用户名: 密码: 验证码:
数控磨床整机系统可靠性分析与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控磨床是利用磨具对工件表面进行磨削加工的机床,是保证工件加工精度的关键设备。可靠性是数控磨床的重要指标,是数控磨床质量的核心因素,数控磨床工作是否可靠是广大用户选购的重要标准。我国数控磨床近年来在生产和应用领域都有较快的发展,但与工业发达国家相比,仍存在较大差距。因此,提高数控磨床的可靠性已成为当前磨床制造企业自身生存和发展的关键。
     本文以国产某系列数控磨床为研究对象,针对其可靠性方面研究较少的现状及提高产品可靠性的迫切需求。通过走访调研和查阅文献资料,了解和熟悉数控磨床的工作原理和系统构成,将该系列数控磨床整机系统划分为9个子系统;收集整理了数控磨床的故障模式和故障数据,并对每个子系统进行故障树分析(FTA),得到了各子系统的FTA图;以各子系统为约定层次,进行故障模式、影响分析(FMEA),得到了各子系统的FMEA表;以收集整理的42台数控磨床首次故障时间为子样数据,建立了数控磨床首次故障时间的威布尔分布模型,并进行了相关的可靠性指标定量的评价。
CNC grinding machine is a kind of using grinding tools to grinding workpiece surface machine tools, is a kind of ensuring the workpiece machining accuracy Key equipment. The reliability is an important index of CNC grinding machine, it is the core factor of the quality of CNC grinding machine. The reliability of the CNC grinding machine is important to the broad users. Recent years, CNC grinding machine in the production and application domain have a rapid development in our country. But compared with the industrial developed countries, there is a great distance. Improved the reliability of CNC grinding machine has become the Key Technologies for manufacture enterprise to survival and development.
     In this master dissertation, taking CNC grinding machine as object, because of the lack of research reliability on the product and the urgent demand for the product of reliability, carried out reliability analysis and evaluation of the CNC grinding machine. Through investigation and unified consult literature material, familiar with the working principle and system structure of the CNC grinding machine, the CNC grinding machine can be divided into nine subsystems; Collected and finished the failure mode and the failure data of the CNC grinding machine, Fault Tree Analysis for the nine subsystems individually, then Obtained the figures of FTA; Failure Mode Effect Analysis for the nine subsystems individually, then Obtained the table of FMEA; Based on the 42 failure data of the CNC grinding machine, building the Weibull distribution model of the CNC grinding machine and Reliability Evaluation of the CNC grinding machine.
引文
[1]王立平.关于国产数控机床发展的几点思考[J].航空制造技术.2010(4):51-52.
    [2]贾亚洲,杨兆军.数控机床可靠性国内外现状与技术发展策略[J].中国制造业信息化:学术版.2008(8):35-37.
    [3]小颖,淡蓝,晓立.国产数控机床发展之路[J].航空制造技术.2010(4):40-41.
    [4]邱绍虎,吴必才,苏春.国产数控机床可靠性现状及其改善对策研究[J].中国制造业信息化:学术版.2009,38(7):]-4.
    [5]李昌琪遇立基译苏A.C.普罗尼科夫著.数控机床的精度与可靠性[M].机械工业出版社,1987.
    [6]普罗尼科夫A.C.《机器可靠性》[J].四川机械.]982(3):65.
    [7]Rao S S, Reddy C P. Reliability analysis of machine tool structures[J]. Journal of Engineering for Industry.1977,99:882-888.
    [8]Tsukamoto Y. An approach to fuzzy reasoning method[J]. Advances in fuzzy set theory and applications.1979:137-149.
    [9]Keller A Z, Kara-Zaitri C. Further applications of fuzzy logic to reliability assessment and safety analysis[J]. Microelectronics Reliability.1989,29(3):399-404.
    [10]贾亚洲.提高国产数控机床可靠性水平[J].机电新产品导报.2006(5):92-94.
    [11]贾亚洲.提高数控机床可靠性加快振兴装备制造业的关键[J].中国制造业信息化.2006(6):42-43.
    [12]Gupta Y P, Somers T M. Availability of CNC machines:multiple-input transfer-function modeling[J]. Reliability, IEEE Transactions on.2002,38(3):285-295.
    [13]柳志忠,郑中,尤小健.滨海电厂循环水系统可靠性设计与分析[J].机电设备.2010(6):7-11.
    [14]Jain M, Maheshwari S, Maheshwari R. Reliability Analysis of Redundant Repairable System with Degraded Failure[J]. INTERNATIONAL JOURNAL OF ENGINEERING.2004.
    [15]Schmauder H, Krischke J. Innovative development of a horizontal machining center:BLUESTAR 5[J]. ThyssenKrupp techforum.2004(JUL):52-55.
    [16]Xu X W, Newman S T. Making CNC machine tools more open, interoperable and intelligent--a review of the technologies[J]. Computers in Industry.2006,57(2):141-152.
    [17]Kim B S, Lee S H, Kim J S, et al. Reliability Assessment Approach Using Failure Mode Analysis in Machining Center[J]. Key Engineering Materials.2006,321:1535-1538.
    [18]鹿祥宾,李晓钢,林峰.复杂系统的可靠性分配和优化[J].北京航空航天大学学报.2004,30(6):565-568.
    [19]Karyagina M, Wong W, Vlacic L. Reliability aspect of CNC machines-are we ready for integration?[C]. IEEE,2002.
    [20]Xu X W, Newman S T. Making CNC machine tools more open, interoperable and intelligent--review of the technologies[J]. Computers in Industry.2006,57(2):141-152.
    [21]王志刚,戴柏林.可靠性技术的发展与应用[J].环境技术.2009,27(2):27-30.
    [22]盛志森.可靠性工程简史[J].电子产品可靠性与环境试验.2008,26(6):6-8.
    [23]Dai Y, Zhou Y, Jia Y. Distribution of time between failures of machining center based on type I censored data[J]. Reliability Engineering & System Safety.2003,79(3):377-379.
    [24]陈云雷.面向并行工程的数控车床可靠性研究[D].吉林大学,2004.
    [25]Liu X, Jia Y, Zhang R. Research on the control model and the automatically generation of CNC reliability intelligent network.[J]. Jixie Gongcheng Xuebao(Chinese Journal of Mechanical Engineering)(China).2003,39(9):114-117.
    [26]于捷,贾亚洲Applied research on reliable increase measures of CNC lathes[J]哈尔滨工业大学学报:英文版.2005,12(2):218-220.
    [27]张海波,贾亚洲,周广文Time between failures model and failure analysis of CNC system[J].哈尔滨工业大学学报:英文版.2007,14(2):197-201.
    [28]Yazhou J, Molin W, Zhixin J. Probability distribution of machining center failures[J]. Reliability Engineering & System Safety.1995,50(1):121-125.
    [29]张英芝,申桂香,贾亚洲,等.数控车床故障分布规律及可靠性[J].农业机械学报.2006,37(1):156-159.
    [30]Yazhou J, Zhixin J. Fatigue load and reliability design of machine-tool components[J]. International Journal of Fatigue.1993,15(1):47-52.
    [31]Jia Y, Shen G, Jia Z. A reliability approach to machine tool bearings[J]. Reliability Engineering and System Safety.1995,50(1):127-134.
    [32]申桂香,贾亚洲.CNC机床故障分析及其可靠性[J].中国机械工程.1996,7(6):67-69.
    [33]Yazhou J, Molin W, Zhixin J. Probability distribution of machining center failures[J]. Reliability Engineering & System Safety.1995,50(1):121-125.
    [34]申桂香,贾亚洲.CNC机床故障分析及其可靠性[J].中国机械工程.1996,7(6):67-69.
    [35]周广文.数控组合机床故障模型及可靠性管理研究[D].长春:吉林大学,2005.
    [36]张英芝.基于模糊与灰色理论的数控车床可靠性分析[D].长春:吉林大学,2005.
    [37]刘学军.数控装备可靠性智能网络信息系统研究[D].长春:吉林大学,2005.
    [38]张海波.数控系统可靠性设计与增长技术研究[D].吉林:长春大学,2005.
    [39]胡华平.柔性制造系统多任务可靠性建模与分析的研究[J].国防科技大学学报.1996,18(4):148-152.
    [40]王江萍.机械设备故障诊断技术及应用[M].西北工业大学出版社,2001.
    [41]王佑群,余剑峰.NC机床评价系统中机床稳定性模糊评价方法研究[J].机械科学与技术.1999,18(1):94-96.
    [42]王润孝,罗琦.数控机床故障诊断研究现状与未来发展[J].机械.1998,25(2):48-49.
    [43]敖长林,乔金友.威布尔过程场合下现场可靠性试验的统计分析[J].东北农业大学学报.2000,31(3):303-306.
    [44]肖俊.数控机床可靠性技术的分析与研究[D].上海交通大学,2007.
    [45]贾亚洲,杨兆军.数控机床可靠性国内外现状与技术发展策略[J].中国制造业信息化:学术版.2008(8):35-37.
    [46]张之敬.机电系统故障诊断知识描述与生成技术的探索[J].北京理工大学学报.1998,18(4):420-425.
    [47]金柏冬,周传珍.国产数控机床质量现状简析[J].质量与可靠性.2009(3):4-7.
    [48]许凤璋高金钟译盐见弘岛岗淳石山敬幸著.故障模式和影响与故障树分析[Z].机械工业出版社,1987.
    [49]王绍印.故障模式和影响分析(FMEA) [M]中山大学出版社,2003.
    [50]王齐林,陈静曦.地下工程可靠性分析面临的问题和发展趋势[J].中国水运(学术版).2006(6):96-97.
    [51]石荣德康锐FMECA技术及其应用[M].国防工业出版社,2006.
    [52]戴树森费鹤良王玲玲苏德清.可靠性试验及其统计分析[M].国防工业出版社,1984.
    [53]Nelson W. Analysis of accelerated life test data-Part I:The Arrhenius model and graphical methods[J]. Electrical Insulation, IEEE Transactions on.2007(4):165-181.
    [54]Nelosn W. Analysis of accelerated life test data-Part Ⅱ:Numerical methods and test planning[J]. Electrical Insulation, IEEE Transactions on.2007(1):36-55.
    [55]Nelson W. Analysis of Accelerated Life Test Data-Part Ⅲ:Product Comparisons and Checks on the Validity of the Model and Data[J]. Electrical Insulation, IEEE Transactions on.2007(2):99-119.
    [56]方开泰刘璋温戴树森.概率图纸浅说[M].科学出版社,1980.
    [57]David F N, Johnson N L. The probability integral transformation when parameters are estimated from the sample[J]. Biometrika.1948,35(1-2):182.
    [58]Lilliefors H W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown[J]. Journal of the American Statistical Association.1967,62(318):399-402.
    [59]Yun-Ming, Dong, Tan,等The Kolmogorov-Smirnov test for three redshift distributions of long gamma-ray bursts in the Swift Era[J]中国天文和天体物理学报:英文版.2009,46(1):95-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700