用户名: 密码: 验证码:
转基因植物外源Bt基因表达产物环境行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以741杨、毛白杨、Pb29(转Btcry1Ac基因741杨株系)和CC71(转Btcry3A基因741杨株系)为材料,通过嫁接手段,采用RT-PCR、ELISA等试验技术,进行外源Bt基因转录产物mRNA运输规律,外源Bt毒蛋白运输机制和规律,以及转基因嫁接杨树抗虫性的研究;以741杨、毛白杨、Pb29、转基因棉花国审GK45(转Btcry1Ac基因)和非转基因棉花新陆早36号为材料,建立4种杨棉复合系统,对外源Bt毒蛋白在系统中的富集、分布和降解规律进行研究。
     1.以741杨和Pb29互为接穗和砧木进行嫁接,利用RT-PCR技术,对Btcry1Ac基因的mRNA是否在砧木与接穗间运输进行了研究。RT-PCR检测结果表明:以741杨为接穗或砧木的嫩枝和嫩叶中均未检测到Btcry1Ac基因的mRNA,说明Btcry1Ac基因的mRNA没有在砧木与接穗间进行运输。
     2.以741杨和CC71互为接穗和砧木,以Pb29为接穗CC71为砧木进行嫁接,利用RT-PCR技术,对Btcry3A基因的mRNA是否在砧木与接穗间运输进行了研究。RT-PCR检测结果表明:以741杨为接穗或砧木的嫩枝和嫩叶,以及以Pb29为接穗的嫩枝和嫩叶中均未检测到Btcry3A基因的mRNA,说明Btcry3A基因的mRNA没有在砧木与接穗间进行运输。
     3.以741杨和Pb29互为接穗和砧木,以毛白杨和Pb29互为接穗和砧木,以CC71和Pb29互为接穗和砧木,以Pb29为中间砧741杨为接穗和砧木进行嫁接,利用ELSA技术对BtCry1Ac毒蛋白运输机制及规律进行了研究。ELISA检测结果表明:以741杨、毛白杨为砧木或接穗的叶片、韧皮部、木质部和髓中均检测出BtCry1Ac毒蛋白的存在;以CC71为砧木或接穗的叶片和韧皮部中均检测出BtCry1Ac毒蛋白,木质部和髓中没有检测到BtCry1Ac毒蛋白存在。各组织均以韧皮部中BtCry1Ac毒蛋白含量较高。这说明BtCry1Ac毒蛋白可以通过嫁接的方式在砧木和接穗间进行运输,且以韧皮部运输为主,但是2种外源蛋白(BtCry1Ac和BtCry3A)在运输的过程中可能发生了拮抗。
     4.以741杨和CC71互为接穗和砧木,以毛白杨和CC71互为接穗和砧木,以Pb29和CC71互为接穗和砧木,以CC71为中间砧741杨为接穗和砧木进行嫁接,利用ELISA技术对BtCry3A毒蛋白运输机制及规律进行了研究。ELISA检测结果表明:以741杨、毛白杨、Pb29为砧木或接穗的叶片、韧皮部、木质部和髓中均检测出BtCry3A毒蛋白的存在。各组织均以木质部中BtCry1Ac毒蛋白含量较高,但是以Pb29为砧木或接穗的木质部中BtCry3A毒蛋白含量相对较低。这说明BtCry3A毒蛋白可以通过嫁接的方式在砧木和接穗间进行运输,且以木质部运输为主,但是2种外源蛋白(BtCry1Ac和BtCry3A)在运输的过程中可能发生了拮抗。
     5.用转Btcry1Ac基因为砧木或接穗的嫁接杨树接穗叶片在室内喂饲杨扇舟蛾和美国白蛾的幼虫,研究嫁接处理对杨扇舟蛾和美国白蛾幼虫的影响。结果表明:转Btcry1Ac基因嫁接杨树对低龄杨扇舟蛾和美国白蛾幼虫具有一定的毒杀作用,而对存活的高龄幼虫则表现为对其生长发育的抑制作用,各嫁接处理均有效延长幼虫的发育历期,降低幼虫体长和体重增加速率,减少幼虫排粪量和食叶面积,导致幼虫生长发育不良,具有一定的抗虫性。
     6.用转Btcry3A基因为砧木或接穗的嫁接杨树接穗叶片在室内喂饲柳蓝叶甲幼虫,研究嫁接处理对柳蓝叶甲幼虫的影响。结果表明:转Btcry3A基因嫁接杨树对低龄柳蓝叶甲幼虫具有一定的毒杀作用,而对存活的高龄幼虫具有延长幼虫发育历期,降低幼虫体长增加速率,减少幼虫蛹重的作用,具有一定的抗虫性。
     7.利用ELISA技术,对杨棉复合系统中转基因杨树Pb29和转基因棉国审GK45外源BtCry1Ac毒蛋白表达进行研究,结果表明:转基因杨树Pb29长枝叶、短枝叶和根系等组织中,BtCry1Ac毒蛋白含量在整个生长发育期均呈先升后降的趋势。短枝叶BtCry1Ac毒蛋白含量一直高于长枝叶,根系中BtCry1Ac毒蛋白含量6月20低于短枝叶和长枝叶,以后高于短枝叶和长枝叶。转基因棉国审GK45根、茎、叶等组织中,BtCry1Ac毒蛋白含量在整个生长发育期呈动态下降趋势。茎中BtCry1Ac毒蛋白含量下降较缓慢,一直维持较高的水平,而根和叶中BtCry1Ac毒蛋白含量下降较快,到植株生长发育后期降到最低。茎和叶中BtCry1Ac毒蛋白含量高于根系。
     8.利用ELISA技术,对杨棉复合系统土壤中是否存在BtCry1Ac毒蛋白进行检测。结果表明:转基因杨树Pb29和转基因棉花国审GK45根际土,非转基因杨树与转基因棉花复合系统(B,D)、转基因杨树与转基因棉花复合系统(E,G)、转基因杨树与非转基因棉花复合系统(F,H)的表土,有少数的采样点检测到BtCry1Ac毒蛋白的存在,但是含量都很低。
In this paper, poplar 741, Populus tomentosa, Pb29 (transgenic poplar 741 with BtcrylAc gene) and CC71 (transgenic poplar 741 with Btcry3A gene) were used as the materials, mRNA transport law of exogenous Bt gene, transport mechanisms and rules of exogenous Bt toxin protein and insect-resistance of transgenic poplar 741 grafted were studied by using the grafting procedure; to poplar 741, Populus tomentosa, Pb29 (transgenic poplar 741 with BtcrylAc gene), transgenic cotton Guoshen GK45 (transgenic BtcrylAc gene) and non-transgenic cotton Handan109 for the material, the establishment of four kinds of Poplar-cotton composite system, the law of concentration, distribution and degradation of exogenous Bt toxin protein was studied.
     1 In order to discover whether mRNA of BtcrylAc gene was transported between the stock and scion, a study was made by means of RT-PCR technology while poplar741 and Pb29 were grafted as scion and stock mutually. The result of RT-PCR test was that mRNA of BtcrylAc gene was not detected in the branch and leaf of poplar741 as scion or stock; therefore it meant that mRNA of BtcrylAc gene was not transported between the stock and scion.
     2 In order to discover whether mRNA of Btcry3'A gene was transported between the stock and scion, a study was made by means of RT-PCR technology while poplar741 and CC71 were grafted as scion and stock mutually, and Pb29 was grafted onto CC71 rootstock. The result of RT-PCR test was that mRNA of Btcry3Agene was not detected in the branch and leaf of poplar741 and Pb29 as scion or stock; therefore, it meant that mRNA of Btcry3A gene was not transported between the stock and scion.
     3 While poplar741 and Pb29 were grafted as scion and stock mutually, Populus tomentosa and Pb29 were grafted as scion and stock mutually, CC71 and Pb29 were grafted as scion and stock mutually and poplar741 were grafted Pb29 as intermediate stock, in order to study on transport mechanisms and rules of exogenous BtCryl Ac toxin protein by means of ELS A technology. The results of ELISA test were as follows:BtCryl Ac toxin protein was all detected in the leaf, phloem, xylem and pith of poplar741 and Populus tomentosa as scion or stock; BtCry1 Ac toxin protein was only detected in the leaf, phloem of CC71 as scion or stock, but BtCry1 Ac toxin protein of xylem and pith were not detected. Therefore, it demonstrated that BtCry1 Ac toxin protein was transported between the stock and scion by means of grafting and phloem was mainly transport. but two kinds of exogenous proteins (BtCry1Ac and BtCry3A) antagonized during transport.
     4 While poplar741 and CC71 were grafted as scion and stock mutually, Populus tomentosa and CC71 were grafted as scion and stock mutually, Pb29 and CC71were grafted as scion and stock mutually and poplar741 were grafted CC71 as intermediate stock, in order to study on transport mechanisms and rules of exogenous BtCry3A toxin protein by means of ELISA technology. The results of ELISA test were as follows BtCry3A toxin protein was all detected in the leaf, phloem, xylem and pith of poplar741, Populus tomentosa and Pb29 as scion or stock, but BtCry3A toxin protein content of xylem and pith were lower. therefore, it demonstrated that BtCry3A toxin protein was transported between the stock and scion by means of grafting and xylem were mainly transport. But two kinds of exogenous proteins (BtCry1Ac and BtCry3A) antagonized during transport.
     5 With the aim of finding out the influence of grafting poplar741 with transgenic BtcrylAc gene on Clostera anachoreta Fabricius and Hyphantria cunea (Drury), the larvae of C. anachoreta and H. cunea were fed indoors on the leaves of scion which had been grafted. The results showed that grafting poplar741 with transgenic BtcrylAc gene had some toxin effects on the younger larvae of C. anachoreta and H. cunea and inhibited of growth and development of the older ones, could extend the larval developmental period of C. anachoreta and H. cunea, lower rates of larval body length and weight, reduced frass quantity and eating leaf area of the larvae, resulted in poor larval growth and development, and even express certain resistance to insects.
     6 With the aim of finding out the influence of grafting poplar741 with transgenic Btcry3A gene on Plagiodera versicolora (Laicharting), the larvae of P. versicolora were fed indoors on the leaves of scion which had been grafted. The results showed that grafting poplar741 with transgenic Btcry3A gene had some toxin effects on the younger larvae of P. versicolora and inhibited of growth and development. It could extend the larval developmental period of P. versicolora, lower rates of larval body length, reduced pupa weight of the older ones, and even express certain resistance to insects.
     7 It was studied that the expression of exogenous BtCry1Ac gene of transgenic poplar Pb29 and transgenic cotton Guoshen GK45 in poplar-cotton composite system by means of ELSA technology. The results showed that the contents of exogenous BtCry1Ac toxin protein branch leaves, short branch leaves and root firstly increased and then decreased in the growth and development of transgenic poplar Pb29. The contents of exogenous BtCry1Ac toxin protein branch leaves were higher than that of long branch leaves. On 20 June the contents of exogenous BtCrylAc toxin protein were less that of long branch leaves and short branch leaves and higher than that of long branch leaves and short branch leaves later. The contents of exogenous BtCrylAc toxin protein, stems and leaves decreased along with the growth of transgenic Guoshen GK45. The contents of exogenous BtCrylAc toxin protein of stems decreased more slowly and always maintained a high level, while that of roots and leaves decreased rapidly and reached a minimum level to the late plant growth and development, were less than that of stems.
     8 It was tested whether soil were the presence of BtCrylAc toxin protein in poplar-cotton composite system or not by means of ELSA technology. The results showed that a few sampling points had the presence of BtCrylAc toxin protein, but the concentrations were very low in the rhizosphere soil of transgenic poplar Pb29 and transgenic cotton Guoshen GK45, topsoil of non-transgenic poplar and transgenic cotton composite system (B, D), topsoil of transgenic poplar and transgenic cotton composite system (E, G), topsoil of transgenic poplar and non-transgenic cotton composite system (F, H).
引文
[1]王敏杰,卢孟柱.林木基因工程育种现状与发展趋势[J].世界林业研究,2002,15(3):7-1.
    [2]Frankenhuyzen K, Beardmore T. Current status and environmental impact of transgenic forest trees [J]. Canadina Journal of Forest Research,2004,34(6):1163-1180.
    [3]Balestrazzi A, Allegro G, Confalonieri M. Genetically modified trees expressing genes for insect pet resistance [J]. Tree Transgenesis:Recent developments. Ed by Fladung Mand Ewald, D. Springer-Verlag Berlin Heidelberg,2006,253-274.
    [4]Yang M S, Liang H Y, Gao B J, et al. Insecticidal activity and transgene expression stability of transgenic hybrid poplar clone 741 carrying two insect-resistant genes [J]. Silvae Genetica,2003,52(6):197-201.
    [5]Zhang Q, Zhang Z Y, Lin S Z, et al. Resistance of transgenic hybrid triploids in Populus tomentosa Car. against 3 Species of lepidopteron following two winter dormancies conferred by high level expression of cowpea trypsin inhibitor gene [J]. Silvae Genetica,2005,54(3):108-116.
    [6]林良斌,官春云.Bt毒蛋白基因与植物抗虫基因工程[J].生物工程进展,1997,17(2):51-55.
    [7]王忠华,舒庆尧,崔海瑞,等.Bt杀虫基因与Bt转基因抗虫植物研究进展[J].植物学通报,1999,16(1):51-58.
    [8]李海涛,王洪成,刘志洋. Bt杀虫晶体蛋白的研究概述[J].黑龙江农业科学,2004,5:37-39.
    [9]Knowles B H. Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins [J]. Adv Insect Physiol,1994,24:275-308.
    [10]吴刚,崔海瑞,舒庆尧,等.Bt杀虫晶体蛋白基因及其转基因育种研究进展[J].生物工程进展,2000,20(2):45-48.
    [11]苏彦辉,曲红,Vachori V,等.苏云金芽抱杆菌CrylAa蛋白a4螺旋形成跨膜离子通道的昆虫毒性试验与模型预测[J].中国科学(C辑),2002,32(2):146-152.
    [12]Bradley D. The insecticidal CryIB crystal protein of Bacillus thuringiensis subsp. thuringiensis has dualspecificity to col eopteran and lepidopteran larvae. In:Abstracts of the XXV Annual Meeting of the Society for Invertebrate Pathology [J]. Heidelberg, 1992:234.
    [13]Hofmann C, Luthy P, Hutter R, et al. Binding of the deltaendotoxin from Bacillus thuringiensis to brushborder membrane evesicles of the cabbage butterfly(Pieris brassicae) [J]. Eur J Biochem,1988,173:85-91.
    [14]Hofmann C, Vanderbruggen H, Hofte H, van Rie J, Jansens S, et al. Specificity of Bacillus thuringiensis δ-endotoxins iscorrelated with the presence of high-affinity binding sites in the brush-border membrane of target insect midgets [J]. USA:Proc Natl Acad Sci,1989,85:7844-7848.
    [15]Loseva O, Ibrahim M, Candas M, et al. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle:implications for insect resistance to Bacillus thuringiensis toxins [J]. Insect Biochem. Mol. Biol,2002,32(5):567-577.
    [16]Rajagopal R, Sivakumar S, Agrawal N, et al. Silencing of midgut aminopeptidase N of Spodoptera lituraby double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor [J]. J. Biol. Chem.,2002,277(49):46 849-46 851.
    [17]Wang P, Zhang X, Zhang J. Molecular characterization of four midgut aminopeptidase N isozymes from the cabbage looper, Trichoplusia ni [J]. Insect Biochem. Mol. Biol., 2005,35(6):611-620.
    [18]Vadlamudi RK, Ji TH, Bulla LA Jr. A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp [J]. berliner. J. Biol. Chem., 1993,268(17):12 334-12 340.
    [19]Midboe EG, CandasM, Bulla LA Jr. Expression of a midgut_specific cadherin BT_R1 during the development of Manduca sexta larva [J]. Comp. Biochem. Physiol. B Biochem. Mol.Biol.,2003,135(1):125-137.
    [20]韩岚岚,赵奎军,张杰.昆虫类钙粘蛋白与Bt Cry1A蛋白之间的相互作用[J].昆虫知识,2009,46(2):203-209.
    [21]Xu XJ, Yu LY, Wu YD. Disruption of a cadherin gene associated with resistance to CrylAc-endotoxin of Bacillus thuringiensis in Helicoverpa armigera [J]. Appl. Environ. Microbio,2005,71(2):948-954.
    [22]Bravo A, Miranda R, Gomez I, et al. Pore formation activity of Cry1Ab toxin from Bacillus thuringiensis in an improved membrane vesicle preparation from Manduca sexta midgut cell microvilli [J]. Biochimica et Biophysica Acta,2002,1562:63-69.
    [23]Vaeck M, Reynaerts A, Hofte A, et al. Transgenic plants protected from insect attack [J]. Nature,1987,328(6125):33-37.
    [24]Perlak F J, Fuchs R L, Dean D A, et al. Modification of the coding sequence enhances plant expression of insect control protein genes [J]. USA:Proc Natl Acad Sci,1991, 88:3324-3328.
    [25]郭三堆.植物Bt抗虫基因工程研究进展[J].中国农业科学,1995,28(5):8-13.
    [26]倪万潮.转基因抗虫棉的培育[J].中国农业科学,1998,31(2):8-13.
    [27]田颖川,郑均宝,虞红梅,等.转双价抗虫基因杂种741毛白杨的研究[J].植物学通报,2000,42(3):263-268.
    [28]赵存友,袁正强,秦红敏,田颖川.转双抗虫基因烟草的研究[J].生物工程学报,2001,17(3):273-277.
    [29]苏宁,杨波,孟昆,等.双价抗虫基因共转化烟草叶绿体的研究[J].中国农业科学,2002,35(4):394-398.
    [30]林良斌,官春云,李恂,等.子房注射法与农杆菌介导法转化甘蓝型油菜的比较研究[J].生命科学研究,2000,4(3):231-236.
    [31]陆小毛,朱路青,曹越平.转Bt基因作物及其安全性研究[J].上海交通大学学报(农业科学版),2006,24(2):214-220.
    [32]李葱葱,刘娜,康岭生,等.转基因抗虫玉米Bt蛋白表达量的研究[J].玉米科学,2006,14(3):40-41.
    [33]张永军,吴孔明,郭予元.转Bt基因棉花杀虫蛋白含量的时空表达及对棉铃虫的毒杀效果[J].植物保护学报,2001,28(1):1-6.
    [34]甄志先,李静,梁海永,等.转BtCry3A基因杨树毒蛋白表达及对桑天牛抗性的研究[J].蚕业科学,2007,33(4):538-542.
    [35]张永山,吕友军,郭红祥.外源抗虫基因对棉花杂种优势的影响[J].作物学报,2004,30(3):215-220.
    [36]肖松华,刘剑光,狄佳春,等.转基因抗虫棉Bt毒蛋白表达量的传递方式研究[J].棉花学报,2002,14(5):295-299.
    [37]王军辉,张建国,胡建军,等.转基因欧洲黑杨中Bt基因表达特性的研究[J].中国生物工程杂志,2004,24(1):49-52.
    [38]邢朝柱,靖深蓉,崔学芬,等.转Bt基因棉杀虫蛋白含量时空分布及对棉铃虫产生抗性的影响[J].棉花学报,2001,13(1):11-15.
    [39]周桂生,周福才,谢义明,等.温度胁迫对转Bt基因抗虫棉毒蛋白的表达和棉铃虫死亡率的影响[J].棉花学报,2009,21(4):302-306.
    [40]Sachs E. S. CropScience,1998,38:1-11.
    [41]高宝嘉,王永芳,王进茂,等.转双抗虫基因741杨的抗虫效应及其规律研究[J].生态学报,2004,24(2):297-301.
    [42]郭同斌,嵇保中,诸葛强,等.转Bt基因杨树(NL-80106)对杨小舟蛾抗虫性研究[J].南京林业大学学报(自然科学版),2004,28(4):5-9.
    [43]杨敏生,李志兰,王颖,等.双抗虫基因对三倍体毛白杨的转化和抗虫性表达[J].林业科学,2006,42(9):61-68.
    [44]王颖,甄志先,杨敏生,等.转双抗虫基因三倍体毛白杨外源基因表达及性状相关性分析[J].昆虫学报,2007,50(9):907-913.
    [45]袁胜亮,周国娜,李明,等.转基因三倍体毛白杨抗虫性鉴定[J].中国农学通报,2007,(9):196-200.
    [46]李立,杨敏生,梁海永,等.转双抗虫基因三倍体毛白杨抗虫性分析[J].河北农业大学学报,2009,32(2):74-78.
    [47]Cornu D, Leple J C, Bonade-Bottino M, et al. Expression of a proteinase inhibitor and a Bacillus thuringiensis delta-endotoxin in transgenic poplars [J]. Somatic cell genetics and moleculargenetics of trees,1996:131-136.
    [48]李明亮,张辉,胡建军,等.转Bt基因和蛋白酶抑制剂基因杨树抗虫性的研究[J].林业科学,2000,36(2):93-97.
    [49]王军辉,王念,张建国,等.转Bt基因植物中外源基因时空动态表达的研究现状[J].生物技术通报,2004,2:1-4.
    [50]Donegan K K, et al. Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. Kurstaki endotox in [J]. Applied Soil Ecology,1995,2:111-124.
    [51]丁志勇,许崇任,王戎疆.转Bt基因抗虫棉与常规棉中几种同工酶的比较-转基因植物安全性评价生理指标初探[J].生态学报,2001,21(2):332-336.
    [52]陈德华,聂安全,杨长琴,等.Bt棉毒蛋白表达特征与氮代谢关系及其化学调节的研究[J].中国棉花,2003,30(7):10-12.
    [53]杨敏生,高宝嘉,王进茂.转双抗虫基因741杨基本特性分析[J].林业科学,2005,41(1):91-97.
    [54]Sivamani E, Rajendran N. Influence of some plant phenolies on the activity of δ-endotoxin of Bacillus thuringiensis var. galleiae on Heliothis armigera [J]. Entomol Exp Appl,1992,63:243-248.
    [55]Gary Fitt, Olsen K, Lawvence L. Factors affecting the efficacy of Bt cotton [J].Austr Cottongrower,1999,20(3):28-30.
    [56]张永军,郭予元,吴孔明,等.外源Bt杀虫蛋白和棉花抗虫黄酮类化合物的互作关系[J].应用与环境生物学报,2002,8(4):371-377.
    [57]Gibson D M. Increased efficacy of Bacillus thuringiensis subsp. Kurstaki in combination with tannic acid [J]. J Econ Entomol,1995,88(2):270-277.
    [58]张永军,郭予元.棉花缩合单宁和Bt杀虫蛋白的交互关系[J].棉花学报,2000,12(6):294-297.
    [59]Navon A. Interactions among Heliothis virescens larvae, cotton condensed tannin and the Cry I A(c) 8-endoxtion of Bacillus thuringiensis [J]. J Chem Ecology,1993, 19(11):2485-2499.
    [60]张永军,王武刚,郭予元.转Bt基因棉花抗虫萜烯类化合物时空动态的HPLC分析[J].应用与环境生物学报,2001,7(1):37-40.
    [61]张洪瑞,朱其松,高苓昌,等.Bt基因及其在转基因抗虫植物中的研究进展[J].河北农业科学,2008,12(6):87-89.
    [62]高丽洁,薛亚杰,杨正书,等.转Bt基因抗虫棉的研究进展[J].沈阳农业大学学报,2000,31(6):600-603.
    [63]Shelton A M, Zhao J Z, Roush R T. Economic ecological, food safety, and social consequences of the deployment of Bt transgenic plants [J]. Annual Review of Entomology,2002,5 (47):845-847.
    [64]沈法富,于元杰,张学坤,等.转基因棉花的Bt基因流[J].遗传学报,28(6):2001,562-567.
    [65]张宝红,郭腾龙.转基因棉花基因花粉散布频率及距离的研究[J].应用与环境生物学报,2000,6(1):39-42.
    [66]Kjellson G, Simonsen V, Ammann K. Methods for risk assessment of transgenic plants Ⅱ. Pollination, gene2 transfer and population impacts [M]. Basel: Birkhauser Verlag,1997.
    [67]Losey J E, Rayor L S, Carter M. Transgenic pollen harms monarch larvae [J]. Nature, 1999,399:214.
    [68]陈坤荣,许泽永,晏立英,等.转基因花生外源基因田间漂移风险初步研究[J].中国油料作物学报,2009,31(3):383-385.
    [69]Zhang C Q, Lu Q Y, Wang Z X, et al. Frequency of 2,4-D resistant gene flow of transgenic cotton [J]. Sci. Agric. Sin.,1997,30 (1):92-93.
    [70]Tlmmons AM, Charters Y M, Crawford J W, et al. Risks from transgenic crops [J]. Nature,1996,380(11):487.
    [71]Lavigne C, Klein E K, Vallee P, et al. A pollen-dispersal experiment with transgenic oilseed rape [J]. Theoret Appl Genetics,1998,96(6):886-896.
    [72]Wolfenbarger L L, Phifer P R. The ecological risks and benefits of genetically engineered plants [J]. Science,2000,290:2088-2093.
    [73]Tabashnik B E. Evolution of resistance to Bacillus thuringiensis [J]. Annual Review of Entomology,1994,39:47-79.
    [74]梁革梅,谭维嘉,郭予元.棉铃虫对Bt的抗性筛选及交互抗性研究[J]. 中国农业科学,2000,33(4):46-53.
    [75]Roush RT. Two toxin strategies for management of insecticidal transgenic crops:can pyramiding succeed where pesticide mixtures have not? [J]. Philosphical Transactions of the Royal Society of London,1998,35:1777-1786.
    [76]Fitt G P. Proceedings of 8th Australian Cotton Conference, ACGRA [J]. Broadbeach, Australia,1996,69-76.
    [77]Stotzky G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids [J]. J. Environ. Qual.,2000,29:691-705.
    [78]刘小侠,张青文,蔡青年,等.Bt杀虫蛋白对不同品系棉铃虫和中红侧沟茧蜂生长发育的影响[J].昆虫学报,2004,47(4):461-466.
    [79]崔金杰,雒捃瑜,王春义,等.转双价基因(Bt+CpTI)棉对棉田主要捕食性天敌捕食功能反应的影响[J].南京农业大学学报,2005,28(1):48-51.
    [80]Zangerl A R, McKenna D, Wraight C L, et al. Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarchand black swallowtail caterpillars under field conditions[J]. Proc Natl Acad Sci, USA,2001,98(21):11908-11912.
    [81]吴研,王振营,何康来,等.转Bt基因玉米Bt11花粉对玉米螟赤眼蜂繁殖和存活的影响[J].昆虫学报,2008,51(2):227-233.
    [82]张桂芬,万方浩,郭建英,等.Bt毒蛋白在转Bt基因棉中的表达及其在害虫-天敌间的转移[J].昆虫学报,2004,47(3):334-341.
    [83]肖能文,戈峰,刘向辉.Bt毒蛋白Cry1Ac在人造土壤中对赤子爱胜蚓毒理及生化影响[J].应用生态学报,2005,16(8):1523-1526.
    [84]Cattaneo M G, Yafuso C, Schmidt C, et al. Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield [J]. Proceedings of the National Academy of Sciences of the US,2006,103(20):7571-7576.
    [85]Naranjo S E. Long-term assessment of the effects of transgenic Bt cotton on the abundance of nontarget arthropod natural enemies [J]. Environmental Entomology, 2005,34(5):1193-1210.
    [86]Torres J B, Ruberson J R. Canopy-and ground-dwelling predatory arthropods in commercial Bt and non-Bt cotton fields:patterns and mechanisms [J]. Environmental Entomology,2005,34(5):1242-1256.
    [87]Head G P, Moar W J, Eubanks M, et al. A multi-year, large-scale comparison of arthropod populations on commercially managed Bt and non-Bt cotton fields [J]. Environmental Entomology,2005,34(5):1257-1266.
    [90]Naranjo S. E. Long-term assessment of the effects of transgenic Bt cotton on the function of the natural enemy community [J]. Environmental Entomology,2005, 34(5):1211-1223.
    [91]Riddick E W, Dively G, Barbosa P. Effect of a seed-mix deployment of Cry3A-transgenic and nontransgenic potato on the abundance of Lebia grandis (Coleoptera:Carabidae) and Coleomegilla maculate (Coleoptera:Coc-cinellidae) [J]. Annals of the Entomological Society of America,1998,91(5):647-653.
    [92]范广华,李冬刚,李子双,等.不同生境对抗虫棉绿盲蝽及其天敌发生动态的影响[J].中国生态农业学报,2009,17(4):728-733.
    [93]高素红,毛富玲,王江柱,等.转双抗虫基因741杨节肢动物群落生态安全性评价—转基因741杨对节肢动物群落空间结构的影响[J].河北农业大学学报,2005,28(3):77-80.
    [94]Saxena D, Flores S, Stotzky G. 1999. Insecticidal toxin in root exudates from Bt corn. Nature,402:480.
    [95]Tapp H, Calamai L, Stotcky G Adsorption and binding of the insecticidal proteins from Bacillus thuringiensis suhsp. Kurstski and subsp. Tenebrionis on Clay Mimerals [J]. Soil Biol Biochem,1994,26(6):663.
    [96]Stotcky G. Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis suhsp. Kurstaki hound to humic acids from soil [J]. Soil Biol Biochem, 1998,30(4):463.
    [97]芮玉奎.Bt棉与常规棉根际土壤Bt毒蛋白和植物激素变化动态[J].生物技术通讯,2005,16(5):215-217.
    [98]Donegan K K, Palm C J, Fieland V J, et al. Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin [J]. Applied Soil Ecology,1995,2(2):111-124.
    [99]Sims S R, Ream J E. Soil inactivation of the Bacillus thuringiensis ssp. Kurstaki Cry IIA insecticidal protein with intransgenic cotton tissue:laboratory microcosm and field studies[J]. J Agric Food Chem,1997,45:1502-1505.
    [100]Head G, Surber J B, Watson J A, et al. Nodetection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use [J]. Environmental Entomology, 2002,31:30-36.
    [101]张金国,刘翔,崔金杰.转基因(Cry 1 Ac)抗虫棉对土壤微生物的影响[J].中国生物工程杂志,2006,26(5):78-80.
    [102]陈敏,应文荷.转Bt水稻与常规水稻根际土壤细菌类群的比较研究[J].杭州师范学院学报(自然科学版),2004,4(4):290-292.
    [103]张美俊,杨武德,李燕娥.不同生育期转Bt基因棉种植对根际土壤微生物的影响[J].植物生态学报,2008,32(1):197-203.
    [104]Ewen S W B, Pusztai A. Effect of diets containing genetically modified potatoes Galanthus nivalis lectine on rat small intestine [J]. The Lanect,1999,354: 1353-1354.
    [105]Fuchs R L, Re D B, Rogers S G, et al. Safety evaluation of glyphosare-tolerant soybeans [R]. OCED, Food Safety Evaluation. Paris,1996:61-70.
    [106]Usepa. Guidance for the registration of pesticide products containing Bacillus thuringiensis as an active ingred ient [M]. NTISPB,1988:164189-164198.
    [107]陈宏主编.基因工程原理与应用[M].北京:中国农业出版社,2003.
    [108]Strauss E,李江.RNA分子在植物中的作用[J].世界科学,1999,4:21.
    [109]Yoo BC, Kragler F, Varkonyi-Gasic E, et al. A Systemic Small RNA Signaling System in plants [J]. The Plant Cell,2004,16:1979-2000.
    [110]Wu XL, Weigelel D, Wigge PA. Signaling in plants by intercellular RNA and protein movement [J]. Genes&Dev,2002,16:151-158.
    [111]Qi LW, Li XM, Zhang SG Genetic regulation by non-Coding RNAs [J]. Science in China:Series C Life Science,2006,49(3):201-217.
    [112]Ruiz-Medrano R, Xoconostle-Cazares B, Lucas WJ. Phloem long-distance transport of CmNACP mRNA:implications for supracellular regulation in plants [J]. Development,1999,126:4405-4419.
    [113]Foster TM, Lough TJ, Emerson SJ, et al. A surveillance System regulates selective entry of RNA into the Shoot apex [J]. The Plant Cell,2002,14:1497-1508.
    [114]Jorgensen RA. RNA traffics information systemically in plants [J]. Pnas,2002,99: 11561-11563.
    [115]Huang T, Boehlenius H, Eriksson S, et al. The mRNA of the arabidopsis gene FT moves from leaf to Shoot apex and induces flowering[J]. Science,2005,309: 1694-1696.
    [116]石磊.mRNA定位的主动运输机制[J].国外医学分子生物学分册,2002,24(6):344-348.
    [117]Golecki B, Schulz A, Carstens-Behrens U, et al. Evidence for graft transmission of strucrural phloem proteins or their precursors in heterografts of Cucurbitaceae [J]. Planta,1998,206:630-640.
    [118]Crete P, Leuenberger S, Iglesias VA, et al. Graft transmission of induced and Spontaneous post-transcriptional silencing of chitinase genes [J]. Plant J,2001,28(5): 493-501.
    [119]Sasaki T, Chino M, Hayashi H, et al. Detection of Several mRNA Species in rice phloem sap [J]. Plant Cell Physiol,1998,39(8):895-897.
    [120]. Aoki K, Suzui N, Fujimaki S, et al. Destination-selective long-distance movement of phloem proteins [J]. The Plant Cell,2005,17:1801-1814.
    [121]Zambryski P. Cell-to-cell transport of proteins and fluorescent tracers via plasmodesmata during plant development [J]. The Journal of Cell Biology,2004, 162(2):165-168.
    [123]Kim I, Cho E, Crawford K, et al. Cell-to-Cell movement of GFP during embryogenesis and early Seedling deVelopment in Arabidopsis [J]. Pnas,2005,102: 2227-2231.
    [124]戚继艳,阳江华,唐朝荣.植物蔗糖转运蛋白的基因与功能[J].植物学通报,2007,24(4):532-543.
    [125]芮玉奎,朱本忠,罗云波.转Bt基因抗虫棉(Gossyposium)伤流中Bt毒蛋白的运输[J].植物学通报,2005,22(3):320-324.
    [126]李茜.转基因植物的安全性评价[J].农业生物技术,2008,1:62-63.
    [127]李淑梅,张春玲,胡建军,等.转基因抗虫杨树新品种“健杨94”[J].林业科学,2008,44(7):141.
    [128]田颖川,李太元,莽克强,等.抗虫转基因欧洲黑杨的培育[J].生物工程学报,1993,9(4):291-297.
    [129]王学聘,韩一凡,田颖川,等.抗虫转基因欧美杨的培育[J].林业科学,1997,33(1):69-74.
    [130]夏兰芹,徐琼芳,郭三堆.抗虫棉生长发育过程中Bt杀虫基因及其表达的变化[J].作物学报,2005,31(2):197-202.
    [131]卢圣栋.分子生物学实验技术指南[M].中国科学出版社,1976.
    [132]Smabrook, J. Molecular cloning:A Laboratory Mannual,3rded [M]. Cold Spring Harbor Laboratory Perss,2001.
    [133]彭小冬,童坦君.mRNA运输、定位、降解与翻译起动在基因表达中的作用[J].生命科学,1995,7(5):11-14.
    [134]Jorgensen R A, Atkinson R G, Forster R L, et al. An RNA-based information super highway in plants [J]. Science,1998,279(5356):1486-1487.
    [135]Lazarowitz S G, Beachy R N. Viral movement proteins as probes for intracellular and intercellular trafficking in plants [J]. Plant Cell,1999,11(4):535-548.
    [136]Stegemann S, Bock R. Exchange of Genetic Material Between Cells in Plant Tissue Grafts [J]. Science 2009,1 May:DOI:10.1126/science.1170397.
    [137]王忠华,江乐瑜.转Bt基因抗虫青菜的苗期性状评价[J].江苏农业科学,2007,2:93-95.
    [138]Pedersen C, Iimny J, Beeker D, et al. Location of meerodueed genes on the chromsomes of transgenic Barkley wheat and Tritieum by fluoreseenee in situ hybridi Zation [J]. Theor.Appl.Genet,1997,94:749-757.
    [139]Allen G C, Hall G H, et al. High-leve transgene expression in plant cells:effeets of a strong scaffold attachment region from tobacco [J]. Plant Cell,1996,8(5):899-913.
    [140]岳同卿,郎志宏,黄大昉.转基因植物外源基因的整合分析[J].生物技术通报,2009.10:1-7.
    [141]Matzke M A, MatzkeA J M. How and why do plants inaetivate homologous transgenes? [J] Plant Physiology.1995,107:679-685.
    [142]Smith H A, Swaney S L, Parks T D, et al. Transgenic plant virus resistance mediated by untranslatable sense RNAs:expression, regulation and fate of nonenssential RNAs [J]. Plant Cell,1994,6:1441-1453.
    [143]董延龙.转基因植物转录后的基因沉默[J].中国林副特产,2009,101(4):97-99.
    [144]蒋自立.植物DNA甲基化与转基因沉默[J].安徽农业科学,2009,37(12):5386-5389.
    [145]时丽冉.真核细胞内蛋白质的定向转运[J].衡水师专学报,2004,6(2):31-32.
    [146]卢善发,宋艳茹.韧皮部运输和防御作用的分子机理[J].植物学通报,1999,16(2):113-121.
    [147]孙少广.南瓜韧皮部蛋白系统运输的初步研究[D].东北师范大学,2008.
    [148]刘丹如,宋长征,张更林.植物表达分泌蛋白的运输及定位[J].生物技术通讯,2006,17(3):425-428.
    [149]潘瑞炽.植物生理学(第六版)[M].高等教育出版社,2008.
    [150]遇文婧,邹传山,王志英,等.欧美杨108号转蜘蛛杀虫肽与Bt毒蛋白嵌合基因的研究[J].植物研究,2009,29(5):603-606.
    [151]张冰玉,苏晓华,李义良,等. 转抗鞘翅目害虫基因银腺杨的获得及其抗虫性的初步研究[J].北京林业大学学报,2006,28(2):102-105.
    [152]李科友,樊军锋,赵忠,等.转双价抗虫基因毛白杨无性系85号抗虫性研究[J].西北植物学报,2007,27(8):1537-1543.
    [153]伍宁丰,孙芹,姚斌,等.抗虫的转AaIT基因杨树的获得[J].生物工程学报,2000,16(2):129-133.
    [154]诸葛强,王婕琛,陈英,等.豇豆胰蛋白酶抑制剂(CpTI)抗虫转基因新疆杨的获得[J].分子植物育种,2003,1(4):491-496.
    [155]郑志英,温宇光.杨扇舟蛾性引诱行为的观察[J].昆虫知识,1994(2):96.
    [156]张智奇,周音,王少欧,等.抗虫基因及其在植物上的应用[J].吉林农业大学学报,1996,18(1):91-95.
    [157]张宝祯,刘桂祥,魏本荣,等.杨扇舟峨生物学特性研究及防治[J].林业科技通讯,1997(6):30.
    [158]王颖.转基因三倍体毛白杨外源基因及其表达的检测[D].河北农业大学,2004,6.
    [159]王雅君.美国白蛾生物学特性及防治方法[J].河北林业科技,2004,(2):42-43.
    [160]肖进才,袁淑琴,王健生,等.美国白蛾生物学特性及防治[J].山东林业科技,2001(增刊):54-55.
    [161]王翠娟,刘艳庄,李少春.美国白蛾的识别与防治[J].河北果树,2008,(3):36.
    [162]郝文革.柳蓝叶甲的初步观察[J].安徽农学通报,2008,14(7):188-190.
    [163]李静.转抗虫基因(Btcry3A)741杨抗虫性研究[D].河北农业大学,2006,6.
    [164]刘军侠,高宝嘉,张炬红,等.转基因741杨抗虫持续性研究[J].北京林业大学学报,2004,26(6):76-79.
    [165]刘军侠.转基因741杨的抗虫效应及生态安全性评价[D].东北林业大学,2004,6.
    [166]赵凯,朱宏,赵星海,等.转基因植物环境安全性研究进展[J].2009,44(4):8-11.
    [167]Sivasupramaniam S, Head G P, English L, et al. A global approach to resistance monitoring [J]. J.Invertebr. Pathol.,2007,95(3):224-226.
    [168]侯英杰,苏晓华,焦如珍,等.转基因银腺杂种杨对土壤微生物的影响[J].林业科学,2009,45(5):148-152.
    [169]Devare M H, Jones C M, Thies J E, et al. Effect of Cry3Bb Transgenic corn and tefluthrin on the soil microbial community:biomass, activity, and diversity [J]. J Environ Qual,2004,33 (3):837-843.
    [170]郭文文,李建勇,诸葛玉平,等.转基因作物对土壤生态安全的影响[J].山东农业科学,2009,10:86-90
    [171]邸宏,刘昭军.转Bar基因玉米基因漂移的研究[J].中国农学通报,2008,24(12):111-113.
    [172]孟平,张劲松,樊巍.农林复合生态系统研究[M].北京:科学出版社,2004.
    [173]孙彩霞,陈利军,武志杰.Bt毒素在转基因棉花与土壤系统中的分布[J].应用生态学报,2005,16(9):1765-1768.
    [174]沈平,张永军,陈洋,等.Bt棉不同种植年限土壤中Bt基因及其蛋白的残留测定[J].棉花学报,2008,20(1):79-封三.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700