Conference on Signals, Systems and Computers,2003:1057-1064
    [12]Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar and imaging:degrees of freedom and resolution.37th Asilomar Conference on Signals, Systems and Computers,2003:54-59
    [13]Robey F C, Courts S, Weikle D, et al. MIMO radar theory and experimental results. 38th Asilomar Conference on Signals, Systems and Computers,2004:300-304
    [14]Haimovich A M, Blum R S, Cimini L J J. MIMO radar with widely separated antennas. IEEE Signal Processing Magazine,2008,25(1):116-129
    [15]He Q, Blum R S, Godrich H, et al. Cramer-Rao bound for target velocity estimation in MIMO radar with widely separated antennas.42nd Annual Conference on Information Sciences and Systems,2008:123-127
    [16]Godrich H, Haimovich A M, Blum R S. Cramer Rao bound on target localization estimation in MIMO radar systems.42nd Annual Conference on Information Sciences and Systems,2008:134-143
    [17]Godrich H, Haimovich A M, Blum R S. Target localization accuracy gain in MIMO radar-based systems. IEEE Transactions on Information Theory,2010,56(6): 2783-2803
    [18]刘红明.双基地MIMO雷达原理与理论研究.电子科技大学博士论文,2011
    [19]Hassanien A, Vorobyov S A. Phased-MIMO radar: a tradeoff between phased-array and MIMO radars. IEEE Transactions on Signal Processing,2010,58(6):3137-3151
    [20]Wu Y, Tang J, Peng Y. Models and performance evaluation for multiple-input multiple-output space-time adaptive processing radar. IET Radar, Sonar and Navigation,2009,3(6):569-582
    [21]Dorey J, Gamier G. RIAS, synthetic impulse and antenna radar. Onde Electrique, 1989,69(6):36-44
    [22]保铮,张庆文.一种新型的米波雷达—综合脉冲与孔径雷达.现代雷达,1995,17(1):1-13
    [23]陈伯孝,张守宏.稀布阵综合脉冲孔径雷达低距离旁瓣与距离高分辨技术.电子学报,1998,26(9):29-33
    [24]陈伯孝.SIAR四维跟踪及其长相干积累等技术研究.西安电子科技大学博士论文,1997
    [25]张明友.数字阵列雷达和软件化雷达.北京:电子工业出版社,2008
    [26]Forsythe K W, Bliss D W, Fawcett G S. Multiple-input multiple-output (MIMO) radar: performance issues.38th Asilomar Conference on Signals, Systems and Computers,2004:310-315
    [27]Xu L Z, Li J, Stoica P. Target detection and parameter estimation for MIMO radar systems. IEEE Transactions on Aerospace and Electronic Systems,2008,44(3): 927-939
    [28]Li J, Stoica P, Xu L Z, et al. On parameter identifiability of MIMO radar. IEEE Signal Processing Letters,2007,14(12):968-971
    [29]Fishler E, Haimovich A, Blum R S, et al. Spatial diversity in radars-models and detection performance. IEEE Transactions on Signal Processing,2006,54(3): 823-838
    [30]Aittomaki T, Koivunen V. Performance of MIMO radar with angular diversity under swerling scattering models. IEEE Journal on Selected Topics in Signal Processing,2010,4(1):101-114
    [31]Xu L Z, Li J. Iterative generalized-likelihood ratio test for MIMO radar. IEEE Transactions on Signal Processing,2007,55(6):2375-2385
    [32]Tang J, Wu Y, Peng Y N, et al. On detection performance and system configuration of MIMO radar. Science in China Series F-Information Sciences,2009,52(7): 1250-1257
    [33]Tang J, Wu Y, Peng Y N, et al. On detection performance of MIMO radar for rician target. Science in China Series F-Information Sciences,2009,52(8):1456-1465
    [34]Tang J, Li N, Wu Y, et al. On detection performance of MIMO radar:a relative entropy-based study. IEEE Signal Processing Letters,2009,16(1-3):184-187
    [35]Wang J T, Jiang S L, He J, et al. Adaptive detectors with diagonal loading for airborne multi-input multi-output radar. IET Radar Sonar and Navigation,2009, 3(5):493-501
    [36]王鞠庭,江胜利,何劲,等.机载MIMO雷达广义最大似然检测器.电子与信息学报,2009,31(6):1315-1318
    [37]王鞠庭,江胜利,何劲,等.基于对角加载的机载MIMO雷达GLRT检测器.电子学报,2009,37(12):2614-2619
    [38]Jin Y W, Moura J M F, O'Donoughue N. Time reversal in multiple-input multiple-output radar. IEEE Journal of Selected Topics in Signal Processing,2010, 4(1):210-225
    [39]De Maio A, Lops M. Design principles of MIMO radar detectors. IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):886-898
    [40]Jajamovich G H, Lops M, Wang X D. Space-time coding for MIMO radar detection and ranging. IEEE Transactions on Signal Processing,2010,58(12):6195-6206
    [41]Petillot Y, Chaoran D, Thompson J S. Predicted detection performance of MIMO radar. IEEE Signal Processing Letters,2008,15:83-86
    [42]Blum R S. Limiting case of a lack of rich scattering environment for MIMO radar diversity. IEEE Signal Processing Letters,2009,16(10):901-904
    [43]Zhu X B, Wang S Y. Rao test design for MIMO radar in non-gaussian clutter. Chinese Journal of Electronics,2011,20(4):761-765
    [44]Guan J, Huang Y. Detection performance analysis for MIMO radar with distributed apertures in gaussian colored noise. Science in China Series F-Information Sciences, 2009,52(9):1688-1696
    [45]Chao S Y, Chen B X. FDGLRT detector of MIMO radar in non-homogeneous clutter. Electronics Letters,2011,47(6):403-404
    [46]He Q, Lehmann N H, Blum R S, et al. MIMO radar moving target detection in homogeneous clutter. IEEE Transactions on Aerospace and Electronic Systems, 2010,46(3):1290-1301
    [47]Kong L J, Cui G L, Yang X B, et al. Adaptive detector design of MIMO radar with unknown covariance matrix. Journal of Systems Engineering and Electronics,2010, 21(6):954-960
    [48]Kong L J, Cui G L, Yang X B, et al. Rao and Wald tests design of polarimetric multiple-input multiple-output radar in compound-gaussian clutter. IET Signal Processing,2011,5(1):85-96
    [49]晁淑媛,陈伯孝,戴奉周.非均匀杂波MIMO雷达检测.电子学报,2011,39(3):626-631
    [50]Akcakaya M, Nehorai A. Adaptive MIMO radar design and detection in compound-gaussian clutter. IEEE Transactions on Aerospace and Electronic Systems,2011,47(3):2200-2207
    [51]Wang H Y, Liao G S, Wang Y, et al. On parameter identifiability of MIMO radar with waveform diversity. Signal Processing,2011,91(8):2057-2063
    [52]Akcakaya M, Nehorai A. MIMO radar sensitivity analysis for target detection. IEEE Transactions on Signal Processing,2011,59(7):3241-3250
    [53]He Q, Blum R S. Diversity gain for MIMO neyman-pearson signal detection. IEEE Transactions on Signal Processing,2011,59(3):869-881
    [54]Gogineni S, Nehorai A. Polarimetric MIMO radar with distributed antennas for target detection. IEEE Transactions on Signal Processing,2010,58(3):1689-1697
    [55]Wang G H, Lu Y L. Clutter rank of STAP in MIMO radar with waveform diversity. IEEE Transactions on Signal Processing,2010,58(2):938-943
    [56]Wang H Y, Liao G S, Li J, et al. Waveform optimization for MIMO-STAP to improve the detection performance. Signal Processing,2011,91(11):2690-2696
    [57]张西川,谢文冲,张永顺,等.任意波形相关性的机载MIMO雷达杂波建模与分析.电子与信息学报,2011,33(3):646-651
    [58]Chen C Y, Vaidyanathan P P. A subspace method for MIMO radar space-time adaptive processing. IEEE International Conference on Acoustics, Speech and Signal Processing,2007:925-928
    [59]Chen C Y, Vaidyanathan P P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions. IEEE Transactions on Signal Processing,2008, 56(2):623-635
    [60]翟伟伟,张弓,刘文波.基于杂波子空间估计的MIMO雷达降维STAP研究.航空学报,2010,31(9):1824-1831
    [61]Mecca V F, Krolik J L. MIMO enabled multipath clutter rank estimation. IEEE Radar Conference,2009:1-6
    [62]Mecca V F, Krolik J L. MIMO STAP clutter mitigation performance demonstration using acoustic arrays.42nd Asilomar Conference on Signals, Systems and Computers,2008:634-638
    [63]Mecca V F, Krolik J L. Slow-time MIMO STAP with improved power efficiency. 41st Asilomar Conference on Signals, Systems and Computers,2007:202-206
    [64]Mecca V F, Ramakrishnan D, Krolik J L. MIMO radar space-time adaptive processing for multipath clutter mitigation.4th IEEE Sensor Array and Multichannel Signal Processing Workshop,2006:249-253
    [65]Xiang C, Feng D Z, Lv H, et al. Three-dimensional reduced-dimension transformation for MIMO radar spacetime adaptive processing. Signal Processing, 2011,91(8):2121-2126
    [66]吕晖,冯大政,和洁,等.机载MIMO雷达两级降维杂波抑制方法.电子与信息学报,2011,33(4):805-809
    [67]李彩彩,廖桂生,朱圣棋,等.一种抑制严重非均匀杂波的机载MIMO-STAP方法.电子学报,2011,39(3):511-517
    [68]Yan H, Li J, Liao G S. Multitarget identification and localization using bistatic MIMO radar systems. Eurasip Journal on Advances in Signal Processing,2008, 2008:1-8
    [69]Zhang X F, Xu L Y, Xu L, et al. Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC. IEEE Communications Letters,2010,14(12):1161-1163
    [70]Bencheikh M L, Wang Y D, He H Y. Polynomial Root finding technique for joint DOA DOD estimation in bistatic MIMO radar. Signal Processing,2010,90(9): 2723-2730
    [71]Duofang C, Baixiao C, Guodong Q. Angle estimation using ESPRIT in MIMO radar. IET Electronics Letters,2008,44(12):770-771
    [72]Jin M, Liao G S, Li J. Joint DOD and DOA estimation for bistatic MIMO radar. Signal Processing,2009,89(2):244-251
    [73]Yang M L, Chen B X, Yang X Y. Conjugate ESPRIT algorithm for bistatic MIMO radar. Electronics Letters,2010,46(25):1692-1694
    [74]Zheng Z D, Zhang J Y. Fast method for multi-target localisation in bistatic MIMO radar. Electronics Letters,2011,47(2):138-139
    [75]Zhang X, Xu D. Low-complexity ESPRIT-based DOA estimation for colocated MIMO radar using reduced-dimension transformation. Electronics Letters,2011, 47(4):283-284
    [76]Xie R, Liu Z, Zhang Z J. DOA estimation for monostatic MIMO radar using polynomial rooting. Signal Processing,2010,90(12):3284-3288
    [77]Xie R, Liu Z, Wu J X. Direction finding with automatic pairing for bistatic MIMO radar. Signal Processing,201:2,92(1):198-203
    [78]Hassanien A, Vorobyov S A. Transmit energy focusing for DOA estimation in MIMO radar with colocated antennas. IEEE Transactions on Signal Processing, 2011,59(6):2669-2682
    [79]Li C C, Liao G S, Zhu S Q, et al. An ESPRIT-like algorithm for coherent DOA estimation based on data matrix decomposition in MIMO radar. Signal Processing, 2011,91(8):1803-1811
    [80]吕晖,冯大政,和洁,等.一种新的双基地MIMO雷达目标定位和多普勒频率估计方法.电子与信息学报,2010,32(9):2167-2171
    [81]张剑云,郑志东,李小波.双基地MIMO雷达收发角及多普勒频率的联合估计算法.电子与信息学报,2010,32(8):1843-1848
    [82]吴跃波,郑志东,杨景曙.一种新的双基地MIMO雷达收发角和多普勒频率联合估计方法.电子与信息学报,2011(8):1497-1502
    [83]王鞠庭,江胜利,何劲,等.冲击噪声下基于子空间的MIMO雷达DOA估计研究.宇航学报,2009,30(4):1653-1657,1674
    [84]王鞠庭,江胜利,刘中.复合高斯杂波中MIMO雷达DOA估计的克拉美-罗下限.电子与信息学报,2009,31(4):786-789
    [85]江胜利,王鞠庭,何劲,等.冲击杂波下的MIMO雷达DOA估计方法.航空学报,2009,30(8):1454-1459
    [86]Jiang H, Wang D, Liu C. Joint parameter estimation of DOD/DOA/polarization for bistatic MIMO radar. Journal of China Universities of Posts and Telecommunications,2010,17(5):32-37
    [87]Bencheikh M L, Wang Y. Combined ESPRIT-RootMUSIC for DOA-DOD estimation in polarimetric bistatic MIMO radar. Progress in Electromagnetics Research Letters,2011,22:109-117
    [88]Xu L Z, Li J, Stoica P. Adaptive techniques for MIMO radar.4th IEEE Sensor Array and Multichannel Signal Processing Workshop,2006:258-262
    [89]He Q, Blum R S. Cramer-Rao bound for MIMO radar target localization with phase errors. IEEE Signal Processing Letters,2010,17(1):83-86
    [90]刘晓莉,廖桂生.双基地MIMO雷达多目标定位及幅相误差估计.电子学报,2011,39(3):596-601
    [91]Liu X L, Liao G S. Direction finding and mutual coupling estimation for bistatic MIMO radar. Signal Processing,2012,92(2):517-522
    [92]杨明磊,张守宏,陈伯孝,等.多载频MIMO雷达的幅相误差校正.系统工程与电子技术,2010,32(2):279-283,307
    [93]Deng H. Discrete frequency-coding waveform design for netted radar systems. IEEE Signal Processing Letters,2004,11(2):179-182
    [94]Deng H. Polyphase code design for orthogonal netted radar systems. IEEE Transactions on Signal Processing,2004,52(11):3126-3135
    [95]Khan H A, Edwards D J. Doppler problems in orthogonal MIMO radars. IEEE Radar Conference,2006:244-247
    [96]刘波.MIMO雷达正交波形设计及信号处理研究.电子科技大学博士论文,2008
    [97]He H, Stoica P, Li J. Designing unimodular sequence sets with good correlations-including an application to MIMO radar. IEEE Transactions on Signal Processing,2009,57(11):4391-4405
    [98]Li J, Stoica P, Zheng X Y. Signal synthesis and receiver design for MIMO radar imaging. IEEE Transactions on Signal Processing,2008,56(8):3959-3968
    [99]Zhang Y, Wang J. Improved design of DFCW for MIMO radar. Electronics Letters, 2009,45(5):285-286
    [100]Song X F, Zhou S L, Willett P. Reducing the waveform cross correlation of MIMO radar with space-time coding. IEEE Transactions on Signal Processing,2010,58(8): 4213-4224
    [101]Chen C Y, Vaidyanathan P P. MIMO radar ambiguity properties and optimization using frequency-hopping waveforms. IEEE Transactions on Signal Processing,2008, 56(12):5926-5936
    [102]Zhang J D, Wang K R, Zhu X H. Spatial-dependent waveform design for colocated uniform linear array multiple-input multiple-output radar. IET Radar, Sonar and Navigation,2011,5(5):545-550
    [103]Reddy V U, Badrinath S, Srinivas A. Low-complexity design of frequency-hopping codes for MIMO radar for arbitrary doppler. Eurasip Journal on Advances in Signal Processing,2010,2010:1-14
    [104]Song X, Zhou S, Willett P. Enhanced multistatic radar resolution via STC. IEEE Radar Conference,2009:1-6
    [105]Friedlander B. Waveform design for MIMO radars. IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):1227-1238
    [106]Friedlander B. On data-adaptive waveform design for MIMO radar.41st Asilomar Conference on Signals, Systems and Computers,2007:187-191
    [107]Friedlander B. Waveform design for MIMO radar with space-time constraints.41st Asilomar Conference on Signals, Systems and Computers,2007:2168-2172
    [108]Chen C Y, Vaidyanathan P P. MIMO radar waveform optimization with prior information of the extended target and clutter. IEEE Transactions on Signal Processing,2009,57(9):3533-3544
    [109]Ahmad F, Amin M G. Matched-illumination waveform design for a multistatic through-the-wall radar system. IEEE Journal on Selected Topics in Signal Processing,2010,4(1):177-186
    [110]Grossi E, Lops M, Venturino L. Robust waveform design for MIMO radars. IEEE Transactions on Signal Processing,2011,59(7):3262-3271
    [111]Wang H Y, Liao G S, Li J, et al. Waveform optimization for MIMO-STAP to improve the detection performance. Signal Processing,2011,91(11):2690-2696
    [112]Yang Y, Blum R S. MIMO radar waveform design. IEEE/SP 14th Workshop on Statistical Signal Processing,2007:468-472
    [113]Yang Y, Blum R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):330-343
    [114]Yang Y, Blum R S. Minimax robust MIMO radar waveform design. IEEE Journal on Selected Topics in Signal Processing,2007,1(1):147-155
    [115]Yang Y, Blum R S. Minimax robust waveform design for MIMO radar in the presence of psd uncertainties.41st Annual Conference on Information Sciences and Systems,2007:154-159
    [116]Tang B, Tang J, Peng Y N. MIMO radar waveform design in colored noise based on information theory. IEEE Transactions on Signal Processing,2010,58(9): 4684-4697
    [117]Sen S, Nehorai A. OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking. IEEE Transactions on Signal Processing,2010, 58(6):3152-3162
    [118]Naghibi T, Namvar M, Behnia F. Optimal and robust waveform design for MIMO radars in the presence of clutter. Signal Processing,2010,90(4):1103-1117
    [119]Li J, Xu L Z, Stoica P, et al. Range compression and waveform optimization for MIMO radar:a Cramer-Rao bound based study. IEEE Transactions on Signal Processing,2008,56(1):218-232
    [120]Stoica P, Li J, Xie Y. On probing signal design for MIMO radar. IEEE Transactions on Signal Processing,2007,55(8):4151-4161
    [121]Ahmed S, Thompson J S, Petillot Y R, et al. Unconstrained synthesis of covariance matrix for MIMO radar transmit beampattern. IEEE Transactions on Signal Processing,2011,59(8):3837-3849
    [122]Rabideau D J. Multiple-input multiple-output radar aperture optimisation. IET Radar, Sonar and Navigation,2011,5(2):155-162
    [123]Hassanien A, Vorobyov S A. Transmit energy focusing for DO A estimation in MIMO radar with colocated antennas. IEEE Transactions on Signal Processing, 2011,59(6):2669-2682
    [124]Stoica P, Li J, Zhu X M. Waveform synthesis for diversity-based transmit beampattern design. IEEE Transactions on Signal Processing,2008,56(6): 2593-2598
    [125]Stoica P, Li J, Xue M. Transmit codes and receive filters for radar:a look at the design process. IEEE Signal Processing Magazine,2008,25(6):94-109
    [126]张宇. MIMO雷达波形设计及信号处理相关技术研究.南京理工大学博士论文,2010
    [127]胡亮兵,刘宏伟,刘保昌,等.MIMO雷达发射方向图匹配和波形优化方法.西安电子科技大学学报(自然科学版),2009,36(6):1021-1026,1033
    [128]He H, Stoica P, Li J. Wideband MIMO systems:signal design for transmit beampattern synthesis. IEEE Transactions on Signal Processing,2011,59(2): 618-628
    [129]贺亚鹏,王克让,张劲东,等.基于压缩感知的伪随机多相码连续波雷达.电子与信息学报,2011,33(2):418-423
    [130]贺亚鹏,庄珊娜,李洪涛,等.基于压缩感知的频率编码脉冲雷达高分辨距离成像方法.电子与信息学报,2011,33(7):1678-1683
    [131]Roberts W, Stoica P, Li J, et al. Iterative adaptive approaches to MIMO radar imaging. IEEE Journal on Selected Topics in Signal Processing,2010,4(1):5-20
    [132]Tan X, Roberts W, Li J, et al. Sparse learning via iterative minimization with application to MIMO radar imaging. IEEE Transactions on Signal Processing,2011, 59(3):1088-1101
    [133]Yu Y, Petropulu A P, Poor H V. Measurement matrix design for compressive sensing-based MIMO radar. IEEE Transactions on Signal Processing,2011,59(11): 5338-5352
    [134]Ender J H G. MIMO-SAR. The International Radar Symposium,2007:580-588
    [135]Ender J H G, Klare J. System architectures and algorithms for radar imaging by MIMO-SAR. IEEE Radar Conference,2009:1-6
    [136]Klare J, Cerutti-Maori D, Brenner A, et al. Image quality analysis of the vibrating sparse MIMO antenna array of the airborne 3D imaging radar ARTINO. IEEE International Geoscience and Remote Sensing Symposium,2008:5310-5314
    [137]Kim J, Ossowska A, Wiesbeck W. Investigation of MIMO SAR for interferometry. 4th European Radar Conference,2007:51-54
    [138]Kim J, Wiesbeck W. Investigation of a new multifunctional high performance SAR system concept exploiting MIMO technology. IEEE International Geoscience and Remote Sensing Symposium,2008:221-224
    [139]Li J, Zheng X Y, Stoica P. MIMO SAR imaging:signal synthesis and receiver design.2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,2007:89-92
    [140]邹博,董臻,梁甸农.多发多收SAR编码正交信号设计及性能分析.中国科学:信息科学,2011,41(6):761-766
    [141]井伟,武其松,邢孟道,等.多子带并发的MIMO-SAR高分辨大测绘带成像.系统仿真学报,2008,20(16):4373-4378
    [142]武其松,邢孟道,刘保昌,等.面阵MIMO-SAR大测绘带成像.电子学报,2010,38(4):817-824
    [143]武其松,邢孟道,保铮.双通道MIMO-SAR运动目标成像.系统工程与电子技术,2010,32(5):921-926
    [144]齐维孔,禹卫东,祁海明.星载MIMO-SAR与距离向DBF相结合系统研究.电子学报,2010,38(10):2251-2257
    [145]齐维孔,禹卫东.多载频星载MIMO-SAR系统动目标检测技术研究.电子与信息学报,2010,32(10):2365-2370
    [146]周高杯,宋红军,邓云凯.MIMO-SAR中虚拟孔径相位校正与子带合成方法研究.电子与信息学报,2011,33(2):484-488
    [147]王力宝,许稼,皇甫堪,等.MIMO-SAR等效相位中心误差分析与补偿.电子学报,2009,37(12):2688-2693
    [148]王力宝,许稼,皇甫堪,等.基于干涉图的星载MIMO-SAR动目标检测.信号处理,2010,26(1):23-27
    [149]王力宝,许稼,皇甫堪,等.基于图像质量评估的MIMO-SAR等效相位中心误差界.清华大学学报(自然科学版),2010,50(4):586-590
    [150]Zhuge X D. Short-range ultra-wideband imaging with multiple-input multiple-output arrays. PhD Thesis, Delft University of Technology,2010
    [151]Lim S H, Hwang C G, Kim S Y, et al. Shifting MIMO SAR system for high-resolution wide-swath imaging. Journal of Electromagnetic Waves and Applications,2011,25(8):1168-1178
    [152]Zhuge X D, Yarovoy A G. A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection. IEEE Transactions on Geoscience and Remote Sensing,2011,49(1):509-518
    [153]黄玲.多输入多输出探地雷达方法研究.吉林大学博士论文,2010
    [154]Frazer G J, Abramovich Y I, Johnson B A. Multiple-input multiple-output over-the-horizon radar:experimental results. IET Radar Sonar and Navigation,2009, 3(4):290-303
    [155]Frazer G J, Johnson B A, Abramovich Y I. Orthogonal waveform support in MIMO HFOTH radars. International Waveform Diversity & Design Conference,2007: 423-427
    [156]Frazer G J, Abramovich Y I, Johnson B A, et al. Recent results in MIMO over-the-horizon radar. IEEE Radar Conference,2008:1-6
    [157]陈金立.相位编码MIMO雷达信号处理技术研究.南京理工大学博士论文,2010
    [158]谢荣.MIMO雷达角度估计算法研究.西安电子科技大学博士论文,2011
    [159]王永良,陈辉,彭应宁,等.空间谱估计理论与算法.北京:清华大学出版社,2004
    [160]Krim H, Viberg M. Two decades of array signal processing research:the parametric approach. IEEE Signal Processing Magazine,1996,13 (4):67-94
    [161]Burg J P. Maximun entropy spectral analysis. The 37th meeting of the Annual International SEG,1967:383-393
    [162]Capon J. High-resolution freqency-wavenumber spectrum analysis. Proceedings of the IEEE,1969,57(8):1408-1418
    [163]Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation,1986,34(3):276-280
    [164]Roy R, Paulraj A, Kailath T. ESPRIT-a subspace rotation approach to estimation of parameters of cisoids and noise. IEEE Transactions on Acoustics Speech and Signal Processing,1986,34(5):1340-1342
    [165]Clergeot H, Tressens S, Ouamri A. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds. IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(11):1703-1720
    [166]Stoica P, Nehorai A. Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing,1990,38(10):1783-1795
    [167]Viberg M, Ottersten B, Kailath T. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Transactions on Signal Processing,1991,39(11): 2436-2449
    [168]Bencheikh M L, Wang Y. Joint DOD-DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar. Electronics Letters,2010,46(15): 1081-1083
    [169]Madurasinghe D. A new DOA estimator in nonuniform noise. IEEE Signal Processing Letters,2005,12(4):337-340
    [170]Chen C E, Lorenzelli F, Yao K. Stochastic maxi-mum-likelihood DOA estimation in the present of un-known nonuniform noise. IEEE Transactions on Signal Processing, 2008,56(7):3038-3044
    [171]Wang H Y, Liu K J R.2-D spatial smoothing for multipath coherent signal separation. IEEE Transactions on Aerospace and Electronic Systems,1998,34(2): 391-405
    [172]殷勤业,邹理和, Robert W. Newcomb.一种高分辨率二维信号参量估计方法—波达方向矩阵法.通信学报,1991,12(4):1-7
    [173]Horn R A, Johnson C R. Matrix analysis. Cambridge:Cambridge University Press, 1985
    [174]Boerner W M, Yamaguchi Y. A state-of-the-art review in radar polarimetry and its applications in remote sensing. IEEE Aerospace and Electronics Systems Magazine, 1990,5(6):3-6
    [175]Hurtado M, Xiao J J, Nehorai A. Target estimation, detection, and tracking:a look at adaptive polarimetric design. IEEE Signal Processing Magazine,2009,26(1): 42-52
    [176]何劲.高分辨矢量传感器阵列信号处理方法研究.南京理工大学博士后研究报告,2009
    [177]Nehorai A, Paldi E. Acoustic vector-sensor array processing. IEEE Transactions on Signal Processing,1994,42(9):2487-2491
    [178]Compton Jr R T. The tripole antenna:an adaptive array with full polarization flexibility. IEEE Transactions on Antennas and Propagation,1981,29(6):944-952
    [179]Park H, Li J, Wang H. Polarization-space-time domain generalized likelihood ratio detection of radar targets. Signal processing,1995,41 (2):153-164.
    [180]Xu Y, Liu Z, Wong K T, et al. Virtual-manifold ambiguity in HOS-based direction-finding with electromagnetic vector-sensors. IEEE Transactions on Aerospace and Electronic Systems,2008,44 (4):1291-1308
    [181]Wu Y I, Wong K T. Polarisation-sensitive geometric modelling of the distribution of direction-of-arrival for uplink multipaths. IET Microwaves, Antennas & Propagation,2011,5(1):95-101
    [182]He J, Jiang S L, Wang J T, et al. Direction finding in spatially correlated noise fields with arbitrarily-spaced and far-separated subarrays at unknown locations. IET Radar, Sonar & Navigation,2009,3 (3):278-284
    [183]El K M, Boyer R, Renaux A, et al. Statistical resolution limit of the uniform linear cocentered orthogonal loop and dipole array. IEEE Transactions on Signal Processing,2011,59(1):425-431
    [184]Howard D D. Radar target angular glint in tracking and guidance system based on echo signal phase front distortion. The National Electronics Conference,1959: 840-849
    [185]Lindsay J E. Angular glint and the moving, rotating, complex radar target. IEEE Transactions on Aerospace and Electronic Systems,1968,4(2):164-173
    [186]Dunn J H, Howard D D. Radar target amplitude, angle, and Doppler scintillation from analysis of the echo signal propagating in space. IEEE Transactions on Microwave Theory and Techniques,1968,16(9):715-728
    [187]Yin H C, Huang P K. Unification and comparison between two concepts of radar target angular glint. IEEE Transactions on Aerospace and Electronic Systems,1995, 31(2):778-783
    [188]陈国瑛.雷达目标角闪烁的建模与抑制研究.航天部二院博士论文,1998
    [189]Wu W. Target tracking with glint noise. IEEE Transactions on Aerospace and Electronic Systems,1993,29(1):174-185
    [190]Daeipour E, Bar Shalom Y. Interacting multiple model approach for target tracking with glint noise. IEEE Transactions on Aerospace and Electronic Systems,1995, 31(2):706-715
    [191]Hewer G A, Martin R D, Zeh J. Robust preprocessing for kalman filtering of glint noise. IEEE Transactions on Aerospace and Electronic Systems,1987,23(1): 120-128
    [192]Daeipour E, Bar Shalom Y. An interacting multiple model approach for target tracking with glint noise. IEEE Transactions on Aerospace and Electronic Systems, 1995,31(2):706-715
    [193]Sims R J, Graf E R. Reduction of radar glint by diversity techniques. IEEE Transactions on Antennas and Propagation,1971,19(4):462-468
    [194]Borden B. Requirements for optimal glint reduction by diversity methods. IEEE Transactions on Aerospace and Electronic Systems,1994,30(4):1108-1114
    [195]Sandhu G S, Saylor A V. A real-time statistical radar target model. IEEE Transactions on Aerospace and Electronic Systems,1985,21(4):490-507
    [196]Kajenski P J. Comparison of two theories of angle glint:polarization considerations. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):206-210
    [197]Jeremiah H, Norman C B. Accurate simple closed-form approximations to rayleigh sum distributions and densities. IEEE Communications Letters,2005,9(2):109-111
    [198]Wu W. Maximum likelihood identification of glint noise. IEEE Transactions on Aerospace and Electronic Systems,1996,32(1):41-51
    [199]Song T L, Lee D G. Effective filtering of target glint. IEEE Transactions on Aerospace and Electronic Systems,2000,36(1):234-240
    [200]Niu R, Blum R S, Varshney P K, et al. Target tracking in widely separated non-coherent multiple-input multiple-output radar systems.43 rd Asilomar Conference on Signals, Systems and Computers,2009:1181-1185
    [201]Godrich H, Haimovich A M, Blum R S. A MIMO radar system approach to target tracking.43rd Asilomar Conference on Signals, Systems and Computers,2009: 1186-1190
    [202]Godrich H, Chiriac V M, Haimovich A M, et al. Target tracking in MIMO radar systems:techniques and performance analysis. IEEE International Radar Conference,2010:1111-1116
    [203]Gogineni S, Nehorai A. Monopulse MIMO radar for target tracking. IEEE Transactions on Aerospace and Electronic Systems,2011,47(1):755-768

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700