用户名: 密码: 验证码:
骨髓间充质干细胞体外向肠神经元的诱导分化及其机制的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先天性巨结肠(Hirschsprung's disease,HD)是小儿消化道常见畸形,发病率为1/2000~1/5000,其疾病的发生目前一致认为是由于多种原因使胚胎期神经嵴细胞在消化道移行受阻,直肠、结肠甚至小肠肠壁神经节细胞缺如,病变肠管痉挛收缩,肠内容物排出受阻,近端肠管继发性扩张形成巨结肠。迄今,手术仍然是最有效的治疗手段,虽然,手术方式的不断改进,微创手术的日益进步,但术后并发症仍困扰着患者和医护工作者。而近年来研究的热点之一细胞移植有望成为治疗HD又一有效并且安全的方法,本课题将研究如何获得具有功能的细胞进行移植。
     骨髓间充质干细胞(bone mesenchymal stem cells,BMSC)在体外容易分离、培养及纯化,多向分化潜能是其最主要的生物学特征之一,现在关于BMSC向神经方向分化的研究报道较多,许多研究表明BMSC在体外一定条件下可分化为神经细胞,移植于损伤脑或脊髓治疗神经系统疾病,这为BMSC治疗肠神经系统疾病提供了理论依据,并避免了神经干细胞、胚胎干细胞移植来源不足及伦理问题。目前BMSC向神经细胞分化的具体机制尚不清楚,可能与诱导剂的共同作用启动了向神经细胞定向分化有关的基因表达或使其表达增强有关。较常见的是用β-巯基乙醇(β-mercaptoethanol,BME)、二甲亚砜(dimethyl sulfoxide,DMSO)及维甲酸等化学物质进行诱导,也有用某些生长因子进行诱导的。神经营养因子的作用也已受到重视,一方面,神经营养因子可在一定培养条件下诱导BMSC向神经细胞分化;另一方面,神经营养因子具有神经保护和促进神经突起生长的作用,缺乏神经营养因子的支持可能导致神经细胞的凋亡发生。
     本实验先从探讨BMSC向神经细胞分化的条件,以及有关神经营养因子表达的变化,如胶质细胞源神经营养因子(glial cell line-derived neurotrophic factor,GDNF,RET(rearranged during transfection)等开始,初步探讨了其分化的机制,其结果发现碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)及表皮生长因子(epidermal growth factor,EGF)可促进BMSC向神经细胞分化,在向神经细胞分化的过程中,GDNF表达增强,并且RET基因也有表达,GDNF可能在BMSC向神经细胞分化过程中起到重要作用。在BMSC向肠神经元分化的可行性实验研究中,将GDNF作为诱导因子与胎肠培养基(fetal gut condition medium,FGCM)共同作用,诱导BMSC分化为肠神经元,诱导后的细胞,不仅表达神经元标志物神经特异性烯醇化酶(neural specific enolase,NSE)以及肠神经标志物一氧化氮合酶(nitric oxide synthase,nNOS),而且还能分泌肠神经递质肠道血管活性肽(vasoactive intestinal peptide,VIP),说明体外分化的肠神经元不仅具备形态学上的特征,而且具有一定程度的功能。为了提高BMSC向肠神经元的分化率,本实验还进行了GDNF基因转入BMSC的研究,结果显示,体外可成功构建表达GDNF的转基因BMSC,在FGCM的诱导下可分化为具有肠神经元表型的细胞,并且诱导分化率高于外源性GDNF组。
     但关于诱导后的肠神经元是否具备正常肠神经元的功能,移植于无神经节段后能否改善肠段的功能,还有待下一步的在体实验进一步研究。
     第一部分大鼠骨髓间充质干细胞的分离、培养、纯化和鉴定
     目的:体外分离培养大鼠骨髓间充质干细胞(bone mesenchymal stem cells,BMSC),并进行纯化和鉴定。
     方法:收集Sprague-Dawley(SD)大鼠的股骨骨髓,用含10%胎牛血清的DMEM培养基直接种植于培养瓶,反复传代贴壁法纯化细胞,流式细胞仪检测CD90及CD45。
     结果:BMSC能在体外贴壁生长,经过反复贴壁,BMSC可融合生长,高表达BMSC标志物CD90(93.4%),不表达造血干细胞标志物CD45。
     结论:体外可成功培养BMSC,经过反复贴壁法可纯化BMSC,可获得高纯度的细胞。
     第二部分骨髓间充质干细胞体外向神经细胞的诱导分化
     目的:探讨大鼠骨髓间充质干细胞(bone mesenchymal stem cells,BMSC)向神经分化的条件,了解神经细胞标志物的表达情况及胶质细胞源神经营养因子(glialcell line-derived neurotrophic factor,GDNF)的表达变化。
     方法:体外培养大鼠BMSC,至少传至第4代,进行诱导分化。以10ng/ml碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)或/和10ng/ml表皮生长因子(epidermal growth factor,EGF)在含10%胎牛血清的DMEM中诱导,7d后观察细胞形态的变化,免疫组化检测胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)及神经特异性烯醇化酶(neural specific enolase,NSE)的情况。RT-PCR检测GDNF及其受体RET mRNA的变化。
     结果:诱导7天后,实验组均可见GFAP及NSE的表达,而对照组为阴性。各实验组比较,bFGF组及bFGF+EGF组表达的NSE高于EGF组,而EGF组表达GFAP更高。RT-PCR检测示,BMSC向神经细胞诱导后,GDNF表达显著增强,RET基因也开始表达,以bFGF+EGF组最明显。
     结论:bFGF及EGF可促进BMSC向神经细胞分化。在向神经细胞分化的过程中,能促进GDNF表达的增强,以及RET基因的表达,GDNF可能在BMSC向神经细胞分化过程中起到重要作用。
     第三部分骨髓间充质干细胞体外两种方法向肠神经元诱导分化及比较
     目的:探讨大鼠骨髓间充质干细胞(bone mesenchymal stem cells,BMSC)向肠神经分化的条件及可行性,并比较两种方法的分化效率。
     方法:体外培养大鼠BMSC,传至第4代后,进行诱导分化。第一种方法:以10ng/ml胶质细胞源神经营养因子(glial cell line-derived neurotrophic factor,GDNF)及10%胎牛血清(fetal bovine serum,FBS)的稀释胎肠培养基(fetal gutcondition medium,FGCM)诱导7天,免疫组化的方法进行鉴定诱导细胞的神经特异性烯醇化酶(neural specific enolase,NSE)、血管活性肠肽(vasoactive intestinalpeptide,VIP)及神经元一氧化氮合酶(neuronal nitric oxide synthase,nNOS)的表达。第二种方法:提取新生大鼠肠组织mRNA,用逆转录PCR方法扩增GDNF全长cDNA,构建其真核表达载体PIRES2-EGFP-GDNF,酶切及测序鉴定,然后转染原代培养的大鼠BMSC,荧光免疫细胞化学及细胞形态学检测GDNF的表达,转染后的细胞在稀释的FGCM条件下诱导分化。同样的方法检测VIP,nNOS。
     结果:BMSC诱导7天后,两组实验组均可见NSE、VIP及nNOS的表达,而对照组为阴性。表达GDNF的BMSC被诱导分化的肠神经元NSE阳性,VIP及nNOS阳性率高于外源性GDNF诱导的细胞。
     结论:GDNF联合FGCM可诱导BMSC分化为肠神经元。表达GDNF的BMSC分化为肠神经元的效率更高。
     第四部分骨髓间充质干细胞向肠神经元分化后神经营养因子表达的变化及其机制的初步探讨
     目的:探讨大鼠骨髓间充质干细胞(bone mesenchymal stem cells,BMSC)向肠神经分化过程中胶质细胞源神经营养因子(glial cell line-derived neurotrophicfactor,GDNF)及其受体RET以及c-kit基因表达的变化,并对其机制进行初步探讨。
     方法:同样的方法诱导BMSC为肠神经元,免疫组化的方法进行鉴定诱导细胞的神经特异性烯醇化酶(neural specific enolase,NSE)、血管活性肠肽(vasoactive intestinal peptide,VIP)及一氧化氮合酶(nitric oxide synthase,nNOS)的表达。RT-PCR检测GDNF、RET及c-kit mRNA的变化,Western Blot方法检测GDNF蛋白的表达情况。
     结果:BMSC向肠神经元诱导后,免疫组化染色NSE,VIP及nNOS阳性,RT-PCR结果显示,诱导前低表达GDNF以及不表达RET、C-kit,诱导后GDNF表达显著增强,RET、c-kit基因表达,而且GDNF在蛋白水平上也有表达。
     结论:GDNF联合FGCM可诱导BMSC分化为肠神经元,诱导后的细胞表达肠神经元标志物,其GDNF、RET及c-kit基因表达增强;GDNF-RET信号通路在诱导分化过程中起重要作用,c-kit在BMSC向肠神经元分化过程中的某个阶段发挥其作用。
Hirschsprung's disease (HD) is common digestive tract malformation in childrenwith an incidence rate of 1/2000~1/5000. The pathogenesis of HD is currently agreedthat embryonic neural crest cells are blocked in the digestive tract transition becauseof a number of reasons, so rectal and colon wall is absent of ganglion cells. HDmanifestes that spastic contraction of aganglionic segment and the secondarymegacolon due to expansion of the proximal intestine. To date, surgery is still themost effective treatment. Although surgical methods improve continuously andminimally invasive surgery makes great progress, postoperative complications are stillplagued patients and doctors. Cell transplantation, one of the top researches in recentyears, is expected to become another effective and safe treatment manner for HD.
     Bone mesenchymal stem cells (BMSC) can be easily isolated, cultured andpurified in vitro and multi-directional differentiation potential is one of the mostimportant biological characteristics. Now there are more and more reports aboutneural differentiation of BMSC. Many studies indicate that BMSC can differentiateinto nerve cells under certain conditions in vitro and transplant into the brain or spinalcord to treat the injury of the nervous system, which makes it possible that BMSCtreat intestinal nervous diseases and avoids the absence of neural stem cell and ethicalproblem. However, the mechanism of differentiation of BMSC into nerve cells is notclear, which may be concerned with the combined effect of agents that activated thedifferentiation-related gene expression. More common withβ-mercaptoethanol(BME), dimethyl sulfoxide (DMSO), retinoic and other chemical substances are oftenused as inducers. In addition, some growth factors and neurotrophic factors havegradually be taken seriously. On the one hand, neurotrophic factors may be used asinduced factors under a certain culture condition to induce BMSC to the nerve cell;On the other hand, neurotrophic factors can protect the nerve and promote neuritegrowth. Neural cell apoptosis may occur without the support of neurotrophic factors.
     In this experiment, we investigated the conditions of differentiation from BMSCto nerve cells, as well as neurotrophic factor expression changes, such as glial cellline-derived neurotrophic factor (GDNF) and rearranged during transfection (RET).The results showed that bFGF and EGF can not only induce neural differentiation ofBMSC, but also increase the expression of GDNF and RET significantly. GDNF mayplay an important role in the process of differentiation of BMSC into nerve cells. Inthe following experiment, GDNF and fetal gut condition medium (FGCM) inducedifferentiation of BMSC, and the induced cells expressed not only neuronal markerNSE and the enteric nervous marker nNOS, but also intestinal neurotransmitters VIP.This showed that differentiated enteric neurons in vitro not only have themorphological characteristics, but also a certain degree of function and it's possiblethat the induced cells could be transplanted to aganglionic segment in vivo. In order toimprove the differentiation rate of BMSC into enteric neurons, the experiment aboutBMSC expressing GDNF was carried out. The results showed that recombinantgenetic engineered BMSC can successfully express GDNF in vitro. The geneticengineered BMSC in FGCM can differentiate into enteric neurons and induction ofdifferentiation is higher than that of exogenous GDNF group.
     However, we have no idea whether the induced cells have the function of normalganglion and whether cell transplantation can improve the function of aganglionsegment. It still needs further study in vivo.
     PartⅠIsolation, cultivation, purification and identification ofrat bone mesenchymal stem cells in vitro
     Objective: To isolate and observe bone mesenchymal stem cells (BMSC) fromSprague-Dawley (SD) rats in vitro and purify the cells.
     Methods: Femur bone marrow of rats were harvested and all the cells wereplanted and were cultured in DMEM with 10% FBS. BMSC were purified afterseveral passages. They were identified by flow cytometry of CD90 and CD45.
     Results: BMSC grew clones after adherence. The cells became fusion afterseveral passages. BMSC at passage 4 were BMSC marker CD90 positive (93.4%) andhematopoietic marker CD45 negative on flow cytometry.
     Conclusions: BMSC can be successfully cultured in vitro. The cells can bepurified only through repeated adherence.
     PartⅡDifferentiation from bone mesenchymal stem cells intonerve cells in vitro
     Objective: To investigate neural differentiation of rat bone mesenchymal stemcells (BMSC) and expression change of neural markers.
     Methods: At passage 4, BMSC were induced by basic fibroblast growth factor(bFGF, 10ng/ml), epidermal growth factor (EGF, 10ng/ml) and both of them inDMEM with 10% FBS for 7 days, respectively. The expression of neural specificenolase (NSE) and glial fibrillary acidic protein (GFAP) were detected byimmunocytochemistry. The expression of glial cell line-derived neurotrophic factor(GDNF) and rearranged during transfection (RET) mRNA was detected by RT-PCR.
     Results: After 7 days of induction, a certain number of cells showed expression of GFAP and NSE by immunocytochemistry method in experimental group, while thecells showed no expression of GFAP and NSE in control group. In bFGF group andbFGF+ EGF group, the positive rate of NSE was significantly higher than EGF group,while expression of GFAP in EGF group was obviously higher. BMSC expressed lowlevel GDNF mRNA and no RET mRNA, however, after induction, GDNF mRNAhighly increased and RET mRNA expressed, especially in bFGF+ EGF group.
     Conclusions: bFGF and EGF can not only induce neural differentiation of BMSC, butalso increase the expression of GDNF and RET significantly. GDNF may play animportant role in the process of differentiation of BMSC into nerve cells. The cellsinduced by bFGF are mainly neurons, while the induced cells by EGF are gliacytes.
     PartⅢDifferentiation from BMSC into enteric neurons in vitroand comparison of two different methods
     Objective: To investigate the conditions and feasibility of differentiation frombone mesenchymal stem cells (BMSC) into enteric neurons in vitro and compare theefficiency of two methods.
     Methods: BMSC were cultured in DMEM supplemented with 10% fetal bovineserum (FBS) and induced by two methods after passage 4. The first one: BMSC wereinduced by 10ng/ml glial cell line-derived neurotrophic factor (GDNF) and fetal gutcondition medium (FGCM) for 7 days. The second one: The total mRNA wasextracted from newborn intestine by one-step method. GDNF cDNA was acquired byRT-PCR. The vector of PIRES2-EGFP-GDNF was constructed and identified bydouble enzyme digestion. Its sequence was analyzed by sequencing. The transgeneticexpression results were identified with immunofluorescence detection andimmunocytochemical stain. The transgentic cells were induced with diluted FGCM. The expression of neural specific enolase (NSE), vasoactive intestinal peptide (VIP)and nitric oxide synthase (nNOS) was detected by immunohistochemistry.
     Results: After 7 days of induction, a certain number of cells showed expressionof NSE, VIP and nNOS by immunohistochemistry method in both experimental group,while the cells showed no expression of VIP and NSE in control group. The inducedneurons form BMSC expressing GDNF were VIP and nNOS positive higher thanexogenous GDNF-induced cells.
     Conclusions: GDNF and FGCM can induce differentiation of BMSC intoenteric neurons. The efficiency of differentiation of GDNF-modified-BMSC intoenteric neurons is higher than that of exogenous GDNF-induced cells.
     PartⅣNeurotrophic factor expression changes of BMSC afterdifferentiation into enteric neurons and the study of mechanism
     Objective: To investigate the expression changes of glial cell line-derivedneurotrophic factor (GDNF), the receptor RET and C-kit of bone mesenchymal stemcells (BMSC) after differentiation into enteric neurons.
     Methods: At passage 4, BMSC were induced by 10ng/mlGDNF and fetal gutcondition medium (FGCM) for 7 days. The expression of neural specific enolase(NSE), vasoactive intestinal peptide (VIP) and nitric oxide synthase (nNOS) wasdetected by immunocytochemistry. The expression change of GDNF, RET and c-kitmRNA was detected by RT-PCR and protein was detected by western blot.
     Results: After 7 days of induction, a certain number of cells showed expressionof NSE, VIP and nNOS by immunohistochemistry method in experimental group,while the cells showed no expression of VIP and NSE in control group. BMSCexpressed low GDNF and no RET or c-kit mRNA, while after induction, the expression of GDNF mRNA was highly increased RET and C-kit mRNA expressed.GDNF protein was expressed.
     Conclusions: GDNF and FGCM can not only induce differentiation of BMSCinto enteric neurons, but also increase the expression of GDNF, RET and c-kit mRNA.GDNF-RET singaling pathway may play an important role in enteric neuraldifferentiation. C-kit may play a role at a certain stage of development of entericnervous system and be blocked after receiving a signal of mature enteric neurons.
引文
1. Halleux C, Sottile V, Gas ser JA, et al. Multi-lineage potential of human mesenchymal s tern cells following clonal expans ion. J Musculoskelet Neuronal Interact, 2001, 2: 71-76.
    2. Snykers S, Vanhaecke T, Rogiers V. Isolation of rat bone marrow stem cells. Methods Mol Biol, 2006, 320: 265-272.
    3. Friedenstein AJ, Petrakova KV, Kurolesova AJ, et al. Heterotopic transplants of bone marrow: analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 1968, 6: 230-247.
    4. Williams JT, Southerland SS, Souza J, et al. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg, 1999, 65: 22-26.
    5. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284: 143-147.
    6. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet, 1987, 20: 263-272.
    7. Izadpanah R, Joswig T, Tsien F, et al. Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques. Stem Cells 2005,14: 440-451.
    8. Rismanchi N, Floyd CL, Berman RF, et al. Cell death and long-term maintenance of neuron-like state after differentiation of rat bone marrow stromal cells: a comparison of Protocols. Brain Res, 2003, 991: 46-55.
    9. Deng W, Obrocka M, Fischer I, et al. In vitro differentiation of human marrow stromal stem cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Bioph Res Co, 2001, 282: 148-152.
    10. Keene CD, Ortiz-Gonzalez XR, Jiang Y, et al. Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos. Cell Transplant 2003, 12: 201-213.
    11.袁岩,陈连凤,张抒扬,等.心肌细胞裂解液对骨髓间充质干细胞向心肌细胞分化诱导作用的研究.中华心血管病杂志,2005,33:170-173.
    12. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol, 2000, 28: 875-884.
    1. Jiang Y, Jahgirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418: 41-49.
    2. Rismanch IN, Floryd CL, Berman RF, et al. Cell death and long-term maintenance of neuron-like state after differentiation of rat bone marrow stromal cells: a comparison of protocols. Brain Res, 2003, 991: 46-55.
    3. Lee J, Kuroda S, Shichinohe H, et al. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology, 2003, 23: 169-180.
    4. Guo L, Yin F, Meng HQ, et al. Differentiation of mesenchymal stem cells into dopaminergic neuron-like cells in vitro. Biomed Environ Sci, 2005, 18: 36-42.
    5. Tropel P, Platet N, Platel JC, et al. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells. 2006, 24:2868-2876.
    6. Siegel GJ, Chauhan NB. Neurotrophic factors in Alzheimer's and Parkinson's disease brain. Brain Res Rev, 2000, 33: 199 - 227.
    7. Kramer BC, Woodbury D, Black IB.Adult rat bone marrow stromal cells express genes associated with dopamine neurons. Biochemical and Biophysical Research Communications, 2006, 343: 1045-1052.
    8. Brewer GJ. Regeneration and proliferation of embryonic and adult rat hippocampal neurons in culture. Exp Neurol, 1999, 159: 237-247.
    9. Carpenter MK, Cui X, Hu ZY, et al. In vitro expension of a multipotent population of human neural progenitor cells. Exp Neurol, 1999, 158: 265-278.
    10. Anitha M, Chandrasekharan B, Salgado JR, et al. Glial-derived neurotrophic factor modulates enteric neuronal survival and proliferation through neuropeptide Y. Gastroenterology. 2006, 131:1164-1178.
    11. Gatteiv, Celetti A, Cerrato A, et al. Exp ression of the RET receptor tyrosine kinase and GDNFR-alpha in normal and leukemic human hematopoietic cells and stromal cells of the bone marrow microenvironment. Blood, 1997, 89: 2925-2937.
    1. Jiang Y, Jahgirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418: 41-49.
    2. Rismanch IN, Floryd CL, Berman RF, et al. Cell death and long-term maintenance of neuron-like state after differentiation of rat bone marrow stromal cells: a comparison of protocols. Brain Res, 2003, 991: 46-55.
    3. Natarajan D, Marcos-Gutierrez C, Pachnis V, et al. Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric neuvous system progenitor cells during mammalian embryogenesis. Development, 2002, 129: 5151-5160.
    4. Micci MA, Learish RD, Li H, et al. Neural stem cells express RET, produce nitric oxide, and survive transplantation in the gastrointestinal tract. Gastroenterology, 2001, 121: 757-766.
    5. Micci MA, Pattillo MT, Kahrig KM, et al. Caspase inhibition increase survival of neural stem cells in the gastrointestinal tract. Neurogastroenterol Motil, 2005, 17: 557-564.
    6. Miccci MA, Kahirig KM, Simmons RS, et al. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology, 2005, 129: 1817-1824.
    7.郜元军,钱伟,汪步海,等。大鼠骨髓基质干细胞诱导分化为肠神经细胞的体外研究。中华消化杂志,2006,26:661-665.
    8. Koda M, Okada S, Nakayama T, et al. Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice. Neuroreport, 2005, 16: 1763-1767.
    9. Kamada T, Koda M, Dezawa M, et al. Transplantation of bone marrow stromal cell-derived Schwann cells promotes axonal regeneration and functional recovery after complete transaction of adult rat spinal cord. J Neuropathol Exp Neurol, 2005, 64: 37-45.
    10. Lin LH, Doherty DH, Lile JD, et al. A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 1993, 260: 1130-1132.
    11.孙兵,惠国桢,杨立业,等.表达胶质细胞源性神经生长因子的骨髓基质干细胞的神经分化潜能.中华实验外科杂志,2005,22:122.
    12.高明勇,肖建德,李振宇,等.胶质细胞源性神经营养因子(GDNF)在大鼠骨髓基质干细胞中的表达.中华创伤骨科杂志,2005,7:848-851.
    13. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418: 41-49.
    14. Lin A, Lourenssen S, Stanzel R, et al. Nerve growth factor sensitivity is broadly distributed among myenteric neurons of the rat colon. J Comp Neurol, 2005, 490: 194-206.
    15. Song L, Webb NS, Song Y, et al. Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem cells, 2006, 24: 1707-1718.
    1. Koda M, Okada S, Nakayama T, et al. Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice. Neuroreport, 2005, 16: 1763-1767.
    2. Kamada T, Koda M, Dezawa M, et al. Transplantation of bone marrow stromal cell-derived Schwann cells promotes axonal regeneration and functional recovery after complete transaction of adult rat spinal cord. J Neuropathol Exp Neurol, 2005, 64: 37- 45.
    3. Albrecht PJ, Dahl JP, Stoltzfus OK, et al. Ciliary neuotrophic factor activatesspinal cord astrcytes, stimulating their production and release of fibroblast grothfactor-2, to increase motor neuron survival. Experimental Neurology, 2002, 173: 46-54.
    4. Albrecht PJ, Dahl JP, Stoltzfus OK, et al. Ciliary neuotrophic factor activatesspinal cord astrcytes, stimulating their production and release of fibroblast grothfactor-2, to increase motor neuron survival. Experimental Neurology, 2002, 173: 46-54.
    5. Liu W, Wu RD, Dong YL, et al. Neuroepithelial stem cells differentiate into neuronal phenotypes and improve intestinal motility recovery after transplantation in the aganglionie colon of the rat. Neurogastroent Motil.2007, 19:1001-1009.
    6. Gershon MD. Transplanting the enteric nervous system: a step closer to treatment for aganglionosis. Gut, 2007, 56: 459-461.
    7. Theocharatos S, Kenny SE. Hirschsprung's disease: current management and prospects for transplantation of enteric nervous system progenitor cells. Early Hum Dev, 2008, 84: 801-804.
    8. Lin A, Lourenssen S, Stanzel R, et al. Nerve growth factor sensitivity is broadly distributed among myenteric neurons of the rat colon. J Comp Neurol, 2005, 490: 194-206.
    9. Natarajan D, Marcos-Gutierrez C, Pachnis V, et al. Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells durin mammalian embryogenesis. Development, 2002, 129,5151-5160.
    10. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418: 41-49.
    11. Poteryaev D, Titievsky A, Sun YF, et al. GDNF triggers a novel RET-independent src Kinase family-couled signaling via a GPI-linked GDNF receptor α1. FEBS Lett, 1999, 463: 63-66.
    12. Lin A, Lourenssen S, Stanzel R, et al. Nerve growth factor sensitivity is broadly distributed among myenteric neurons of the rat colon. J Comp Neurol, 2005, 490: 194-206.
    13. Kim BJ, So I, Kim KW. The relationship of TRP channels to the pacemaker activity of interstitial cells of Cajal in the gastrointestinal tract. J. Smooth Muscle Res, 2006, 42: 1-7.
    14. Piotrowska AP, Solari V, de Caluwe D, Puri P. Immunocolocalization of the heme oxygenase-2 and interstitial cells of Cajal in normal and aganglionic colon. J Pediatr Surg, 2003, 38: 73-77.
    15.宣晓琪,魏明发,周学锋,等.Cajal间质细胞在先天性巨结肠和巨结肠同源病结肠中的分布研究.中华普通外科杂志,2007,22:619-622.
    16. Martin F, Suggs S, Langley K, et al. Primary structure and functional expression of the rat and human stem cell factor DNAs. Cell, 1990, 63: 202-211.
    17.刘兴攀,张文同,董志行,等.先天性巨结肠c-kit~+肠间质细胞分布的免疫组织化学研究.中华小儿外科杂志,2003,24:108-113.
    1. Saleh W, Rasheed K, Mohaidly MA, et al. Management of Hirschsprung's disease: a comparison of Soave's and Duhamel's pull-through method. Pediatr Surg Int 2004, 20: 590-593.
    2.施诚仁.先天性巨结肠并发症小肠结肠炎病因学研究.临床外科杂志,2004,5:265-266.
    3. Banani SA, Forootan HR, Kumar PV. Intestinal neuronal dysplasia as a cause of surgical failure in Hirschsprung's disease: a new modality for surgical management. J Pediatr Surg, 1996, 31: 572-574.
    4. Menezes M, Puri P. Long-term outcome of patients with enterocolitis complicating Hirschsprung's disease. Pediatr Surg Int, 2006, 22: 316-318.
    5.吴晓娟,冯杰雄,魏明发,等.先天性巨结肠症术后小肠结肠炎发生与合并神经节细胞减少症的相关性分析.中华小儿外科杂志,2007,28:627-629.
    6. Hackam DJ, Filler RM. Pearl RH. Enterocolitis after the surgical treatment of Hirschsprung's disease: risk factors and financial impact. J Pediatr Surg, 1998, 33: 830-833.
    7. Minford JL, Ram A, Turnock RR, et al. Comparison of functional outcomes of Duhamel and transanal endorectal coloanal anastomosis for Hirschsprung's disease, J Pediatr Surg, 2004, 39: 161-165.
    8. Lui VC, Sham MH, Tam PK. CDX-1 and CDX-2 are expressed in human colonic mucosa and are down-regulated in patients with Hirschsprung's disease associated enterocolitis. Biochim Biophys Acta, 2001, 1537: 89-100.
    9. Mattar AF, Coran AG, Teitelbaum DH. MUC-2 mucin production in Hirschsprung's disease: possible association with enterocolitis development. J Pediatr Surg, 2003, 38: 124-131.
    10. Estev(?)o-Costa J, Fragoso AC, Campos M, et al. An approach to minimize Postoperative enterocolitis in Hirschsprung's disease. J Pediatr Surg, 2006, 41: 1704-1707.
    11. Reding R, Goyet JV, Gosseye S, et al. Hirschsprung's disease: a 20-year experience. J Pediatr Surg, 1997, 32: 1221-1225.
    12.王果,翁一珍,魏明发,等.心形吻合术治疗先天性巨结肠的远期疗效.中华外科杂志,2002,40:344-346.
    13. Scott A, Engum MD, Jay L, et al. Long-term results of treatment of Hirschsprung's disease. Semi Pediatr Surg, 2004, 13: 273-285.
    14. Menezes M, Corbally M, Puri P. Long-term results of bowel function after treatment for Hirschsprung's disease: a 29-year review. Pediatr Surg Int, 2006, 22: 987-990.
    15.陈永卫,张钦明,侯大为,等.腹腔镜改良Soave巨结肠根治术后排便功能的随访.中华小儿外科杂志,2003,24:230-232.
    16. Moore SW, Albertyn R, Cywes S. Clinical outcome and long-term quality of life after surgical correction of Hirschsprung's disease. J Pediatr Surg, 1996, 31: 1496-1502.
    17. Skaba R, Simsora M. Long-term results and quality of life in patients after surgery in childhood for Hirschsprung's disease by the Kasai method of colo(ileo)rectoplasty. Rozhl Chir, 2002, 81: 622-627.
    18. Teilelbaum DH, Drongouski RA, Chamberlain JN, et al. Long-term stooling patterns in infants undergoing primary endorectal pullthough for Hirschsprung's disease. J Pediatr Surg, 1997, 32: 1049-1053.
    19. Bai YZ, Chen H, Hao J, et al. Long-term outcome and quality of life after the Swenson procedure for Hirschsprung's disease. J Pediatr Surg, 2002, 37: 639-642.
    20. Barrena S, Andres AM, Burgo SL, et al. Long-term results of the treatment of total colonic aganglionosis with two different techniques. Eur J Pediatr Surg, 2008, 18: 375-379.
    21.魏明发,吴晓娟,易斌,等.巨结肠根治术后便秘复发的原因探讨.临床外科杂志,2008,16:324-326.
    22. Saleh W, Rasheed K, Mohaidly MA, et al. Management of Hirschsprung's disease: a comparison of Soave's and Duhamel's pull-through methods. Pediatr Surg Int, 2004, 8: 590-593.
    23. Christoph R, Werner, Gisela SD, et al. Megacolon in adulthood after surgical treatment of Hirschsprung's disease in early childhood. World J Gastroenterol, 2005, 11: 5742-5745.
    24. Engum SA, Grosfeld JL. Long-term results of treatment of Hirschsprung's disease. Semin Pediatr Surg, 2004, 13: 273-295.
    25. Langer JC. Persistent obstructive symptoms after surgery for Hirschsprung's disease: development of a diagnostic and therapeutic algorithm. J Pediatr Surg, 2004, 39: 1458-1462.
    26. Van Kuyk EM, Brugman-Boezeman ATM, Wissink-Essink M, et al. Defecation problems in children with Hirschsprung's disease: a biopsychosocial approach. Pediatr Surg Int, 2000, 16: 312-316.
    27. Catto-Smith AG, Coffey CMM, Nolan TM, et al. Fecal incontinence after the surgical treatment of Hirschsprung's disease. J Pediatr, 1995, 127: 954-957.
    28. Diseth TH, Bjornland K. Bowel function, mental health, and psychosocial function in adolescents with Hirschsprung's disease. Arch Dis Child 1997; 76: 100-106.
    29.陈新国,郭宗达,刘润玑,等.先天性巨结肠Duhamel术后远期功能评价.中华小儿外科杂志,2005,26:60-64.
    30. Li AW, Zhamg WT, Li FH, et al. A new modification of transanal Soave pull-through procedure for Hirschsprung's disease. J Chin Med, 2006, 119: 37-42.
    31. Zhang SC, Bai YZ, WangW, et al. Clinical outcome in children after transanal 1-stage endorectal pull-through operation for HD. J Pediatr Surg, 2005, 40: 1307-1311.
    32. Menezes M, Puri P. Long-term outcome of patients with enterocolitis complicating Hirschsprung's disease. Pediatr Surg Int, 2006, 22: 316-318.
    33. Yanchar NL, Soucy P. Long-term outcome after Hirschsprung's disease: Patients' Perspectives J Pediatr Surg, 1999, 34: 1152-1160.
    34.李威,陈雨历.先天性巨结肠术后远期肛门功能的综合评价 中华小儿外科杂 志,1999,20:38-39.
    35. Keshtgar AS, Ward HC, Clayden GS. Investigations for incontinence and constipation after surgery for Hirschsprung's disease in children. Pediatr Surg Int, 2003, 19: 4-8.
    36. Nagasaki A, Ikeda K, Switer S. Postoperative sequential anorectal manometric study of children with Hirschsprung's disease. J Pediatr Surg 1980, 15: 615-619.
    37. Zaslavsky C, Loening B. Anorectal manomeytic evalution of children and adolescents postsurgery for Hirschsprung's Disease. J Pediatr Surg, 2003, 38: 191-195.
    38.徐本源,黄金狮,冯亮,等.Rehbein手术治疗先天性巨结肠的远期回顾.中华小儿外科杂志,2003,24:122-123.
    39. Boemers TM, Bax NMA, van Gool Utrecht JD, et al. The effect of rectosigmoidectomy and Duhamel-Type Pull-Through procedure on lower urinary tract function in children with Hirschsprung's disease. J Pediatr Surg, 2001, 36: 453-456.
    40. Bourdelat D, Vrsansky P, Pages R. Duhamel operation 40 years after: a multicentric study. Eur J Pediatr Surg. 1997, 7: 70-77.
    41. Swenson O. Hirschsprung's disease: A review. Pediatr, 2002, 109: 914-920.
    42. Hartman EE, Oort FJ, Aronson DC, et al. Critical factors affecting quality of life of adult patients with anorectal malformations or Hirschsprung's disease. Am J Gastroenterol, 2004, 99: 907-913.
    43. Ludman L, Spitz L, Tsuji H, et al. Hirschsprung's disease: functional and psychological follow up comparing total colonic and rectosigmoid aganglionosis. Arch Dis Child, 2002, 86: 348-351.
    44. Tkhoku. Social adaptation of children with congenital fecal dysfunction: From the viewpoint of the mother-child relationship. J Exp Med, 2005, 206: 117-124.
    45. Georgeson KE, Fuenfer MM, Hardin WD. Primary laparoscopic pull-through for Hirschsprung's disease in infants and children. J Pediatr Surg, 1995, 30: 1091-1022.
    46. Fujiwara N, Kaneyama K, Okazaki T, et al. A comparative study of laparoscopy-assisted pull-through and open pull-through for Hirschsprung's disease with special reference to postoperative fecal continence. J Pediatr Surg, 2007, 42: 2071-2074.
    47. Elhalaby EA, Hashish A, Elbarbary MM, et al. Transanal one-stage endorectal pull-through for Hirschsprung's disease: A multicenter study. J Pediatr Surg, 2004, 39: 345-351.
    48. Almond S, Lindley RM, Kenny SE, et al. Characterisation and transplantation of enteric nervous system progenitor cells. Gut, 2007, 56: 489-496.
    49. Lindley RM, Hawcutt DB, Connell MG, et al. Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology, 2008, 135: 205-216.
    50. Mosher JT, Yeager KJ, Kruger GM. Intrinsic differences among spatially distinct neural creast stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Dev Biol, 2007, 303: 1-15.
    51.金先庆,徐纪荣,陈小章.骨髓间充质干细胞移植治疗巨结肠的实验研究.中华小儿外科杂志,2007,28:481-485.
    1. Vescovi AL, Parati EA, Gritti A, et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol, 1999, 156: 71-83.
    2. Roy NS, Wang S, Jiang L, et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med, 2000, 6: 271-277.
    3. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hemato poietic organs. Exp Hematol 1976, 4: 267-274.
    4. Biancop, Gehron Robey P. Marrow stromal stem cells. J Clin Invest, 2000, 105: 1663-1668.
    5. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284: 143-147.
    6.黎润光,邵景范,魏明发,等.牵张应力对小儿体外骨髓间充质干细胞向成骨、成脂肪细胞分化的相关性研究.中华小儿外科杂志,2008,30:110-113.
    7. Deng W, Obrocka M, Fischer I, et al. In vitro differentiation of human marrow stromal stem cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Bioph Res Co, 2001, 282: 148-152.
    8. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol, 2000, 28: 875-884.
    9. Musina RA, Bekchanova ES, Sukhikh GT. Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med, 2005, 139: 504-509.
    10. De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose and bone marrow. Immuncl Lett, 2003, 89: 267.
    11. Barry F, Boynton R, Murphy M, et al. The SH 23 and SH 24 antibodies recognize distinct ep itopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun, 2001, 289: 519.
    12. Romanov YA, Darevskaya AN, Merzlikina NV, et al. Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities. Bull Exp Biol Med, 2005, 140: 138-143.
    13. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000, 61: 364-370.
    14. Kim BJ, Seo JH, Bubien JK, et al. Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport, 2002, 13: 1185-1188.
    15. Alexanian AR. Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions. Exp Cell Res, 2005, 310: 383-391.
    16. Arnhold S, Klein H, Klinz FJ, et al. Human bone marrow stromal cells display certain neural characteristics and integrate in the subventricular compartment after injection into the liquor system. Eur J Cell Biol, 2006, 85: 551-565.
    17. Azizi SA, Strokes D, Augelli BJ, et al. Engraftment and migration of human bone marrow stromal cells implanted in the brain of albine rat-similarities to astrocyte grafts. Proc Natl Acad Sci USA, 1998, 95: 3908-3913.
    18. Brazelton TR, Rossi FMV, Keshet GI, et al. From marrow to brain: expression of neuronal phenotypes in adult mice. Science, 2000, 290: 1775.
    19. Zurita M, Vaquero J. Bone marrow stromal cells can achieve cure of chronic paraplegic rats: Functional and morphological outcome one year after transplantation. Neurosci Lett, 2006, 402: 51-56.
    20.赵宇,陆应麟,乔群,等.绿色荧光蛋白基因逆转录病毒载体转染人骨髓间充质干细胞及表达的研究.中华实验外科杂志,2004,21:24-25.
    21.孙兵,惠国桢,杨立业,等.表达胶质细胞源性神经生长因子的骨髓基质干细胞的神经分化潜能.中华实验外科杂志,2005,22:122.
    22. Li LY, Li JT, Wu QY, et al. Transplantation of NGF-gene-modified bone marrow stromal cells into a rat model of Alzheimer's disease. J Mol Neurosci, 2008, 34: 157-163.
    23. Offen D, Barbum Y, Levy YS, et al. Intrastriatal transplantation of mouse bone marrow-derived stem cells improves motor behavior in a mouse model of Parkinson's disease. J Neural Transm Suppl, 2007, 72: 133-143.
    24. Zhang J, Li Y, Chen J, et al. Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res, 2004, 1030: 19-27.
    25. Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol, 2002, 174: 11-20.
    26.侯玲玲,郑敏,王冬梅,等.人骨髓间充质干细胞在成年大鼠脑内的迁移及分化.生理学报,2003,55:153-159.
    27.吴永超,郑启新,谢宗平,等.骨髓间充质干细胞表达神经营养因子及治疗脊髓损伤的研究.中华实验外科杂志,2005,22:139-142.
    28.丁鹏,冯忠堂,王廷华,等.移植骨髓基质干细胞在脊髓内存活、迁移及分化.解剖学报,2004,35:156.
    29. Chen J, Li Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res, 2003, 73: 778-786.
    30. Chen X, Li Y, Wang L, et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology, 2002, 22: 275-279.
    31. Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res, 2003, 92: 692-699.
    32. Liu H, Honmou O, Harada K, et al. Neurop rotection by P1GF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain, 2006: 129: 2734-2745.
    33.邓志锋,汪泱,宋书欣,等.骨髓间充质干细胞移植对大鼠脑缺血区血管新生及神经前体细胞增殖的影响.解剖学杂志,2005,28,500-503.
    34. Kurozumi K, Nakamura K, Tamiya T, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther, 2004, 9: 189-197.
    35. Kurozumi K, Nakamura K, Tamiya T, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther, 2005, 11: 96-104.
    36. Nomura T, Honmou O, Harada K, et al. I. v. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience, 2005, 136: 161-169.
    37. Honma T, Honmou O, Iihoshi S, et al. Intravenous infusion of immortalized human mesenchymal stem cells p rotects against injury in a cerebral ischemia model in adult rat. Exp Neurol, 2006, 199: 56-66.
    38. Rosenfeld JV, Gillett GR. Ethics, stem cells and spinal cord repair. Med J Aust, 2004, 180: 637-639.
    39. Moviglia G, Fernandez Vina R, Brizuela J, et al. Combined protocol of cell therapy for chronic spinal cord injury: report on the electrical and functional recovery of two patients. Cytotherapy, 2006, 8: 202-209.
    40.郜元军,钱伟,汪步海.大鼠骨髓基质干细胞诱导分化为肠神经元的体外研究.中华消化内科杂志,2006,26:661-665.
    41.金先庆,徐纪荣,陈小章.骨髓间充质干细胞移植治疗巨结肠的实验研究.中华小儿外科杂志,2007,28:481-485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700