用户名: 密码: 验证码:
硫化后还原法制备磷化物催化剂及其加氢脱硫反应性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属磷化物作为一类新型催化材料以其在加氢精制反应中的高活性和稳定性是目前催化领域研究的热点。本论文以磷化镍(Ni2P),磷化钼(MoP)和磷化钨(WP)为研究对象,考察了它们的制备方法以及对于含硫模型化合物二苯并噻吩(DBT)和4,6二甲基二苯并噻吩(4,6-DMDBT)的HDS反应性能。采用XRD、CO化学吸附、TPR、HRTEM、XPS等表征技术对制备的催化剂的结构进行了表征,并对得到的催化剂反应性能结果进行了原理的探讨。
     论文以全硅MCM-41作为载体制备了负载型的Ni2P, MoP和WP催化剂,考察了程序升温还原法制备磷化物过程中原子比,担载量和还原终温对催化剂的制备和反应性能的影响。对于Ni2P/MCM-41,最佳制备条件是Ni/P=1.25, NiO担载量12%以及还原终温500℃; MoP/MCM-41和WP/MCM-41的最佳制备条件均为Mo(W)/P=1, Mo(W)O3担载量40%以及还原终温650℃。
     比较了Ni2P/MCM-41, MoP/MCM-41和WP/MCM-41催化剂对DBT的反应性能以及H2S对反应性能的影响。其中Ni2P/MCM-41对于DBT的活性最高但其耐硫性能最差。对反应前后的各磷化物催化剂进行XRD和XRF分析结果表明,在反应后催化剂的体相保持了磷化物结构但表面有大量的硫进入。对新鲜磷化物进行硫化处理以及交替的HDS和加氢脱氮(HDN)实验证实了硫对磷化物HDS反应的促进作用。
     采用硫化后还原法制备的MoP/MCM-41催化剂相比于直接程序升温还原法得到的样品具有更高的HDS活性,对4,6-DMDBT的脱除效果尤为显著。通过MoP/MCM-41与MoS2/MCM-41混合催化剂活性的考察排除了MoP和MoS2混合晶相的协同作用使活性提高的可能性。通过XRD和HRTEM分析了样品的晶体结构,硫插入MoP晶格导致晶体结构发生畸变而使样品中MoP晶体的晶面间距略微增加。XPS结果表明硫的插入使钼原子上的电子转移到硫原子上造成钼原子上的电荷密度减小。实验考察了不同反应温度和不同重量时间下催化剂的HDS转化率和选择性的变化,并对MoP/MCM-41催化剂对DBT和4,6-DMDBT的HDS反应路径进行了分析,结果表明硫化后还原法得到的MoP/MCM-41催化剂加氢路径的活性得到了提高。
     论文还尝试采用硫化后还原法制备了WP/MCM-41和Ni2P/MCM-41催化剂。XRD,XPS和TPR结果表明WP的制备过程与MoP相似,但钨的还原较钼更难。硫化后还原法得到的WP/MCM-41催化剂其加氢性能更强,因此对于4,6-DMDBT的反应活性更高。硫化后还原法并不能提高Ni2P/MCM-41催化剂的活性,通过XRD、TPR和XPS手段对制备过程中Ni2P前体的变化状态进行了分析,Ni2P前体经过硫化得到了Ni3S2结构,再还原后生成了活性很低的Ni-P结构而不能形成Ni2P晶相。
     将分别制备出的两种磷化物机械混合得到了二组分磷化物催化剂,并以DBT和4,6-DMDBT的混合原料评价了催化剂的HDS活性。结果表明Ni2P与WP的组合对于DBT和4,6-DMDBT的同时脱硫表现出了最佳活性。实验还考察了二组分的装填方式和二组分比例对反应性能的影响,以石英砂的二组分均匀混合并当Ni2P与WP重量比为2时催化剂活性最高。这种二组分磷化物催化剂的反应性能更适应于深度脱硫的要求。
Transition metal phosphide as a novel class of catalysts has attracted much attention in recent years due to their high activities and stabilities in hydrotreating reactions. In the present study, the preparation and HDS activities of Ni2P, MoP, and WP were investigated using DBT and 4,6-DMDBT as the model sulfur containing compounds. XRD, CO chemisorption, TPR, HRTEM, and XPS techniques were used to characterize the structures of metal phosphides, which provide some insights into the enhanced HDS activities.
     Siliceous MCM-41 supported-Ni2P, MoP and WP catalysts were prepared by temperature-programed reduction procedure. The effect of metal/P ratio, metal loading, and final reduction temperature on the phosphide structure and HDS activities were investigated. The results showed that the optimum preparation conditions for Ni2P/MCM-41 were Ni/P=1.25, NiO loading 12% and final reduction temperature of 500℃. The optimum preparation conditions for MoP/MCM-41 and WP/MCM-41 were Mo(W)/P=1, Mo(W)O3 loading of 40% and final reduction temperature of 650℃.
     The HDS performances of Ni2P/MCM-41, MoP/MCM-41, and WP/MCM-41 in the HDS of DBT were compared in the presence and absence of H2S. The results indicated that Ni2P was the most active among the three metal phosphides, but its tolerance to H2S was poor. XRD and XRF measurements of the catalysts before and after HDS reaction indicated that the bulk structure of phosphides did not change in the reactions but sulfur exists on the surface. The sulfidation of fresh phosphides and sequential HDS-HDN experiments revealed that sulfur played a positive role in the HDS reactions over metal phosphides.
     MoP/MCM-41 with enhanced activities especially in the HDS of 4,6-DMDBT was obtained via a sulfidation-reduction procedure. The much lower HDS activity over mixtures of MoP/MCM-41 and MoS2/MCM-41 excluded the synergetic effect of separate MoS2 and MoP phases. XRD and HRTEM characterization on crystal structure indicated that d-spacing values increased slightly via sulfidation-reduction, which was probably caused by the incorporation of sulfur in phosphide structure. A shift of the Mo 3d5/2 binding energy was observed in the XPS spectra, which might be related with the incorporation of sulfur in phosphide structure. The HDS performances of DBT and 4,6-MDBT over MoP/MCM-41 prepared via different procedures as a function of temperature and weight time were studied to analyze the reaction pathway. The results indicated that the reaction rate of hydrogenation route was accelerated over MoP/MCM-41 prepared by the sulfidation-reduction procedure.
     The preparation of WP/MCM-41 and Ni2P/MCM-41 was also attempted by the sulfidation-reduction procedure. The formation of WP was found to be more difficult than that of MoP. The resulting WP/MCM-41 catalyst via sulfidation-reduction showed higher activities than MoP/MCM-41 in the HDS of 4,6-DMDBT. Nevertheless, Ni2P could not be synthesized by this procedure. XRD, TPR, and XPS characterization results indicated that a Ni3S2 phase was formed during sulfidation, thus Ni-P alloy with poor activity instead of Ni2P was formed in the subsequent reduction.
     Ni2P-WP was prepared by a physical-mixing method, which exhibited much higher performance in the simultaneous HDS of DBT and 4,6-DMDBT than Ni2P and WP. The packing configurations of two phosphides in the bed were investigated, and the highest HDS activity was observed in homogeneous mixing together with quartz-sand particles at a Ni2P/WP mass ratio of 2.
引文
[1]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catal. Today,2003,86(1-4):211-263.
    [2]Nag N K, Sapre A V, Broderick D H, et al. Hydrodesulfurization of polycyclic aromatics catalyzed by sulfided Co-Mo/Al2O3:The relative reactivities [J]. J Catal.,1979,57 (3):509-512.
    [3]Vrinat M L. The kinetics of the hydrodesulfurization process-a review [J]. Appl. Catal.1983,6(2): 137-158.
    [4]Aubert C, Durand R, Geneste P, et al. Hydroprocessing of dibenzothiophene, phenothiazine,phenoxathiin,thianthrene,and thioxanthene on a sulfided NiO-MoO3/Al2O3 catalyst [J]. J. Catal.,1986,97(1):169-176.
    [5]Wang H, Prins R. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over sulfided Mo/g-Al2O3 [J]. J. Catal.2008,258(1):153-164.
    [6]Todorova T, Prins R, Weber Th. A density functional theory study of the hydrogenolysis reaction of CH3SH to CH4 on the catalytically active (100) edge of 2H-MoS2 [J]. J. Catal.,2005,236(2):190-204.
    [7]Meille V, Schulz E, Lemaire M, et al. Hydrodesulfurization of Alkyldibenzothiophenes over a NiMo/Al2O3Catalyst:Kinetics and Mechanism [J]. J. Catal.1997,170(1):29-36.
    [8]Bataille F, Lemberton J, Michaud P, et al. Alkyldibenzothiophenes Hydrodesulfurization-Promoter Effect, Reactivity, and Reaction Mechanism [J]. J. Catal.2000,191(2):409.
    [9]Houalla M, Broderick D H, Sapre A V, et al. Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfided Co-Mo/g-Al2O3 [J] J. Catal.,1980,61(2):523-527.
    [10]Kabe T, Ishihara A, Tajima H. Hydrodesulfurization of sulfur-containing polyaromatic compounds in light oil [J]. Ins. Eng. Chem. Res.,1992,31(6):1577-1580.
    [11]Kilanowski D R, Teeuwen H, de Beer V H J, et al. Hydrodesulfurization of thiophene, benzothiophene, dibenzothiophene, and related compounds catalyzed by sulfided CoO-MoO3/g-Al2O3:Low-pressure reactivity studies [J]. J. Catal.,1978,55(2):129-137.
    [12]Kabe T, Ishihara A, Zhang Q. Deep desulfurization of light oil. Part 2:hydrodesulfurization of dibenzothiophene,4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene [J]. Appl. Catal.,1993, 97(1):L1-L9.
    [13]Li X, Wang A, Egorova M, et al. Kinetics of the HDS of 4,6-dimethyldibenzothiophene and its hydrogenated intermediates over sulfided Mo and NiMo on γ-Al2O3 [J]. J. Catal.,2007,250(2):283-293.
    [14]Landau M V, Berger D, Herskowitz M. Hydrodesulfurization of Methyl-Substituted Dibenzothiophenes:Fundamental Study of Routes to Deep Desulfurization [J]. J. Catal.,1996,159(1): 236-245.
    [15]Vrinat M L, Gachet C G, Cavalletto G, et al. Influence of hydrogen sulfide on the hydrodesulfurization of dibenzothiophene on a sulfided cobalt-molybdenum/alumina catalyst [J]. Appl. Catal.,1982,3(1):57-64.
    [16]Egorova M, Prins R. The role of Ni and Co promoters in the simultaneous HDS of dibenzothiophene and HDN of amines over Mo/y-Al2O3 catalysts [J]. J. Catal.2006,241(1):162-172.
    [17]Prins R, Egorova M, Rothlisberger A, et al. Mechanisms of hydrodesulfurization and hydrodenitrogenation [J]. Catal. Today,2006,111(1-2):84-93.
    [18]Tops(?)e H, Clausen B S, Massoth F E. In "Catalysis Science and Technology" (Anderson J R and Boudart M, eds.) [C], Vol.11, Springer-Verlag, New York,1996.
    [19]Startsev A N. The mechanism of HDS catalysis [J]. Catal. Rev.-Sci. Eng.1995,37(3):353-423.
    [20]Daage M, Chianelli R R. Structure-function relations in molydenum sulfide catalysts:The "rim-edge" model [J]. J Catal.1994,149(2):414-427.
    [21]Tops(?)e H, Clausen B S. Active sites and support effects on hydrodesulfurization catalyst [J]. Appl Catal.,1986,25(1-2):273-293.
    [22]Hagenbach G, Courty Ph, Delmon B. Physicochemical investigations and catalystic activity measurements on crystallized molybdenum sulfided-cobalt sulfided mixed catalysts [J]. J Catal.1973, 31(2):264-273.
    [23]Delmon B. Remote control of catalytic sites by spillover species:A chemical reaction engineering approach [J]. Catal. Rev.-Sci. Eng.,1996,38(1):69-100.
    [24]Ho T C. Deep HDS of diesel fuel:chemistry and catalysis [J]. Catal. Today,2004,98(1-2):3-18.
    [25]Leliveld R G, Eijsbouts S E. How a 70-year-old catalytci refinary process is still ever dependant on innovation [J]. Catal. Today,2008,130(1):183-189.
    [26]Okamoto Y. A novel preparation-characterization technique of hydrodesulfurization catalysts for clean fuels [J]. Catal. Today 2008,132(1-4):9-17.
    [27]Kim H, Lee J J, Koh J H, et al. Performance of fluorine-added, sonochemically prepared MOS2/Al2O3 catalyss in the hydrodesulfurization of dibenzothiophene compounds [J]. Appl. Catal. B.2004,54(1): 33-39.
    [28]Lee J J, Kim H, Koh J H, et al. Performance of fluorine-added CoMoS/Al2O3 prepared by sonochemically and chemical vapor deposition methods in the hydrodesulfurization of dibenzothiophene and 4,6-dibenzothiophen [J]. Appl. Catal. B.2005,61(3-4):274-280.
    [29]Ramos R R, Bolivar C, Castillo J, et al. Ultrasound assisted synthesis of nanometric Ni, Co, NiMo and CoMo HDS catalysts [J]. Catal. Today 2008,133-135:277-281.
    [30]Usman,Yamamoto T, Kubota T, et al. Effect of phosphrous addition on the active sites of a Co-Mo/Al2O3 catalyst for the hydrodesulfurization of thiophene [J]. Appl. Catal. A 2007,328(2):219-225.
    [31]Rana. M S, Ramirez J, Gutierrez-Alejandre A, et al. Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent [J]. J. Catal.2007,246(1):100-108.
    [32]Lelias M A, van Gestel J, Mauge F, et al. Effect of NTA addition on the formation, structure and activity of the active phase of cobalt-molybdenum sulfide hydrotreating catalysts [J]. Catal. Today 2008, 130(1):109-116.
    [33]Saih Y, Nagata M, Funamoto T et al. Ultra deep hydrodesulfurization of dibenzothiophene derivatives over NiMo/TiO2-Al2O3 catalysts [J]. Appl. Catal. A,2005,295(1):11-22.
    [34]Ramirez J, Macias G, Cedeno L et al. The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts:analysis of past and new evidences [J]. Catal. Today,2004,98(1-2):19-30.
    [35]Rayo P, Ancheyta J, Ramirez J et al. Hydrotreating of diluted Maya crude with NiMo/Al2O3-TiO2 catalysts:effect of diluent composition [J]. Catal. Today,2004,98(1-2):171-179.
    [36]Usman, Kubota T, Hiromitsu I et al. Effect of boron addition on the surface structure of Co-Mo/Al2O3 catalysts [J]. J. Catal.2007,247(1):78-85.
    [37]Giraldo S A, Centeno A. Isomerization and cracking under HDS conditions using y-alumina modified with boron as catalysts support [J]. Catal. Today,2008,133-135:255-260.
    [38]Usman, Kubota T, Araki Y et al. The effect of boron addition on the hydrodesulfurization activity of MoS2/Al203 and Co-MoS2/Al2O3 catalysts [J]. J. Catal.2004,227(2):523-529.
    [39]Usman U, Takaki M, Kubota T et al. Effect of boron addition on a MoO3/Al2O3 catalyst: Physicochemical characterization [J]. Appl. Catal. A,2005,286(1):148-154.
    [40]Dumeignil F, Sato K, Imamura M et al. Characterization and hydrodesulfurization activity of CoMo catalysts supported on boron-doped sol-gel alumina [J]. Appl. Catal. A,2006,315:18-28.
    [41]Ferdous D, Dalai A K, Adjaye J et al. Surface morphology of NiMo/Al2O3 catalysts incorporated with boron and phosphorus:Experimental and simulation [J]. Appl. Catal. A,2005,294(1):80-91.
    [42]Altamirano E, de los Reyes J A, Murrieta F et al. Hydrodesulfurization of dibenzothiophene and 4,6-dimethyl-dibenzothiophene:Gallium effect over NiMo/Al2O3 sulfided catalysts [J]. J. Catal.,2005, 235(2):403-412.
    [43]van der Meer Y, Hensen E J M, van Veen J A R et al. Characterization and thiophene hydrodesulfurization activity of amorphous-silica-alumina-supported NiW catalysts [J]. J Catal.2004, 228(2):433-446.
    [44]Kunisada N, Choi K, Korai Y et al. Optimization of silica content in alumina-silica support for NiMo sulfide to achieve deep desulfurization of gas oil [J]. Appl. Catal. A,2004,273(1-2):287-294.
    [45]Kunisada N, Choi K, Korai Y et al. Contrast activities of four alumina and alumina-silica-supported nickel-molybdenum sulfide catalysts for deep desulfurization of gas oils [J]. Appl. Catal. A,2005,279(1-2): 235-239.
    [46]Leyva C, Rana M S, Ancheyta J. Surface characterization of Al2O3-SiO2 supported NiMo catalysts: An effect of support composition [J]. Catal. Today,2008,130(2-4):345-353.
    [47]Li G, Li W, Zhang M, et al. Morphology and hydrodesulfurization activity of CoMo sulfide supported on amorphous ZrO2 nanoparticles combined with A12O3 [J]. Appl. Catal. A,2004,273(1-2):233-238.
    [48]Carrado K A, Kim J H, Song C S, et al. HDS and deep HDS activity of CoMoS-mesostructured clay catalysts [J]. Catal. Today,2006,116(4):478-484
    [49]Eswaramoorthi I, Sundaramurthy V, Das N, et al. Application of multi-walled carbon nanotubes as efficient support to NiMo hydrotreating catalyst [J]. Appl. Catal. A,2008,339(2):187-195.
    [50]Silva-Rodrigo R, Calderon-Salas C, Melo-Banda J A, et al. Synthesis, characterization and comparison of catalytic properties of NiMo-and NiW/Ti-MCM-41 catalysts for HDS of thiophene and HVGO [J]. Catal. Today,2004,98(1-2):123-129.
    [51]Li X, Wang A, Zhang S, et al. Effect of surface Na+ or K+ ion exchange on hydrodesulfurization performance of MCM-41-supported Ni-W catalysts [J]. Appl. Catal. A,2007,316(2):134-141.
    [52]Rodriguez-Castellon E. Jimenez-Lopez A, Eliche-Quesada D. Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization [J]. Fuel,2008,87(7):1195-1206.
    [53]Dhar G R, Kumaran G M, Kumar M, et al. Physico-chemical characterization and catalysis on SBA-15 supported molybdenum hydrotreating catalysts [J]. Catal. Today,2005,99(3-4):309-314.
    [54]Nava R, Ortega R A, Alonso G, et al. CoMo/Ti-SBA-15 catalysts for dibenzothiophene desulfurization [J]. Catal. Today,2007,127(1-4):70-84.
    [55]Garg S, Soni K, Kumaran G M, et al. Effect of Zr-SBA-15 support on catalytic functionalities of Mo, CoMo, NiMo hydrotreating catalysts [J]. Catal. Today,2008,130(2):302-308.
    [56]Gutierrez O Y, Valencia D, Fuentes G A, et al. Mo and NiMo catalysts supported on SBA-15 modified by grafted ZrO2 species:Synthesis, characterization and evaluation in 4,6-dimethyldibenzothiophene hydrodesulfurization [J]. J. Catal.2007,249(2):140-153.
    [57]Klimova T, Reyes J, Gutierrez O, et al. Novel bifunctional NiMo/Al-SBA-15 catalysts for deep hydrodesulfurization:Effect of support Si/Al ratio [J]. Appl. Catal. A,2008,335(2):159-171.
    [58]Zepeda T A, Pawelec B, Fierro J L G, et al. Effect of Al and Ti content in HMS material on the catalytic activity of NiMo and CoMo hydrotreating catalysts in the HDS of DBT [J]. Microporous Mesoporous Mater.2008,111(1-3):157-170.
    [59]Zepeda T A, Pawelec B, Fierro J L G, et al. Removal of refractory S-containing compounds from liquid fuels on novel bifunctional CoMo/HMS catalysts modified with Ti [J]. Appl. Catal. B,2007,71(3-4): 223-236.
    [60]Pawelec B, Fierro J L G, Montesinos A, et al. Influence of the acidity of nanostructured CoMo/P/Ti-HMS catalysts on the HDS of 4,6-DMDBT reaction pathways [J]. Appl. Catal. B,2008, 80(1-2):1-14.
    [61]Reinhoudt H R, Troost R, van Schalkwijk S, et al. Testing and characterisation of Pt/ASA for deep HDS reactions [J]. Fuel Process. Technol.1999,61(1-2):117-131.
    [62]Fujikawa T, Idei K, Ebihara T, et al. Aromatic hydrogenation of distillates over SiO2-Al2O3-supported noble metal catalysts [J]. Appl. Catal.2000,192(2):253-261.
    [63]Merino L I, Centeno A, Giraldo S A. Influence of the activation conditions of bimetallic catalysts NM-Mo/γ-Al2O3 (NM=Pt, Pd and Ru) on the activity in HDT reactions [J]. Appl. Catal.2000,197(1): 61-68.
    [64]Fujikawa T, Idei K, Ohki K, et al. Kinetic behavior of hydrogenation of aromatics in diesel fuel over silica-alumina-supported bimetallic Pt-Pd catalyst [J]. Appl. Catal.2001,205(1-2):71-77.
    [65]Cooper B H, Donnis B B L. Aromatic saturation of distillates:an overview [J]. Appl. Catal.1996, 137(2):203-223.
    [66]Pawelec B, Mariscal R, Navarro R M, et al. Hydrogenation of aromatics over supported Pt-Pd catalysts [J]. Appl. Catal.2002,225(1-2):223-237.
    [67]Yasuda H, Sato T, Yoshimura Y. Influence of the acidity of USY zeolite on the sulfur tolerance of Pd-Pt catalysts for aromatic hydrogenation [J]. Catal. Today,1999,50(1):63-71.
    [68]Yoshimura Y, Yasuda H, Sato T, et al. Sulfur-tolerant Pd-Pt/Yb-USY zeolite catalysts used to reformulate diesel oils [J]. Appl. Catal.2001,207(1-2):303-307.
    [69]Sajkowski D J, Oyama S T. Catalytic hydrotreating by molybdenum carbide and nitride:unsupported Mo2N and Mo2C/Al2O3 [J]. Appl. Catal.1996,134(2):339-349.
    [70]Dhandapani B, Clair T S, Oyama S T. Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide [J]. Appl. Catal.1998,168(2):219-228.
    [71]Da Costa P, Potvin C, Manoli J M, et al. New catalysts for deep hydrotreatment of diesel fuel:Kinetics of 4,6-dimethyldibenzothiophene hydrodesulfurization over alumina-supported molybdenum carbide [J]. J. Mol. Catal. A,2002,184(1-2):323-333.
    [72]Da Costa P, Potvin C, Manoli J M, et al. Supported Molybdenum Carbides Lie Between Metallic and Sulfided Catalysts for Deep HDS [J]. Catal. Lett.2003,86(1-3):133-138.
    [73]Manoli J M, Costa P D, Brun M, et al. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over promoted (Ni,P) alumina-supported molybdenum carbide catalysts:activity and characterization of active sites [J]. J. Catal.2004,221(2):365-377.
    [74]Furimsky E. Metal carbides and nitrides as potential catalysts for hydroprocessing [J]. Appl. Catal. 2003,240(1-2):1-28.
    [75]Aegerter P A, Quigley W W C, Simpson G J, et al. Thiophene Hydrodesulfurization over Alumina-Supported Molybdenum Carbide and Nitride Catalysts:Adsorption Sites, Catalytic Activities, and Nature of the Active Surface [J]. J. Catal.1996,164(1):109-121.
    [76]McCrea K R, Logan J W, Tarbuck T L, et al. Thiophene Hydrodesulfurization over Alumina-Supported Molybdenum Carbide and Nitride Catalysts:Effect of Mo Loading and Phase [J]. J. Catal.1997,171(1):255-267.
    [77]Rodriguez J A, Dvorak J, Jirsak T. Chemistry of SO2, H2S, and CH3SH on Carbide-Modified Mo(110) and Mo2C Powders:Photoemission and XANES Studies [J]. J. Phys. Chem. B,2000,104(48): 11515-11521.
    [78]Aronsson B, Lundstrom T, Rundqvist S. Borides,Silicides and Phosphides [C], New York, Methuen, London/Wiley,1965.
    [79]Corbridge D E C. Studies in Inorganic Chemistry [M], fourth ed.,Vol.10, Elsevier, Amsterdam,1990.
    [80]Oyama S T. Novel catalysts for advanced hydroprocessing:transition metal phosphides [J]. J. Catal. 2003,216(1-2):343-352.
    [81]Oyama S T, Gott T, Zhao H, et al. Transition metal phosphide hydroprocessing catalysts:A review [J]. Catal. Today 2009,143(1-2):94-107.
    [82]Li W, Dhandapani B, Oyama S T. Molybdenum phosphide:A novel catalyst for hydrodenitrogenation [J]. Chem. Lett.1998,207-208.
    [83]Wang X, Clack P, Oyama, S T. Synthesis, Characterization, and Hydrotreating Activity of Several Iron Group Transition Metal Phosphides [J]. J. Catal.2002,208(2):321-331.
    [84]Clark P, Li W, Oyama, S T. Synthesis and activity of a new Catalyst for hydroprocessing:Tungsten Phosphide [J]. J. Catal.2001,200(1):140-147.
    [85]Oyama S T, Wang X, Lee Y-K, et al. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques [J]. J. Catal.2002,210(1):207-217.
    [86]Oyama S T, Wang X, Requejo F G, et al. Hydrodesulfurization of petroleum feedstocks with a new type of nonsulfide hydrotreating catalyst [J]. J. Catal.2002,209(1):1-5.
    [87]Oyama S T, Wang X, Lee Y-K, et al. Active phase of Ni2P/Si02 in hydroprocessing reactions [J]. J. Catal.2004,221(2):263-273.
    [88]Oyama S T, Clark P, da Silva V L S T, et al. XAFS characterization of highly active alumina-supported molybdenum phosphide catalysts (MoP/Al2O3) for hydrotreating [J]. J. Phys. Chem. B 2001,105(21):4961-4966.
    [89]Clark P A, Oyama S T. Alumina-supported molybdenum phosphide hydroprocessing catalysts [J]. J. Catal.2003,218(1):78-87.
    [90]Clark P, Wang X, Deck P, et al. Push-Pull Mechanism of Hydrodenitrogenation over Silica-Supported MoP, WP, and MoS2 Hydroprocessing Catalysts [J]. J. Catal.2002,210(1):116-126.
    [91]Clark P, Wang X, Oyama S T. Characterization of Silica-Supported Molybdenum and Tungsten Phosphide Hydroprocessing Catalysts by 31P Nuclear Magnetic Resonance Spectroscopy [J]. J. Catal.2002, 207(2):256-265.
    [92]Sawhill S J, Phillips D C, Bussell M E. Thiophene hydrodesulfurization over supported nickel phosphide catalysts [J]. J. Catal.2003,215(2):208-219.
    [93]Sawhill S J, Layman K A, Van Wyk D R, et al. Thiophene hydrodesulfurization over nickel phosphide catalysts:effect of the precursor composition and support [J]. J. Catal.2005,231(2):300-313.
    [94]Layman K A, Bussell M E. Infrared spectroscopic investigation of CO adsorption on silica-supported nickel phosphide catalysts [J]. J. Phys. Chem. B 2004,108(30):10930-10941.
    [95]Phillips D C, Sawhill S J, Self R, et al. Synthesis, Characterization, and Hydrodesulfurization Properties of Silica-Supported Molybdenum Phosphide Catalysts [J]. J. Catal.2002,207(2):266-273.
    [96]Rodriguez J A, Kim J-Y, Hanson J C, et al. Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalyst:Time-resolved X-ray diffraction, density functional, and hydrodeslufurization activity studies [J]. J. Phys. Chem. B 2003,107(26):6276-6285.
    [97]Stinner C, Prins R, Weber Th. Formation, structure, and HDN activity of unsupported molybdenum phosphide [J]. J. Catal.2000,191(2):438-444.
    [98]Stinner C, Prins R, Weber Th. Binary and ternary transition-metal phosphides as HDN catalysts [J]. J. Catal.2001,202(1):187-194.
    [99]Stinner C, Tang Z, Haouas M, et al. Preparation and 31P NMR characterization of nickel Phosphides on silica [J]. J. Catal.2002,208(2):456-466.
    [100]Zuzaniuk Z, Prins R. Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts [J]. J. Catal.2003,219(1):85-96.
    [101]赵天波,李凤艳,李翠清等.一种新型的磷化钼加氢精制催化剂的研究[J].分子催化,2003,17(1): 52-55.
    [102]赵天波,李凤艳,李翠清等.磷化钼加氢精制催化剂的制备及加氢反应条件的考察[J].石油炼制与化工,2003,34(1):38-41.
    [103]赵天波,赵志芳,李凤艳等.制备条件对MoP/γ-Al203催化剂加氢性能的影响[J].石油化工,2004,33(10):925-927.
    [104]李翠清,孙桂大,李成岳等.磷化钨催化剂的制备及加氢脱硫性能[J].石油炼制与化工,2003,34(7):9-12.
    [105]王洪学,李翠清,徐景峰等.一种新型加氢精制磷化钨催化剂的研究[J].分子催化,2004,18(4):271-274.
    [106]李翠清,孙桂大,李成岳等.新型磷化钨催化剂加氢脱氮及活化性能研究[J].石油炼制与化工,2005,36(1):30-34.
    [107]Yang S, Liang C, Prins R. A novel approach to synthesizing highly active Ni2P/SiO2 hydrotreating catalysts [J]. J. Catal.2006,237(1):118-130.
    [108]Song L, Li W, Wang G, et al. A new route to prepare supported nickel phosphide/silica-alumina hydrotreating catalysts from amorphous alloys [J]. Catal. Today 2007,125(3-4):137-142.
    [109]Burns S, Hargreaves J S J, Hunter S M. On the use of methane as a reductant in the synthesis of transition metal phosphides [J]. Catal. Comm.2007,8(6):931-935.
    [110]Loboue H, Guillot-Deudon C, Popa A F, et al. A novel approach to the synthesis of unsupported nickel phosphide catalysts using nickel thiophosphate as precursor [J]. Catal. Today 2008,130(1):63-68.
    [111]Cecilia J A, Infantes-Molina A, Rodriguez-Castellon E, et al. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene [J]. J. Catal.2009,263(1):4-15.
    [112]Cecilia J A, Infantes-Molina A, Rodriguez-Castellon E, et al. Dibenzothiophene hydrodesulfurization over cobalt phosphide catalysts prepared through a new synthetic approach:Effect of the support [J]. Appl. Catal. B 2009, doi:10.1016/j.apcatb.2009.07.017
    [113]Guan Q, Li Wei, Zhang M, et al. Alternative synthesis of bulk and supported nickel phosphide from the thermal decomposition of hypophosphites [J]. J. Catal.2009,263(1):1-3.
    [114]Wang A, Qin M, Guan J, et al. The synthesis of metal phosphides:Reduction of oxide precursors in a hydrogen plasma [J]. Angew. Chem. Int. Ed.2008,47(32):6052-6054.
    [115]Guan J, Wang Y, Qin M, et al. Synthesis of transition-metal phosphides from oxidic precursors by reduction in hydrogen plasma [J]. J. Solid State Chem.2009,182(6):1550-1555.
    [116]Iwamoto R, Grimblot J. Acidity and Hydrogenation Properties of Mo-P-Alumina Catalysts Prepared by a Sol-Gel Method [J]. J. Catal.1997,172(1):252-255.
    [117]Montesinos-Castellanos A, Lima E, de los Reyes H J A, et al. Fractal Dimension of MoP-Al2O3 Catalysts and Their Activity in Hydrodesulfurization of Dibenzothiophene [J]. J. Phys. Chem. C 2007, 111(37):13898-13904.
    [118]Montesinos-Castellanos A, Zepeda T A, Pawelec B, et al. Influence of reduction temperature and metal loading on the performance of molybdenum phosphide catalysts for dibenzothiophene hydrodesulfurization [J]. Appl. Catal. A 2008,334(1-2):330-338
    [119]孙桂大,李翠清,周志军等.载体对负载型磷化物催化剂性能的影响[J].石油学报(石油加工),2007,23(6):18-23.
    [120]Shu Y, Lee Y-K, Oyama S T. Structure-sensitivity of hydrodesulfurization of 4,6-dimethyldibenzothiophene over silica-supported nickel phosphide catalysts [J]. J. Catal.2005,236(1): 112-121.
    [121]Shu Y, Oyama S T. Chem. A new type of nonsulfide hydrotreating catalyst:nickel phosphide on carbon [J]. Commun.2005,5(9):1143-1145.
    [122]Shu Y, Oyama S T. Synthesis, characterization, and hydrotreating activity of carbon-supported transition metal phosphides [J]. Carbon 2005,43(7):1517-1532.
    [123]Lee Y-K, Shu Y, Oyama S T. Active phase of a nickel phosphide (Ni2P) catalyst supported on KUSY zeolite for the hydrodesulfurization of 4,6-DMDBT [J]. Appl. Catal. A 2007,322:191-204.
    [124]Koranyi T I, Vit Z, Nagy J B. Support and pretreatment effects on the hydrotreating activity of SBA-15 and CMK-5 supported nickel phosphide catalysts [J]. Catal. Today 2008,130(1):80-85.
    [125]Koranyi T I, Vit Z, Poduval D G, et al. SBA-15-supported nickel phosphide hydrotreating catalysts [J]. J. Catal.2008,253(1):119-131.
    [126]Koranyi T I, Coumans A E, Hensen E J M et al. The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts [J]. Appl. Catal. A 2009,365(1): 48-54.
    [127]Kawai T, Bando K K, Lee Y-K, et al. EXAFS measurements of a working catalyst in the liquid phase: An in situ study of a Ni2P hydrodesulfurization catalyst [J]. J. Catal.2006,241(1):20-24.
    [128]Lee Y-K, Oyama S T. Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating: EXAFS and FTIR studies [J]. J. Catal.2006,239(2):376-389.
    [129]Feng Z, Liang C, Wu. W, et al. Carbon Monoxide Adsorption on Molybdenum Phosphides:Fourier Transform Infrared Spectroscopic and Density Functional Theory Studies [J]. J. Phys. Chem. B 2003, 107(49):13698-13702.
    [130]Wu Z, Sun F, Wu W, et al. On the surface sites of MoP/SiO2 catalyst under sulfiding conditions:IR spectroscopy and catalytic reactivity studies [J]. J. Catal.2004,222(1):41-52.
    [131]Sweeny N P, Rohrer C S, Brown O W. Dinickel phosphide as a heterogeneous catalyst for the vapor phase reduction of nitrobenzene with hydrogen to aniline and water [J]. J. Am. Chem. Soc.1958,80(4): 799-800.
    [132]Nozaki F, Kitoh T, Sodesawa T. Promoting effect of oxygen for hydrogenation of butadiene over Ni2P catalyst [J]. J. Catal.1980,62(2):286-293.
    [133]Nozaki F, Tokumi M. Hydrogenation activity of metal phosphides and promoting effect of oxygen [J]. J. Catal.1983,79(1):207-210.
    [134]Robinson W R A M, van Gestel J N M, Koranyi T I, et al. Phosphorus Promotion of Ni(Co)-Containing Mo-Free Catalysts in Quinoline Hydrodenitrogenation [J]. J. Catal.1996,161(2): 539-550.
    [135]Kim J H, Ma X, Song C, et al. Kinetics of Two Pathways for 4,6-Dimethyldibenzothiophene Hydrodesulfurization over NiMo, CoMo Sulfide, and Nickel Phosphide Catalysts [J]. Energy Fuels 2005, 19(2):353-364.
    [136]Nelson A E, Sun M, Juriaid A S M. On the structure and composition of the phosphosulfide overlayer on Ni2P at hydrotreating conditions [J]. J. Catal.2006,241(1):180-188.
    [137]Oyama S T, Lee Y-K. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT [J]. J. Catal.2008,258(2):393-400.
    [138]Sun F, Wu W, Wu Z, et al. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and Ni-Mo-P catalysts [J]. J. Catal.2004,228(2):298-310.
    [139]Nagai M, Fukiage T, Kurata S. Hydrodesulfurization of dibenzothiophene over alumina-supported nickel molybdenum phosphide catalysts [J]. Catal. Today 2005,106(1-4):201-205.
    [140]Abu I I, Smith K J. The effect of cobalt addition to bulk MoP and Ni2P catalysts for the hydrodesulfurization of 4,6-dimethyldibenzothiophene [J]. J. Catal.2006,241(2):356-366.
    [141]Abu 11, Smith K J. HDN and HDS of model compounds and light gas oil derived from Athabasca bitumen using supported metal phosphide catalysts [J]. Appl. Catal. A 2007,328(1):58-67.
    [142]Abu I I, Smith K J. Hydrodenitrogenation of carbazole over a series of bulk NixMoP catalysts [J]. Catal. Today 2007,125(3-4):248-255.
    [143]Burns A W, Gaudette A F, Bussell M E. Hydrodesulfurization properties of cobalt-nickel phosphide catalysts:Ni-rich materials are highly active [J]. J. Catal.2008,260(2):262-269.
    [144]宋亚娟,李翠清,王新亚等.助剂对WP/γAl2O3催化剂二苯并噻吩加氢脱硫活性的影响[J].石油化工高等学校学报,2005,18(3):25-30.
    [145]孙桂大,李翠清,周志军等.助剂对WP/γ-Al2O3催化剂性能的影响[J].石油学报(石油加工),2008,24(1):46-51.
    [146]Li X, Lu M, Wang A, et al. Promoting effect of TiO2 on the hydrodenitrogenation performance of nickel phosphide [J]. J. Phys. Chem. C 2008,112(42):16584-16592.
    [147]Duan X, Li X, Wang A, et al. Effect of TiO2 on hydrodenitrogenation performances of MCM-41 supported molybdenum phosphides [J]. Catal. Today 2009, doi:10.1016/j.cattod,2009.04.014.
    [148]Yang S, Liang C, Prins R. Preparation and hydrotreating activity of unsupported nickel phosphide with high surface area [J]. J. Catal.2006,241(2):465-469.
    [149]Cheng R, Shu Y, Li L, et al. Synthesis and characterization of high surface area molybdenum phosphide [J]. Appl. Catal. A 2007,316(2):160-168
    [150]Campaigne E, Hewitt L, Ashby J. Substitution reactions of 4-methydibenzothiophene [J]. J. Heterocycl Chem.1969,6:533-557.
    [151]Wang A, Kabe T. Fine-tuning of pore size of MCM-41 by adjusting the initial pH of the synthesis mixture [J]. J Chem Soc, Chem Commun.1999,999(20):2067-2068.
    [152]Iwamoto R, Grimblot J. Influence of phosphorous on the properties of alumina-based hydrotreating catalysts [J]. Adv. Catal.1999,44:417-503.
    [153]Wang H, Prins. R. HDS of benzothiophene and dihydrobenzothiophene over sulfided Mo/y-Al2O3 [J]. Appl. Catal. A 2008,350(2):191-196.
    [154]Koranyi T I. Phosphorus promotion of Ni (Co)-containing Mo-free catalysts in thiophene hydrodesulfurization [J]. Appl. Catal. A 2003,239(1-2):253-267.
    [155]Sajkowski D J, Miller J T, Zajac G W, et al. Phosphorus promotion of Mo/Al2O3 hydrotreating catalysts [J].1990,62(1):205-220.
    [156]Furimsky. Role of MoS2 and WS2 in hydrodesulfurization [J]. Catal. Rev.-Sci. Eng.1980,22(3): 371-400.
    [157]Zingg D S, Makovsky L E, Tischer R E, et al. A surface spectroscopic study of molybdenum-alumina catalysts using x-ray photoelectron, ion-scattering, and Raman spectroscopies [J]. J. Phys. Chem.1980, 84(22):2898-2906.
    [158]Spevack P A, McIntyre N S. A Raman and XPS investigation of supported molybdenum oxide thin films.2. Reaction with hydrogen sulfide [J]. J. Phys. Chem.1993,97(42):11031-11036.
    [159]Okamoto Y, Fukino K, Imanaka T, et al. Surface state and catalytic activity and selectivity of nickel catalysts in hydrogenation reactions:IV. Electronic effects on the selectivity in the hydrogenation of 1,3-butadiene [J]. J. Catal.1982,74(1):173-182.
    [160]Weber Th, Muijsers J C, Niemantsverdrite J W. Structure of amorphous MoO3 [J]. J. Phys. Chem. 1995,99(22):9194-9200.
    [161]Weber Th, Muijsers J C, van Wolput J H M C, et al. Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy [J]. J. Phys. Chem.1996,100(33):14144-14150.
    [162]Shafi R, Hutchings G J. Hydrodesulfurization of hindered dibenzothiophenes:an overview [J]. Catal. Today 2000,59(3-4):423-442.
    [163]Bej S K, Maity S K, Turaga U T. Search for an efficient 4,6-DMDBT hydrodesulfurization catalysts: A review of recent studies [J]. Energy Fuels 2004,18(5):1227-1237.
    [164]Isoda T, Nagao S, Ma X, et al. Catalytic activities of NiMo and CoMo/Al2O3 of variable Ni and Co contents for the hydrodesulfurization of 4,6-dimethyldibenzothiophene in the presence of naphthalene [J]. Appl. Catal. A 1997,150(1):1-11.
    [165]Lecrenay E, Sakanishi K, Mochida I, et al. Hydrodesulfurization activity of CoMo and NiMo catalysts supported on some acidic binary oxides. Appl. Catal. A 1998,175(1-2):237-243.
    [166]Landau M V. Deep hydrotreating of middle distillates from crude and shale oils [J]. Catal. Today 1997,36(4):393-429.
    [167]Bataille F, Lemberton J-L, Michaud P, et al. Alkyldibenzothiophenes Hydrodesulfurization-Promoter Effect, Reactivity, and Reaction Mechanism [J]. J. Catal.2000,191(2):409-422.
    [168]van de Vlies A J, Kishan G, Niemantsverdriet J W, et al. Basic reaction steps in the sulfidation of crystalline tungsten oxides [J]. J. Phys. Chem B,2002,106(13):3449-3457.
    [169]Moreno-Castilla C, Alvarez-Merino M A, Carrasco-Marin F, et al. Tungsten and tungsten carbide supported on activated carbon:surface structures and performance for ethylene hydrogenation [J]. Langmuir,2001,17(5):1752-1756.
    [170]Cordero R L, Solis J R, Ramos J V G, et al. Effect of Fluoride on the Surface Structure of WO3/Al2O3 Hydrotreating Catalysts [J]. Stud. Surf. Sci. Catal.1993,75(3):1927-1930.
    [171]Mangnus P J, Bos A, Moulijn J A. Temperature-Programmed Reduction of Oxidic and Sulfidic Alumina-Supported NiO, WO3, and NiO-WO3 Catalysts [J]. J. Catal.1994,146(2):437-338.
    [172]Huang S, Chen F, Liu S, et al. The influence of preparation procedures and tungsten loading on the metathesis activity of ethene and 2-butene over supported WO3 catalysts [J]. J. Mol. Catal.2007,267(1-2): 224-233.
    [173]Rynkowski J M, Paryjczak T, Lenik M. On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts [J]. Appl. Catal. A 1993,106(1):73-82.
    [174]Dufresne P, Payen E, Grimblot J, et al. Study of nickel-molybdenum-.gamma.-alumina oxide catalysts by X-ray photoelectron and Raman spectroscopy. Comparison with cobalt-molybdenum-.gamma.-alumina oxide catalysts [J]. J. Phys. Chem.1981,85(16):2344-2351.
    [175]Franke R, Chasse Th, Streubel P, et al. Auger parameters and relaxation energies of phosphorus in solid compounds [J]. J. Electron Spectrosc. Relat. Phenom.1991,56(4):381-388.
    [176]Struis R P W J, Schildhauer T J, Czekaj I, et al. Sulphur poisoning of Ni catalysts in the SNG production from biomass:A TPO/XPS/XAS study [J]. Appl. Catal. A 2009,362(1-2):121-128.
    [177]Hoffer B W, Langeveld A D, Janssens J P, et al. Stability of highly dispersed Ni/Al2O3 catalysts: Effect of pretreatment [J]. J. Catal.2000,192(2):432-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700