用户名: 密码: 验证码:
锦鲫幼鱼的社群等级地位及其与标准代谢率、血糖和临界游泳能力的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以暖水性且经常性摄食的人工养殖的锦鲫幼鱼为实验对象,在25.0±0.5oC实验室条件下分别以好斗行为和摄食成功率两个指标进行社群等级地位的评估,并通过测定标准代谢(Standard metabolic rate, SMR)、血糖浓度和临界游泳速度(Critical swimming speed,Ucrit)以考察其生理状态与社群等级地位的关系,旨在为暖水性鲤科鱼类的行为生态学研究提供基础资料。
     主要研究结果:
     1.通过观察各组实验鱼的好斗行为,发现锦鲫幼鱼具有明显的争斗现象;三个等级地位由高到低的好斗行为得分分别为8.1±0.30、1.9±0.30、0.0;观察并记录各组实验鱼的摄食状况,经计算得到各尾鱼的摄食率并统计得到各组实验鱼三个等级地位由高到低的平均摄食成功率分别为51.2±1.61、29.3±1.87、19.5±0.73%。另外,以各组争斗行为得分为自变量,摄食成功率为因变量进行直线回归,发现二者之间存在显著正相关。
     2.锦鲫幼鱼在三个等级确定前后处于统治地位的实验鱼均呈现较高的的SMR水平,但未见显著差异(P>0.05);且三个等级之间也没有差异(P>0.05)。而从高到低不同等级的血糖浓度分别为3.4±0.22mg/L、4.2±0.30 mg/L、4.5±0.33 mg/L,其中居统治地位的血糖浓度比2、3等级的低,存在显著差异(P<0.05),而2、3等级之间的血糖浓度没有显著差异(P>0.05)。
     3.本研究对10组30尾锦鲫幼鱼的Ucrit进行测定,从高到低3个等级的平均值分别为:35.5±0.22、33.7±0.66、29.8±1.02 cm/s,整体趋势表现出随等级地位上升实验鱼的Ucrit呈增加趋势;其中Ucrit的平均值第1等级高于第2等级,2等级高于3等级;1、2等级没有显著差异,但1、2等级与3等级之间有显著差异(P<0.05;)。
     研究结果表明:
     1.通过上述两个指标对其社群等级的评估,其结果均表明幼鱼在实验室条件下存在着明显的社群等级分化现象;同时其结果显示用这两个指标对锦鲫社群等级地位的评估是可靠的。
     2.本研究未见锦鲫各个社群等级地位的SMR差异,或许是较大实验误差社群压力对SMR的影响,也有可能该种实验室鱼的社群等级与标准代谢之间没有关联。
     3.表明锦鲫幼鱼等级地位越高,血糖浓度越低;这一现象揭示高等级地位的鱼受到较低的社群胁迫且具有较高的生理适合度。
     4.表明小群体中锦鲫幼鱼的等级地位越高其有氧运动能力越强,进而更加适合生存。
Juvenile crucian carp, a warm water and regular feedind of breeding fish, were chosen as the experimental animal. The social status of juvenile crucian carp was identified into 2 levels by factors of successful feeding rate and aggressive behaviors at 25.0±0.5℃under laboratory conditions. The standard metabolic rate, blood glucose concentrations and critical swimming speed in fish of each social level were determined. To investigate the relationship of between their physiological state and the social status, to provide basic information for warm-water cyprinid fish of Behavioral Ecology study .
     The results as follows:
     1. Each set of experiments by observing the aggressive behavior of the fish and found that juvenile crucian carp were fighting with the obvious phenomenon; the aggressive behavior score of the 3 social status levels (high to low) of juvenile crucian carp were 8.1±0.30,1.9±0.30 and 0.0, respectively. Observed and recorded experiment of each group of fish feeding status, calculated by the end of the fish feeding rate and statistics of each group received the successful feeding rate of the 3 social status levels (high to low) of juvenile crucian carp were 51.2±1.61,29.3±1.87 and 19.5±0.73%, respectively. The successful feeding rate was positive related to aggressive behaviour score (P <0.01).
     2. Before and after to determine the 3 social status levels, the dominant of juvenile crucian carp showed a high level of SMR, but no significant difference (P >0.05); and no significant difference between the three levels (P >0.05). The blood glucose concentrations were 3.4±0.22,4.2±0.30 and 4.5±0.33 mmol/L(P <0.05) respectively in fish with different social status (high to low), which are dominant in the blood glucose concentrations levels lower than subordinate fish, there is a significant difference (P <0.05), while the blood glucose concentrations levels between the subordinate fish were no significant difference (P >0.05).
     3. This study group of 30 pairs of 10 Ucrit juvenile crucian carp was measured from high to low average of three grades, respectively: 35.5±0.22、33.7±0.66、29.8±1.02 cm/s,the overall trend showed an increase with the hierarchical status, experimental fish of Ucrit showed an increasing trend. The dominant of Ucrit in which the average is higher than the subordinate fish; between the subordinate fish was no significant difference (P >0.05), but between the 1,2-grade and 3 levels was a significant difference (P <0.05).
     The indications as follows:
     1. Through the above two indicators for the assessment of their the social status, the results showed that both juveniles under laboratory conditions there is a clear polarization of the social status; the same time, the results showed that the use of these two indicators for the assessment of juvenile crucian carp’the social status is reliable.
     2. In this study, the social status of juvenile crucian carp was no significant difference on the SMR, and perhaps the larger experiment error of the impact of community pressure on the SMR, it’s possible that between the kinds of laboratory fish of the
     3. social status and the standard metabolic rate is no correlation.The results of this study show that juvenile crucian carp with higher social status had the lower blood glucose levels, while the lower grade their blood glucose levels appeared higher trend which may imply lower levels of stress and a greater fitness of physical activity.
     4. The results show that small groups of juvenile crucian carp with higher social status, the stronger their aerobic exercise capacity.
引文
[1] Abbott, J. C., Dunbrack, R. L. & Orr, C. D. The interaction of size andexperience in dominance relationships of juvenile steelhead trout (Salmogairdneri)[J]. Behaviour, 1985, 92: 241–253.
    [2] Abbott, J. C. & Dill, L. M. The relative growth of dominant and subordinate juvenile steelhead trout (Salmo gairdneri) fed equal rations[J]. Behaviour, 1989, 108: 104–113.
    [3] Adams, C. E. & Huntingford, F. A. What is a successful fish? Determinants of competitive success in Arctic char (Salvelinus alpinus) in different social contexts[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53: 2446–2450.
    [4] Adams, C. E., Huntingford, F. A., Turnbull, J. F. & Beattie, C. Alternative competitive strategies and the cost of food acquisition in juvenile Atlantic salmon(Salmo salar)[J]. Aquaculture, 1998, 167: 17–26.
    [5] Alana¨ra¨, A., Burns, M. D. & Metcalfe, N. B. Intraspecific resource partitioning in brown trout: the temporal distribution of foraging is determined by social rank[J]. Journal of Animal Ecology, 2001, 70: 980–986.
    [6] Allee, W. C., Greenberg, B., Rosenthal, G. M. & Frank, P. Some effects of social organisation on growth in the green sunfish, Lepomis cyanellus[J]. Journal of Experimental Zoology, 1948, 108: 1–19.
    [7] Armstrong, J. D., Lucas, M. C., Priede, I. G. & De Vera, L. An acoustic telemetry system for monitoring the heart rate of pike, Esox lucius L., and other fish in their natural environment[J]. Journal of Experimental Biology, 1989, 143: 549–552.
    [8] Armstrong, J. D., Braithwaite, V. A. & Fox, M. The response of wild Atlantic salmon parr to acute reductions in water flow[J]. Journal of Animal Ecology, 1998, 67: 292–297.
    [9] Armstrong, J. D., Huntingford, F. A. & Herbert, N. A. Individual space use strategies of wild juvenile Atlantic salmon[J]. Journal of Fish Biology, 1999, 55: 1201–1212.
    [10] Bachman, R. A. Foraging behavior of free-ranging wild and hatchery brown trout in a stream[J]. Transactions of the American Fisheries Society, 1984, 113: 1–32.
    [11] Basquill, S. P. & Grant, J. W. A. An increase in habitat complexity reduces aggression and monopolization of food by zebra fish (Danio rerio)[J]. Canadian Journal of Zoology, 1998, 76: 770–772.
    [12] Beaugrand, J. P., Payette, D. & Goulet, C. Conflict outcome in male green swordtail fish dyads (Xiphophorus helleri): Interaction of body size, prior dominance/subordination experience, and prior resideny[J]. Behaviour, 1996, 133: 303–319.
    [13] Blake R.W., Chan K.H.S.. Cyclic feeding and subseqDuent compensatory growth do not significantly impact standard metabolic rate or critical swimming speeding in rainbow trout[J]. Journal of Fish Biology, 2006, 69: 818-827.
    [14] Blanchard, D. C., Sakai, R. R., McEwen, B., Weiss, S. M. & Blanchard, R. J. Subordination stress: behavioral, brain, and neuroendocrine correlates[J]. Behavioural Brain Research, 1993, 58: 113–121.
    [15] Boddingius, J. The influence of social rank on adenohypophysial cell activity in Salmo irideus[J]. Cell Tissue Research, 1976, 170: 383–414.
    [16] Brett J R.The respiratory metabolism and swimming performance of young sockeye coho salmon[J]. Journal of the Fisheries Research Board of Canada, 1964, 15: 587-605.
    [17] Bruce A. B.Stress in Fishes: A Diversity of Responses with Particular Reference to Changes in Circulating Corticosteroids1[J]. Integ. and Comp. Biol, 2002, 42: 517-525.
    [18] Buchner, A., Persaud, K., Sloman, K. A. & Balshine, S. (submitted). The physiological effects of social status in a cooperatively breeding cichlid fish.
    [19] Brown, M. E. The growth of brown trout (Salmo trutta Linn.) I. Factors influencing the growth of trout fry[J]. Journal of Experimental Biology, 1946, 22: 118–129.
    [20] Brown, G. E. & Brown, J. A. Social dynamics in salmonid fishes: do kin make better neighbours[J]. Animal Behavior, 1993, 45: 863–871.
    [21] Chapman, D. W. Food and space as regulators of salmonid populations in streams[J]. The American Naturalist, 1966, 100: 345–357.
    [22] Cutts, C. J., Brembs, B., Metcalfe, N. B. & Taylor, A. C. Prior residence,territory quality and life-history strategies in juvenile Atlantic salmon (Salmo salar L.)[J]. Journal of Fish Biology, 1999, 55: 784–794.
    [23] Cutts, C. J., Adams, C. E. & Campbell, A. Stability of physiological and behavioural determinants of performance in Arctic char (Salvelinus alpinus)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58: 961–968.
    [24] Derek H.A,Wood C M. The interactive effects of feeding and exercise on oxygen consumption,swimming performance and protein usage in Juvenile rainbow trout (Oncorhynchus mykiss)[J]. The journal of experimental biology, 1997, 200: 2337-2346.
    [25] Egglishaw, H. J. & Shackley, P. E. An experiment on faster growth of salmon Salmo salar (L.) in a Scottish stream.[J]. Journal of Fish Biology, 1973, 5: 197–204.
    [26] Ejike, C. & Schreck, C. B. Stress and social hierarchy rank in coho salmon[J]. Transactions of the American Fisheries Society, 1980, 109: 423–426.
    [27] Elliott, J. M. Case-study: population dynamics of migratory trout in Black Brows Beck,1966–90. In Quantitative Ecology and the Brown Trout, 1994, 25–68. New York: Oxford University Press.18 . .          . .         
    [28] Fox, H. E., White, S. A., Kao, M. H. F. & Fernald, R. D. Stress and dominance in a social fish[J]. Journal of Neuroscience, 1997, 17: 6463–6469.
    [29] Fu S J, Cao Z D, Peng J L. Effect of size on postprandial metabolic response in Chinense catfish(Silurus asotus Linnaeus)[J]. Journal Comparative Physiology, 2006, 176B: 489-495.
    [30] Fu S J , Xie X J,Cao Z D. Effect of fasting and repeat feeding on metabolic rate in southern catfish[J]. Physiology, 2005, 38(3): 191-198.
    [31] Fu S J, Zeng L Q. Effect of meal size on excess post-exercise oxygen consumption in fishes with different locomotive and digestive performance[J]. Journal Comparative Physiology, 2009, 179: 509-517.
    [32] Fraser, F. J. (1969). Population density effects on survival and growth of juvenile coho
    [33] salmon and steelhead trout in experimental stream-channels[M]. In Symposium onSalmon and Trout in Streams (Northcote, T. G., ed.), pp. 253–266. Vancouver:University of British Columbia Press.
    [34] Goddard, P. J., Gaskin, G. J. & Macdonald, A. J. Automatic blood sampling equipment for use in studies of animal physiology[J]. Animal Science, 1998, 66: 769–775.
    [35] Gomelskv B,Cherfas N,Hnlata G.Studies on the inheritance of black patches in ornamental(koi) carp[J]. Isr J Aqu, 1998, 50: 134-139.
    [36] Grand, T. C. & Grant, J. W. A. Spatial predictability of food influences its monopolization and defence by juvenile convict cichlids[J]. Animal Behaviour, 1994, 47: 91–100.
    [37] Grant, J. A. Territoriality[M]. In Behavioural Ecology of Teleost Fishes (Godin, J. G. J., ed.), 1997, 81–103. Oxford: Oxford University Press.
    [38] Golub, M. S., Sassenrath, E. N. & Goo, G. P. Plasma cortisol levels and dominance in peer groups of rhesus monkey weanlings[J]. Hormones and Behavior, 1979, 12: 50–59.
    [39] Griffiths, S. W. & Armstrong, J. D. Differential responses of kin and nonkin salmon to patterns of water flow: does recirculation influence aggression?[J]. Animal Behaviour, 1999, 59: 1019–1023.
    [40] Griffiths, S. W. & Armstrong, J. D. Kin-biased territory overlap and food sharing among Atlantic salmon juveniles[J]. Journal of Animal Ecology, 2002, 71: 480–486.
    [41] Gurney, W. S. C. & Nisbet, R. M. Ecological stability and social hierarchy[J].Theoretical Population Biology, 1979, 16: 48–80.
    [42] Hartman, G. F. Observations on behavior of juvenile brown trout in a stream aquarium during winter and spring[J]. Journal of the Fisheries Research Board of Canada, 1963, 20: 769–787.
    [43] Harwood, A. J., Armstrong, J. D., Griffiths, S. W. & Metcalfe, N. B.Sympatric association influences within-species dominance relations among juvenile Atlantic salmon and brown trout[J]. Animal Behaviour.
    [44] Herbert, N. A., Armstrong, J. D. & Bjornsson, B. Th. Evidence that growth hormone-induced elevation in routine metabolism of juvenile Atlantic salmon is a result of increased spontaneous activity[J]. Journal of Fish Biology, 2001, 59: 754–757.
    [45] Ho¨jesjo¨, J., Johnsson, J. I. & Axelsson, M. Behavioural and heart rate responses to food limitation and predation risk: an experimental study on rainbow trout[J]. Journal of Fish Biology, 1999, 55: 1009–1019.
    [46] Ho¨jesjo¨, J., Johnsson, J. I. & Bohlin, T. Can laboratory studies on dominance predict fitness of young brown trout in the wild? [J]. Behavioural and Ecological Sociobiology, 2002, in press.
    [47] Houlihan, D. F., Carter, C. G., McCarthy, I. D. Protein synthesis in fish[M]. In Biochemistry and Molecular Biology of Fishes, Volume 4 (Hochachka, P. W. & Mommsen, T. P., eds), 1995, 191–220. New York: Elsevier Science.
    [48] Hughes, N. F. Ranking of feeding positions by drift-feeding Arctic grayling (Thymallus arcticus) in dominance hierarchies[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49: 1994–1998.
    [49] Huntingford, F. A. & Turner, A. K. Animal Conflict[M]. London: Chapman & Hall, 1987.
    [50] Huntingford, F. A. & Garcia de Leaniz, C. Social dominance, prior residence and the acquisition of profitable feeding sites in juvenile Atlantic salmon[J]. Journal of Fish Biology, 1997, 51: 1009–1014.
    [51] Huntingford, F. A., Metcalfe, N. B., Thorpe, J. E., Graham, W. D. & Adams, C. E. Social dominance and body size in Atlantic salmon parr, Salmo salar L[J]. Journal of Fish Biology, 1990, 36: 877–881.
    [52] Huntingford, F. A., Metcalfe, N. B. & Thorpe, J. E. Social status and feeding in Atlantic salmon Salmo salar parr: The effect of visual exposure to a dominant[J]. Ethology, 1993, 94: 201–206.
    [53] Huntingford, F. A., Aird, D., Joiner, P., Thorpe, J. E., Braithwaite, V. A. & Armstrong,
    [54] J. D. How juvenile Atlantic salmon, Salmo salar L., respond to falling water levels: experiments in an artificial stream[J]. Fisheries Management and Ecology, 1999, 6: 357–364.
    [55] Imre, I., Grant, J. W. A. & Keeley, E. R. The effect of visual isolation on territory size and population density of juvenile rainbow trout (Oncorhynchus mykiss)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59: 303–309.
    [56] Jakobsson, S., Brick, O. & Kulberg, C. Escalated fighting behaviour incurs increased predation risk[J]. Animal Behaviour, 1995, 49: 235–239.
    [57] Jain K E, Farrell A P. Influence of seasonal temperature on the repeat swimming performance of rainbow trout (Oncorhynchus mykiss)[J].The Journal Experimental Biology, 2003, 206: 3569-3579.
    [58] Jain K E, Hamiltin J C, Farrell A P. Use of ramp velocity test to measure critical swimming speed in rainbow trout(Oncorhynchus mykiss)[J]. Comparative Biochemistry Physiology A, 1997, 117(4): 441-444.
    [59] J.Bailey, A.Alanara and E.Brannas. Methods for assessing social status in Arctic charr[J]. Journal of Fish Biology, 2000, 57: 258-261.
    [60] Jenkins, T. M. Social structure, position choice and microdistribution of two trout species (Salmo trutta and Salmo gairdneri) resident in mountain streams[J]. Animal Behaviour Monographs, 1969, 2: 57–123.
    [61] Johnsson, J. I. & Bjo¨rnsson, B. T. Growth hormone increases growth rate, appetite and dominance in juvenile rainbow trout, Oncorhynchus mykiss[J]. Animal Behaviour, 1994, 48: 177–186.
    [62] Johnsson, J. I., No¨bbelin, F. & Bohlin, T. Territorial competition among wild brown trout fry: effects of ownership and body size[J]. Journal of Fish Biology, 1999, 54: 469–472.
    [63] Kalleberg, H. Observations in a stream tank of territoriality and competition in juvenile salmon and trout (Salmo salar L. and S. trutta L.)[J]. Report of the Institute of Freshwater Research Drottingholm, 1958, 31: 55–98.
    [64] Katriina Tiira . Anssi, Laurila . Katja, Enberg .Jorma, Piironen . Sami, Aikio . Esa, Ranta .Craig R. Primmer. Do dominants have higher heterozygosity? Social status and genetic variation in brown trout, Salmo trutta[J]. Behav Ecol Sociobiol, 2006, 59: 657-665.
    [65] Keenleyside, M. H. A. & Yamamoto, F. T. Territorial behaviour of juvenile Atlantic salmon (Salmo salar L.)[J]. Behaviour, 1962, 19: 138–169.
    [66] Koebele, B. P. Growth and size hierarchy effect: an experimental assessment of three proposed mechanisms; activity differences, disproportional food acquisition, physiological stress[J]. Environmental Biology of Fishes, 1985, 12: 181-188.
    [67] Koolhaas, J. M., De Boer, S. F., De Ruiter, A. J. H., Meerlo, P. & Sgoifo, A. Social stress in rats and mice[J]. Acta. Physiology Scandanavia 161 (Suppl.) , 1997, 640: 69–72.
    [68] Laidley, C. W. & Leatherland, J. F. Cohort sampling, anaesthesia and stocking density effects on plasma cortisol, thyroid hormone, metabolite and ion levels in rainbow trout, Salmo gairdneri Richardson[J]. Journal of Fish Biology, 1988, 33: 73–88.
    [69] Laurent, P., Ho? be, H. & Dunel-Erb, S. The role of environmental sodium chloride relative to calcium in gill morphology of freshwater salmonid fish[J]. Cell Tissue Research, 1985, 240:675–692.
    [70] Laurent, P., Dunel-Erb, S., Chevalier, C. & Lignon, J. Gill epithelial cells kinetics in a freshwater teleost, Oncorhynchus mykiss, during adaptation to ion-poor water and hormonal treatments[J]. Fish Physiology and Biochemistry, 1994, 13: 353–370.
    [71] Lee C G, Farrell A P, Lotto A, Hinch S G, Healey M C. Excess post-exercise oxygen consumption in adult Sockeye (Oncorhynchus nerka) and coho (O.kisutch) salman following critical speed swimming[J]. The Journal of Experimental Biology, 2003, 206: 3253-3260.
    [72] Li, H. W. & Brocksen, R. W. Approaches to the analysis of energetic costs of intraspecific competition for space by rainbow trout (Salmo gairdneri)[J]. Journal of Fish Biology, 1977, 11: 329–341.
    [73] Luo Y P, Yuan L Q, Cao Z D, et al. The study on haematological parameters of Mystus macropterus and Pelteobagrus vachelliiin Jial-ing River[J]. Acta Hydrobiologica Sinica, 2005, 29(2): 161-166.
    [74] Maclean, A. & Metcalfe, N. B. Social status, access to food, and compensatory growth in juvenile Atlantic salmon[J]. Journal of Fish Biology, 2001, 58: 1331–1346.
    [75] MacLean, A., Metcalfe, N. B. & Mitchell, D. Alternative competitive strategies in juvenile Atlantic salmon (Salmo salar): evidence from fin damage[J]. Aquaculture, 2000, 184: 291–302.
    [76] Martin-Smith, K. M. & Armstrong, J. D. Growth rates of wild stream-dwelling Atlantic salmon correlate with activity and sex but not dominance[J]. Journal of Animal Ecology, 2002, 71: 413–423.
    [77] McCarthy, I. D., Carter, C. G. & Houlihan, D. F. The effect of feeding hierarchy on individual variability in daily feeding of rainbow trout, Oncorhynchus mykiss (Walbaum)[J]. Journal of Fish Biology, 1992, 41: 257–263.
    [78] McCormick, M. I. Experimental test of the effect of maternal hormones on larval quality of a coral reef fish[J]. Oecologia, 1999, 118: 412–422.
    [79] Mccarthy I. D. Competitive ability is related to metabolic asymmetry in juvenile rainbow trout[J]. Journal of Fish Biology, 2001, 59: 1002-1014.
    [80] Meerlo, P., Overkamp, G. J. F. & Koolhaas, J. M. Behavioural and physiological consequences of a single social defeat in roman high- and low-avoidance rats[J]. Psychoneuroendocrinology, 1997, 22: 155–168.
    [81] Metcalfe, N. B., Huntingford, F. A. & Thorpe, J. E. The influence of predation risk on the feeding motivation and foraging strategy of juvenile Atlantic salmon[J]. Animal Behaviour, 1987, 35: 901–911.
    [82] Metcalfe, N. B., Huntingford, F. A., Graham, W. D. & Thorpe, J. E. Early social status and thedevelopment of life-history strategies in Atlantic salmon[J]. Proceedings of the Royal Society of London, 1989, 236B: 7–19.
    [83] Metcalfe N. B., Wright, P. J. & Thorpe, J. E.. Relationships between social status, otolith size at first feeding and subsequent growth in Atlantic Salmon(Salmo salar L.)[J]. Journal of Animal Ecology, 1992, 61: 585-589.
    [84] Metcalfe N.B, Alan C.Taykor, John E.Thorpe. Metabolic rate,social status and life-history strategies in Atlantic salmon[J]. Animal Behavior ,1995, 49: 431-436.
    [85] Metcalfe, N. B., Huntingford, F. A., Thorpe, J. E. & Adams, C. E.. The effects of social status on life-history variation in juvenile salmon[J]. Canadian Journal of Zoology, 1990, 68: 2630-2636.
    [86] Mikheev, V. N., Metcalfe, N. B., Huntingford, F. A. & Thorpe, J. E. Size-related differences in behaviour and spatial distribution of juvenile Atlantic salmon in a novel environment[J]. Journal of Fish Biology, 1994, 45: 379–386.
    [87] Mommsen, T. P., Vijayan, M. M. & Moon, T. W. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation[J]. Reviews in Fish Biology and Fisheries, 1999, 9: 211–268.
    [88] Nakano, S. Individual differences in resource use, growth and emigration under the influence of a dominance hierarchy in fluvial red-spotted masu salmon in a natural habitat[J]. Journal of Animal Ecology, 1995, 64: 75–84.
    [89] Noakes, D. L. G. & Leatherland, J. F. Social dominance and interrenal cell activity in rainbow trout, Salmo gairdneri (Pisces, Salmonidae)[J]. Environmental Biology of Fishes, 1977, 2: 131–136.
    [90] O’Connor, K. I., Metcalfe, N. B. & Taylor, A. C. Does darkening signal submission in territorial contests between juvenile Atlantic salmon, Salmo salar?[J] Animal Behaviour, 1999, 58: 1269–1276.
    [91] ?verli, ?., Harris, C. A. & Winberg, S. Short-term effects of fights for social dominance and the establishment of dominant-subordinate relationships on brain monoamines and cortisol in rainbow trout[M]. Brain, Behavior and Evolution, 1999, 54: 263–275.
    [91] ?verli, ?., Winberg, S., Damsga°rd, B. & Jobling, M. Food intake and spontaneous swimming activity in Arctic char (Salvelinus alpinus): the role of brain serotonergic activity and social interactions[J]. Canadian Journal of Zoology, 1998, 76: 1366–1370.
    [92] Peters, G., Delventhal, H. & Klinger, H. Physiological and morphological effects of social stress in the eel (Anguilla anguilla L.) [J]. Archive fur Fischereiwissenschaft, 1980, 30: 157–180.
    [93] Peters, G., Faisal, M., Lang, T. & Ahmed, I. Stress caused by social interaction and its effect on susceptibility to Aeromonas hydrophila infection in rainbow trout Salmo gairdneri[J]. Diseases of Aquatic Organisms, 1988, 4: 83–89.
    [94] Pickering, A. D. & Pottinger, T. P. Biochemical effects of stress[M]. In Biochemical and Molecular Biology of Fishes, Volume 5 (Hochachka, P. W. & Mommsen, T. P.,eds), 1995, 349–379. New York: Elsevier.
    [95] Pottinger, T. G. & Pickering, A. D. The influence of social interaction on the acclimation of rainbow trout, Oncorhynchus mykiss (Walbaum) to chronic stress[J]. Journal of Fish Biology, 1992, 41: 435–447.
    [96] Priede, I. G. Metabolic scope in fishes[M]. In Fish Energetics: New Perspectives (Tytler, P. & Calow, P., eds), 1985, 33–64. London: Croom Helm.
    [97] Priede, I. G. & Young, A. H. The ultrasonic telemetry of cardiac rhythms of wild brown trout (Salmo trutta L.) as an indicator of bio-energetics and behaviour[J]. Journal of Fish Biology, 1977, 10: 299–318.
    [98] Reinhardt, U. G. Predation risk breaks size-dependent dominance in juvenile coho salmon (Oncorhynchus kisutch) and provides growth opportunities for risk-prone individuals[J]. Canadian Journal of Fisheries and Aquatic Science, 1999, 56: 1206–1212.
    [99] Rhodes, J. S. & Quinn, T. P. Factors affecting the outcome of territorial contests between hatchery and naturally reared coho salmon parr in the laboratory[J]. Journal of Fish Biology, 1998, 53: 1220–1230.
    [100] Rodrigues, K. T. & Sumpter, J. P. Effects of background adaptation on the pituitary and plasma concentrations of some pro-opiomelanocortin-related peptides in the rainbow trout (Salmo gairdneri) [J]. Journal of Endocrinology, 1984, 101: 277–284.
    [101] Ruxton, G. D., Armstrong, J. D. & Humphries, S. Modelling territorial behaviour of animals in variable environments[J]. Animal Behaviour, 1999, 58: 113–120.
    [102] Schjelderup-Ebbe, T. Beitra¨ge zur sozialpsychologie des haushuhns[J]. Zeitschr. F. Psychol., 1922, 88: 225–252.
    [103] Scott, D. B. C. & Currie, C. E. Social hierarchy in relation to adrenocortical activity in Xiphophorus helleri Heckel[J]. Journal of Fish Biology, 1980, 16: 265–277.
    [104] Sloman, K. A., Gilmour, K. M., Metcalfe, N. B. & Taylor, A. C. Does socially-induced stress in rainbow trout cause chloride cell proliferation?[J]. Journal of Fish Biology, 2000a, 56: 725–738.
    [105] Sloman, K. A., Gilmour, K. M., Taylor, A. C. & Metcalfe, N. B. Physiological effects of dominance hierarchies within groups of brown trout, Salmo trutta, held under simulated natural conditions[J]. Fish Physiology and Biochemistry, 2000b, 22: 11–20.
    [106] Sloman, K. A., Motherwell, G., O’Connor, K. I. & Taylor, A. C. The effect of social stress on the standard metabolic rate (SMR) of brown trout, Salmo trutta[J]. Fish Physiology and Biochemistry, 2000c, 23: 49–53.
    [107] Sloman, K. A., Metcalfe, N. B., Taylor, A. C. & Gilmour, K. M. Plasma cortisol concentrations before and after social stress in rainbow trout and brown trout[J]. Physiological and Biochemical Zoology, 2001a, 74: 383–389.
    [108] Sloman, K. A., Taylor, A. C., Metcalfe, N. B. & Gilmour, K. M. Effects of an environmental perturbation on the social behaviour and physiological function of brown trout[J]. Animal Behaviour, 2001b, 61: 325–333.
    [109] Sloman, K. A., Baker, D. W., Wood, C. M. & McDonald, D. G. Social interactions affect physiological consequences of sublethal copper exposure in rainbow trout, Oncorhynchus mykiss[J]. Environmental Toxicology and Chemistry, 2002a, 21: 1255–1263.
    [110] Sloman, K. A., Wilson, L., Freel, J. A., Taylor, A. C., Metcalfe, N. B. & Gilmour, K. M. The effects of increased flow rates on linear dominance hierarchies and physiological function in brown trout, Salmo trutta[J]. Canadian Journal of Zoology, 2002b.
    [111] Sloman K. A,Motherwel.G L, O’Connor K. I, Taylor A. C.。The effect of social stress on the Standard Metabolic Rate (SMR) of brown trout(Salmo trutt[J]. Fish Physiology and Biochemistry, 2000, 23: 49-53.
    [112] Scott, D. B. C. & Currie, C. E.. Social hierarchy in relation to adrenocortical activity in Xiphophorus helleri Heckel[J]. Journal of Fish Biology, 1980, 16: 265-277.
    [113] Sumpter, J. P. The endocrinology of stress[M]. In Fish Stress and Health in Aquaculture (Iwama, G. K., Pickering, A. D., Sumpter, J. P. & Schreck, C. B.,eds), 1997, 95–118. Cambridge: Cambridge University Press.
    [114] Stobutzki I. C., Bellwood D. R. An analysis of the sustained swimming abilities of pre-settlement and post-settlement coral reef fishes[J]. J. Exp. Mar. Biol. Ecol.,1994, 175: 275-286.
    [115] Swanson C. Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos)[J]. Journal of Experimental Biology, 1998, 201: 3355-3366
    [116] Symons, P. E. K. Increase in aggression and in strength of the social hierarchy among juvenile Atlantic salmon deprived of food[J]. Journal of the Fisheries Research Board of Canada, 1968, 25, 2387–2401.
    [117] Thorpe, J. E., Metcalfe, N. B. & Huntingford, F. A. Behavioural influences on life-history variation in juvenile Atlantic salmon, Salmo salar[J]. Environmental Biology of Fishes, 1992, 33: 331–340.
    [118] Wang X M,Guo L. Progress of Studies on the Origin and Phylogenesis of Gold[J]. Journal of Tianjin Agricultural College, 1999, 6(1): 27-30.
    [119] Wardle, C. S. & Kanwisher, J. W. The significance of heart rate in free-swimming Gadus morhua: some observations with ultrasonic tags[J]. Marine Behaviour and Physiology, 1974, 2: 311–324.
    [120] Winberg, S., Carter, C. G., McCarthy, I. D., He, Z., Nilsson, G. E. & Houlihan, D. F Feeding rank and brain serotonergic activity in rainbow trout Oncorhynchus mykiss[J]. Journal of Experimental Biology, 1993, 179: 197–211.
    [121] Winberg, S. & Lepage, O. Elevation of brain 5-HT activity, POMC expression, and plasma cortisol in socially subordinate rainbow trout[J]. American Journal of Physiology, 1998, 274: R645–R654.
    [122] Winberg, S. & Nilsson, G. E. Induction of social dominance by L-dopa treatment in Arctic charr[M]. NeuroReport, 1992, 3: 243–246.
    [123] Winberg, S., Myrberg, A. A. Jr & Nilsson, G. E. (1996). Agonistic interactions affect brain serotonergic activity in an Acanthopterygiian fish: the bicolor damselfish(Pomacentrus partitus) [M]. Brain, Behavior and Evolution 48, 213–220.
    [124] Winberg, S., Winberg, Y. & Fernald, R. D. Effect of social rank on brainmonoaminergic activity in a cichlid fish[M]. Brain Behavior and Evolution, 1997, 49: 230–236.
    [125] Wright, P. J. The influence of metabolic rate on otolith increment width in Atlantic salmon parr, Salmo salar L[J]. Journal of Fish Biology, 1991, 38: 929–933.
    [126] Wright, P. J., Fallon-Cousins, P. & Armstrong, J. D. The relationship between otolith accretion and resting metabolic rate in juvenile Atlantic salmon during a change in temperature[J]. Journal of Fish Biology, 2001, 59: 657–666.
    [127] Xu W, Li C T. Melanin observation of visceral peritoneum in transparent color crucian carp,red crucian carp and Koi carp[J]. Journal of Fishery Sciences of China, January, 2007, 14(1): 144-148
    [128] Yamamoto, T., Ueda, H. & Higashi, S. Correlation among dominance status, metabolic rate and otolith size in masu salmon[J]. Journal of Fish Biology, 1998, 52: 281–290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700