用户名: 密码: 验证码:
大直径圆柱壳结构动力响应及随机波浪力数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在港口及近海工程领域,插入式大直径圆柱壳结构是一种新型结构,目前正
    逐步得到应用。该结构通过深嵌于海床并依靠地基的嵌固作用,在环境荷载作用
    下保持稳定。目前对于插入式大直径圆柱壳结构在随机波作用下的动力响应分析
    以及振动下沉过程的动力响应分析一直是工程界悬而未决的课题,也是波浪——
    结构——海床相互作用数值仿真分析中极具挑战性的研究。
    作用于大直径圆柱壳结构上的随机波浪力分析是研究结构动力响应分析的
    前提和基础,本文基于微幅波势流理论首先推导出作用在大直径圆柱壳结构上波
    浪谱与波浪力谱之间的传递函数,并将随机波数值模拟的方法——线性叠加法引
    入到作用在大直径圆柱壳结构随机波浪力中,以 Jonswap 谱为靶谱,结合某实际
    工程实现了对大直径圆柱壳结构上随机波浪力的数值模拟。
    大直径圆柱壳结构的动力响应分析中,土体与结构相互作用的问题无疑是一
    项重要的研究内容。本文基于 ANSYS 软件,二次开发了接触面单元以模拟土与结
    构的相互作用。为考察耦合系统中接触面的效果,本文对比插入式大直径圆柱壳
    结构的模型试验,建立了结构-土体耦合系统的有限元计算模型,分析结果与试
    验测试结果吻合良好。
    结合某导堤工程,建立了大直径圆柱壳结构-海床耦合系统的振动下沉动力
    有限元计算模型,并用接触面单元模拟土与结构的动力相互作用,首次实现了大
    直径圆柱壳结构完全意义上的振动下沉动态数值模拟,分析结果与现场测试数据
    吻合良好,为今后此类结构的工程设计以及下沉工艺的改进提供了科学的依据。
    结合某导堤工程,分别建立了大直径圆柱壳结构-海床耦合系统的随机波动
    力和地震动力有限元计算模型,并对该结构在随机波浪力和地震荷载作用下的动
    力响应进行数值模拟,为今后港口工程中的此类结构在随机波和地震荷载作用下
    动力响应开辟了新的道路,分析结果表明在这两种工况荷载作用下结构设计是可
    靠的。
In the field of harbor and offshore engineering, the embedded large-diameter
    cylinder shell is a new-type structure and being brought into use gradually at present.
    This structure keeps its stability depending on the effect of fixty by deeply embedded
    into the seabed under the force of environmental loads. At the present time, the issue
    about dynamic response analysis on the deeply embedded large-diameter cylinder
    shell both under the random wave forces and in the process of vibration sinking is still
    unsettled in the field of engineering, and at the same time the issue is also a
    challenging study for the numerical simulation of the interaction between wave,
    structure and seabed.
     Studies on the structural dynamic response are based on the analysis of the
    random wave on the large-diameter cylinder shell. Based on the theory of
    microamplitude wave potential flow, this paper deduces the transfer function between
    the wave spectrum and the wave force spectrum which act on the large-diameter
    cylinder shell at first. For the first time, the method of random wave numerical
    simulation—linear superposition is introduced into the numerical simulation of the
    random wave forces acting on the large-diameter cylinder shell, and by using Jonswap
    spectrum as target spectrum, the numerical simulation is realized combining with
    some engineering.
     Undoubtedly, in the study on the dynamic response of the large-diameter
    cylinder shell, the research about the interaction between soil and structure is very
    important. On the base of the ANSYS software, this thesis analyses the interaction
    between soil and structure by second developing contact element. For reviewing the
    effects of the contact elements in the coupling system, a finite element model of
    soil-structure coupling system is established contrasting with the model experiment
    about the deeped large-diameter cylinder shell. The analysis results have good
    agreements with the test datas.
     Combining with some jetty project, a dynamic finite element model of the
    embedded large-diameter cylinder shell—seabed coupling system is established, and
    the contact element is introduced into this system, and the vibration sinking numerical
    simulation of this structure is realized for the first time. The analysis results are
    consistent to the spot test datas, and it gives science basises to this structure design
    and the technical adaptation on the dynamic sinking .
     Combining with some jetty project, this paper establishes a dynamic finite
    element model of the embedded large-diameter cylinder shell—seabed coupling
    system under the random wave forces and the earthquake loads and the dynamic
    numerical simulation is carried out. The anlysis reults showed that the structure
    design is safe and reliable under the two kinds of loads. This research gives a new
    way on the dynamic anyalsis on this kind of structure under the random wave forces
    and the earthquake loads.
引文
[1](苏)C.H.列瓦切夫,薄壳在水工建筑物中应用,人民出版社,1982.
    [2](苏)Г.Н.斯米尔诺夫等,吴德镇译,港口与港口建筑物,人民交通出版社,1984.
    [3] Mita A, W. Takanasha, Dynamic Soil-Structure Interaction Analysis by Hybrid
     Method.Proc.5th Int. Conf. on BEM,1983,pp785-794.
    [4] 陈虬、屈建平,结构—地基系统动态响应的有限元、边界元耦合分析,第一届全国计算
     岩土力学研讨会论文集(一),西南交通大学出版社,1987.
    [5] Sparkaya T. Isaacson M. Mechanics of Wave Forces on Offshore Structures, New York,
     1981.
    [6] M.Mohammadi,D.L.Karabalis,3-D Soil Structure Interaction Analysis by BEM: Comparison
     Studies and Computational Aspects. Soil Dyn. and Earth. Eng.Vol.9, 1990,pp96-108.
    [7] Yang Zhengwen ,Lu Wenda, Analysis of Dynamic Interaction Between Soil and Cooling
     Tower by Hybrid Method in Theory and Applications of Boundary Element Methods. Proc.
     of the 4th China-Japan Symposium on BEM, Edited by Du Qing Hua, Tanaka
     M,1991,pp443-452.
    [8] 赵耀南,岚山防波堤断面模型试验报告,天津大学水资源与港湾工程系.
    [9] 张子樵,圆筒防波堤立波波压力试验研究,天津大学学报,增刊,1991.
    [10] 邱大洪、贾影,直立圆柱墙上波浪力的计算,大连理工大学土木系,1985.
    [11] 周旭,连续式大直径圆柱薄壳结构的波力数值模型,天津大学硕士论文,1997.
    [12] 黄燕,大直径圆柱薄壳结构系统的 BEM—FEM 耦合分析与程序设计,天津大学硕士论文,
     1994.
    [13] 王晖,圆柱形薄壳与多介质体耦合效应的等效有限单元法分析,天津大学硕士论文,
     1994.
    [14] 周锡礽、王晖、韩桂军,大直径薄壳圆筒结构的设计与计算,港工技术,1995,No.2。
    [15] 周锡礽、王晖、韩桂军,大直径薄壳圆筒结构的设计与计算(续),港工技术,1995,
     No.3.
    [16] 周锡礽、孙克俐、程庆阳、戴家禄,大圆柱壳结构系统的力学机理与数值分析,天津
     大学学报,1996 增刊.
    [17] 潘厚志,,天津大学博士论文,2000.
    [18] 钱荣,波浪作用下深埋式大直径圆柱壳圆筒结构工作机理分析与实验研究,天津大学
     硕士论文,2001.
    [19] 张伟,滩海桶形基础三位弹塑性数值分析与模型试验研究,天津大学博士论文,2002.
    [20] 陈南松、刘雅清、苑耕浩,钢筋混凝土大圆筒下沉工艺,港口工程,Vol.87, No.2, 1997,
     pp38-43.
    [21] Ducan, J. M., and Chang, C. Y. ,1970. “ Nonlinear analysis of stress and strain in soils.” J.
     Soil Mech. and Found. Div., ASCE, 96(5), pp1629—1653;
    [22] Kondner, R. L., 1963. “Hyperbolic stress-strain response: Cohesive soils.” J. Soil Mech. and
     Found. Div., ASCE, 89(1), pp115—143;
    [23] Kulhawy, F. H., and Ducan, J. M., 1972. “Stresses and movements in Oroville dam.” J. Soil
     Mech. and Found. Div., ASCE, 98(7), pp653—665;
    [24] Corotis, R. B., Hassan, M., and Krizek, R. J., 1974. “Nonlinear stress-strain formulation for
     soils.” J. of Geotechnical Engineering, ASCE, Vol.100, No.9, pp993—1008;
    [25] Yudhbir, Varadarajan, A., and Mathur, S.K., 1975. “Evaluation of stress-strain modulus of
     saturated clay.” J. of Geotechnical Engineering, ASCE, Vol.101, No.3, pp993—1008;
    
    
    参考文献
    [26] Schultze, E., and Teusen, G., 1979. “A common stress-strain relationship for soils.” Proc. Of
     9th ICSMFE, 1/57, Vol.1, pp277—280;
    [27] Eisenstern, Z., and Law, S. T. C., “The role of constitutive laws in analysis of
     embankments.” 第四届全国土力学与基础工程会议,成都科技大学译;
    [28] 刘祖德,陆士强,杨天林等,应力路径对填土应力应变关系的影响及其应用,岩土工
     程学报,1982, Vol.4,No.4.
    [29] 王奎华,谢康和,曾国熙,有限长桩受迫振动问题解析解及其应用,岩土工程学报,
     Vol. 19,No. 6,1997
    [30] 韩英才,M. Novak,水平荷载作用下单桩的动力分析,地震工程与工程振动,Vol. 9,
     No. 2,1989.
    [31] 赵振东,傅铁铭,土岐宪三,桩头侧向集中荷载作用下桩土系数的非线行动力性能分
     析,地震工程与工程振动,Vol. 17,No. 3,1997.
    [32] Roscoe, R.H., and Poorooshasb, H.B., 1963. “A theoretical and experimental study of strains
     in triaxial tests on normally consolidated clays.” Geotechnique, London, England, Vol.13,
     pp12 —38;
    [33] Roscoe, R.H., and Burland, J.B., 1965. “On the generalized stress-strain behavior of ‘wet
     clay’, Engineering Plasticity, ed. Heyman J. and Leckie F.A., . Cambridge University
     Press, Cambridge, England;
    [34] 魏汝龙,正常密压粘土的塑性势,水利学报,No.6,1964;
    [35] 魏汝龙,正常密压粘土的本构定律,岩土工程学报,Vol.3,No.3,1981;
    [36] Goodman, R. E., Taylor, R. L., and Brekke, T. L. (1968). “ A model for the mechanics of
     jointed rock.” J. Soil Mech. and Found. Div., ASCE, 94(3), pp637-659;
    [37] Goodman, R. E. and John, St. (1977). “Finite element analysis for discontinuous rocks.”
     Numerical Methods in Geotech. Eng., 1977: pp148—175;
    [38] Clough, G. W. and Duncan, J. M. (1971). “Finite element analysis of retaining wall
     behavior.” J. Soil Mech. and Found. Div., ASCE, 97(12), pp1657—1674;
    [39] Desai, C. S. and Zaman, M. M. (1884). “Thin layer element for interface and joints.” Int. J.
     Numerical and Analytical Methods in Geomechanics, 8(1), pp19—43;
    [40] Desai, C. S., et. al. (1988). “Modeling for cyclic normal and shear behavior of interfaces.” J.
     Engrg. Mech., ASCE,Vol.114, No.7, pp1198—1217;
    [41] Zienkiewicz, O. C., et al. (1970). “ Analysis of nonlinear problems in rock mechanics with
     particular reference to jointed rock systems.” 2nd Int. Cong. on Rock Mech., Belgrade,
     Yugoslavia;
    [42] Herrmann, L R. (1978). “Finite element analysis of contact problems.” J. Engrg. Mech.,
     ASCE, Vol.(104), EM5, pp1043—1057;
    [43] 殷宗泽,朱泓,许国华,土与结构材料接触面的变形及数学模拟,岩土工程学报,Vol.16,
     No.3,1994;
    [44] 张冬霁,卢廷浩,一种土与结构接触面模型的建立及应用,岩土工程学报,Vol.20,
     No.6,1998;
    [45] 陈慧远,摩擦接触面单元及其分析方法,水利学报,Vol.4, 1985;
    [46] Zienkiewicz, O C. Humpheson, C.and Lewis, R W.(1975)“Associated and
     non-associated visco-plasticity and plasticity in soil mechanics.”
     Geotechnique, Vol.25, No.4;
    [47] 黄新生,海滩油田建设中桶形基础的开发和应用,中国海洋平台,11 卷 5 期,1996;
    
    
    参考文献
    [48] 孟昭英,龚佩华等,单立柱桶基平台整体结构静、动力分析,海岸工程,Vol.1,1999;
    [49] 叶国良,高潮等,大直径钢筋混凝土圆筒振沉试验结果分析,港工技术,160 期,2004.3
    [50] K.J 巴特, E.L.威尔逊,有限元分析中的数值方法,科学出版社,1985
    [51] (日)伯野元彦,土木工程振动手册,中国铁道出版社,1992
    [52] 段旭东,弹性结构体系的多子域边界单元法及其与有限单元法的耦合分析,天津大学
     硕士论文,1991。
    [53] 孙克俐,插入式圆柱壳墩式结构与土体间的耦合分析,天津大学博士论文,1999。
    [54] 中国海洋功能区划报告,国家海洋局,1993
    [55] 张树枫,简论琅琊台旅游资源的保护与开发,海岸工程,1999(2)
    [56] 陈建年,广东海港发展研究,海洋开发与管理,1995(1)
    [57] 薛鸿超等,海岸动力学,北京,人民交通出版社,1980
    [58] 陈士荫等,海岸动力学,北京,人民交通出版社,1988
    [59] 岩垣雄一,椹木亨共,海岸工学,日本东京都,共立出版株式会社,1979
    [60] 文圣常,余宙文,海浪理论与计算原理,北京,科学出版社,1984
    [61] 钱家欢,殷宗泽,《土工原理与计算》(第二版),中国水利水电出版社,1996
    [62] Dean. R.G., “Stream Function Representation of Nonlinear Ocean Waves.” Journal of
     Geophysical Research, 1965, Vol.70, Sept. pp4561-4572
    [63] McCormich, M E, Ocean Engineering Wave Mechanics,1972.
    [64] R. Silvester:Coastal Engineering, 1974
    [65] 竺艳蓉,海岸工程波浪力学,天津大学出版社,1991
    [66] Dean. R.G., “Stream function Wave Theory;Validity and Applications.” Proc.ASCE
     Speciality Conference on Coastal Engineering, 1965. Chapter 12, pp269-300.
    [67] Chakrabarti, S. K.,1987, “Wave Forces on an Open-Bottom Submersible Drilling Structure.”
     9:2-6 Appl. Ocean Res.
    [68] Craik, A.D.D., “Wave Interactions and Fluid Flows.” 1985, Cambridge University Press.
     [69] Dean. R.G.. “Relative Validities of Water Wave Theories.” ASCE, Journal of
    Waterways, Harbors and Coastal Engineering, 1970, 96(1), pp105-119
    [70] Dalrymple, R.A.,“A Finite Amplitude Wave on a Linear Shear Current.” Journal of
     Geophysical Research 1974 Vol.79, No.30 Oct.pp4498-4504
    [71] Dalrymple, R.A.,“A Finite Amplitude Wave on a Bilinear Shear Current.”Proc, Fourteenth
     Conference on Coastal Engineering, 1974, Chapter.36, pp626-641
    [72] Mei, C.C., Handbook of Coastal and Ocean Engineering, 1990, Vol.1, Ch.1, Ed. By J.B.
     Herbich.
    [73] Dean. R.G., Handbook of Coastal and Ocean Engineering, 1990, Vol.1, Ch.2, Ed. By J.B.
     Herbich.
    [74] Dean. R.G., and, LeMehaute, B.,“Experimental Validity of Water Wave Theories.”Paper
     Presented at the 1970 ASCE Structure Engineering Conference, Portland, Oregon, April 8.
    [75] Stokes, G.G., “On the Theory of Oscillatory Waves.” Transactions, Cambridge
     Philosophical Society, 1874, Vol.88, pp441-455.
    [76] Mei, C.C., Liu, P.L-F., and, Carter, T.G., Mass Transport in Water Waves. Ralph M. Parsons
     Laboratory, Massachusetts Institute of Technology, 1972 Report No.146.
    [77] Dore, B.D.,“The Mass Transport Velocity Due to Interacting Wave Trains,”Mechanics,
     1974, Vol.9, pp172-178
    [78] Hsu, J.R.C, Handbook of Coastal and Ocean Engineering, 1990, Vol.1, Ch.2, Ed. By J.B.
    
    
    参考文献
     Herbich.
    [79] Fuchs, R.A., “On the Theory of Short-Crested Oscillatory Waves,”Gravity Wzves, U.S.
     National Bureau Standards, Circular 521, 1952, pp.187-200
    [80] 吴世明,土动力学,中国建筑工业出版社,2000.
    [81] Das B M.土动力学原理.吴世明,顾尧章译.杭州:浙江大学出版社,1984
    [82] 林皋.土—结构动力相互作用.世界地震工程,1991,(1):4—21
    [83] 谢定义.土动力学.西安:西安交通大学出版社,1988
     [84] Reissner E, Sagoci H F. Forced torisonal oscillations of an elastic
    half-space. J Appl.Physics,1944,15:652-662
    [85] 谢定义.动荷载下土的强度特性.水利学报,1987,(12)
    [86] 吴世明,徐攸在.土动力学现状与发展.岩土程学报,1998,20(3):125-131
    [87] Mroz Z.On the deseription of anisotropic work hardening. J Mech Physics Solids,
     1967,15:612
    [88] Mroz Z, Norris V A, Zienkiewicz O C. An anisotropie hardening model for soils
     and its application to cyclic loading. Iht J Numer Analyt Methods Geomech, 1978,
     2:203-221
    [89] Iwan W D.On a chssof models foxthc yielding behaviour and composite systems. Mech.
     ASME, 1967,34:612.
    [90] Prevost J H. Mathematical modelling of monotonic and cyclic undrained clay behaviour. Int
     J Numer Analyt Methods Geomech, 1977, 1, 195-216
    [91] Parmelee RA. Building-foundation interaction effects.J Engng Mech Div,ASCE,1967,
     93(SM2).
    [92] Dafalias Y F, Popov E P. A rondel of nonlinearly hardening materials for complex loadings.
     Acta Mechanica, 1975, 21:173-192
    [93] KriegRD. Apractical two-surface plasticity theory. JApplMech, ASME, 1975, 42:641-646
    [94] Dafalias YF, HermannLR. Boundingsufface formulation of soil plasticity. In: PandeGN,
     Zienkiewicz O C eds. Soil Mechanics-Transient and cyclic loads, New York: Wiley, 1982.
     253-282
    [95] Zienkiewicz O C, Mroz Z. Generalized plasticity formulation and applications to
     geomechanics. In: Desai C S, Gallapher R H eds. Mechanics of Engineering Materials.
     Wiley, 1984. 665-679
    [96] Matsuoka H, Sakakibara K. A constitutive model for sands and clays evaluating principal
     stress rotafon. Soils and Foundations, 1987, 27:73-88
    [97] Aubry D et al. A double memory model with multiple mechanisms for cyclic soil behaviour.
     In: Int Syrupon Numerical Models in Geomech, Zurich, 1982
    [98] Wolf J P 著.吴世明等译.土—结构动力相互作用.北京:地震出版社,1989
    [99] 孙孚,丁平兴.海浪能量的外观分布.中国科学(B 辑),1994,24(2);209—215
    [100] 孙孚,海浪周期与波高的联合分布,海洋学报,1988,10(1).
    [101] 丁平兴,风浪统计性质的实验研究,海洋学报,1995,17(6).
    [102] 中华人民共和国交通部,海港水文规范(JTJ 213-98),北京:人民交通出版社,1998
    [103] 郭金栎,海岸工程,中国土木水利工程学会
    [104] J.R. Morison, M.P.O. Brten, J.W. Johnson, and S.A. Schaff, The Force Exerted by Surface
     Wave on Piles, Petroleum Transaction, AIME, Vol.129,1950
    [105] R.C. Maccamy, and R.A, Fuchs, Wave Forces on PilesADiffraction Theory, Beach Erosion
    
    
    参考文献
     Board Technical Memorandum, N69,1954
    [106] C.J.Garrison, and Rao, V. Sectharama, Interaction of Waves with Submerged Objects,
     Journal of the Waterways, Harbous and Coastal Engineering Divison, ASCE, v.97,
     N.WW2,1977, PP259-277
    [107] Chakravarti, K. Subrata, Wave Forces on Submerged Objects of Symmetry, Journal of
     Waterways, Harbous and Coastal Engineering Divison, Forc, ASCE, May, 1973
    [108] L.E. Borgman, Spectral analysis of Ocean Wave Forces on Piling, Journal of the Waterways,
     Harbors and Coastal Engineering Division, 93(WWZ), 1967, pp129-156
    [109] R.L. Wiegel, K.E. Beede and J.Moon, Ocean Wave Forces on Circular Cylinder Piles,
     Journal of Hydroulics Division, 83(HYZ), 1957,Proc, Paper 1199
    [110] 严恺,梁其荀,海岸工程,北京:海洋出版社, 2002.2.
    [111] 中国海岸带水文编写组,中国海岸带水温,北京:海洋出版社,1995.
    [112] Neumann G. On wind generated ocean waves with special reference to the problem of
     wave forecasting. N.Y.U., Coll of Eng., Res. Div., Dept. of Mector. and Oceanography.,
     1952:136.
    [113] Garratt J R. Review of dray coefficient over oceans and continents, Monthly Weather
     Review, 1977, 105(7): 915--929
    [114] Hasselmann K et al. Measurements of wind wave growth and swell decay during the Joint
     Sea Wave Project(JONSWAP). Erganzungsheft Zeit. Deut. Hydr. Zeit. , 1973, (12):95
    [115] Hasselmann D E, et al. Directional wave spectra observed during JONSWAP 1973. J. Phy.
     Oceanographty., 1980,10(8):1264-1280
    [116] Neumann G. On ocean wave spectra and a new method of forecasting wind-generated sea.
     Beach Erosion Board. U.S. Army Corps. of Engineers, Tech. Mem. , 1953, (43):42
    [117] Bouws E, Gunther H, Rosenthal W. Similarity of the wind spectrum in finite depth water.
     Part 1: Spectral form. J. Geophys. Res., 1985, 90(C1):975-986.
    [118] Huang N E et al. An unified two-parameter wave spectral model for a general sea state. J.
     Fluid Mech. 1981,112:203-224
    [119] Huang N E et al. A study on the spectral models for waves in finite water depth. J.Geophys.
     Res., 1983, 88(c14): 9579-9587
    [120] Goda Y. A comporative review on the functional forms of directional wave spectrum.
     Coastal Eng.J., 41(1):1-20
    [121] 黄祥鹿,鹿鑫森,海洋工程流体力学及结构动力响应,上海交通大学出版社,1992.
    [122] 邱大洪,波浪理论及其在工程中的应用,高等教育出版社,1985.
    [123] R.柯朗,D.希尔伯特著,钱敏,郭敦仁译,数学物理方法卷,I,科学出版社,1981.
    [124] R.柯朗,D.希尔伯特著,熊振翔,杨应辰译,数学物理方法卷,II,科学出版社,1981.
    [125] 杨秀雯,梁立华,数学物理方程与特殊函数,天大出版社,1985
    [126] 熊洪允,曾绍标,毛云英,应用数学基础,下册,天津大学出版社,1998.
    [127] Wen S C et al. Theoretical wind wave frequency spectra in deep water-I. Form of spectrum.
     Acta Oceanologica Sinica, 1988a, 7(1):1-16.
    [128] Wen S C et al. Theoretical wind wave frequency spectra in shallow water. Acta
     Oceanologica Sinica, 1988b, 7(3):325-343.
    [129] Wen S C et al. Parameter in wind-wave frequency spectra and their hearings on spectrum
     forms and growth. Acta Oceanologica Sinica, 1989, 8:15-39.
    [130] Wen S C et al. Improved form of wind-wave frequency spectrum. Acta Oceanologica
     Sinica, 1989, 8:131-147.
    
    
    参考文献
    [131] Wen S C et al. Analytical derived wind-wave directional spectrum, Part I. Derivation of the
     spectrum, Journal of Oceanography, 1993, 49:131-147.
    [132] Wen S C et al. Form of deep-water wind-wave frequency spectrum (I) – derivation of
     spectrum, Progress in Natural Science, 1994a, 4(4):407—427.
    [133] Wen S C et al. Form of deep-water wind-wave frequency spectrum (II) - comparison with
     existing spectra and observations. Progress in Natural Science, 1994b, 4(5):586-596.
    [134] Longuet-Higgins M S. The statistical analysis of random moving surface. Phil. Trans. Roy.
     Soc., 1957.
    [135] Pierson W J. An interpretation of the observable properties of sea waves in terms of the
     Energy of the Gaussian record. Trans. Am. Geophys. Un., 1954,35(5): 747-757.
    [136] Rice S O. Mathematical analysis of random nosise. Bell System Techn. J., 1945, 24:46-156.
    [137] Longuet-Higgins M S. The effect of nonlinearities on the statistical distributions in the
     theory of sea waves. J. Fluid Mech., 1963,17(3): 459-480.
    [138] Melville W K. Wave modulation and breakdown. J. Fluid Mech., 1983,128:489-506.
    [139] Tayfun M A. Narrow-band nonlinear sea waves. J. Geophys. Res, 1980,85 (C3):
    [140] 俞聿修,随机波浪及其工程应用,大连理工大学出版社,2000.
    [141] 钱荣、周锡礽,桶形基础平台三维有限元稳定性分析.海洋技术,2003.4
    [142] 钱荣、周锡礽,基于多元线性回归函数的波浪荷载实验研究.海洋技术,2004.1
    [143] 周锡礽、钱荣,波浪荷载作用下深插式大直径圆柱壳结构的解析解及实验研究,天津
     大学学报,2004.4.
    [144] 钱荣、周锡礽,作用于圆柱壳结构上的波浪力的多元线性回归分析,港工技术,2001.3
    [145] Zhou Xireng,Qian Rong,The Working Mechanism and an Analytic Method of the Deep
     Embedded Large Cylinder Structure under the Wave Load. China Ocean Engineering.
    [146] Cartwright D E, Longuet-Higgins M S. The statistical distribution of the maxima of a
     random function. Proc. Roy. Soc. London, 1956, 237(1209):212—232.
    [147] Longuet-Higgins M S. On the joint distribution of the periods and amplitudes of sea waves.
     J. Geophys. Res., 1975, 80(18):2688--2694
    [148] Goda Y. Numerical experiments on wave statistics with spectral simulation. Rept. Port and
     Harbour Res. Inst., 1970, 9(3): 3--57
    [149] 侯一筠,非线性海浪波面与波高的统计分布.海洋与湖沼,1990,21(5):425—432
    [150] 管长龙,波面极大值处水质点水平速度的统计分布.青岛海洋大学学报,1998,28(1):1-5
    [151] 郭佩芳,JONSWAP谱的几个参量的研究.海洋与湖沼.1992,23(4):350—353
    [152] Papoulis A. The Fourier Integral and Its Applications. McGraw-Hill, Inc, 1962
    [153] Phillips O M. The Dynamics of the Upper Ocean. 2nd edition. Syndics of the Cambridge
     Univ. Press, 1977
    [154] Bretschneider C L. Wave variability and wave spectra for wind-generated gravitywaves. U.
     S. Army Corps of Engineers, Beach Erosion Board, Tech. Mem., 1959,113:192
    [155] Mioscowitz L. Estimates of the power spectrum for fully developed seas for windspeeds of
     20 to 40 knots. J. Geophys. Res., 1964,69(24):5161-5179
    [156] Pierson W. J, Moscowitz L. A proposed spectral form for fully developed wind seasbased
     on the similarity theory of S. A. kitaigorodsrii. J. Geophys. Res., 1964, 69(24): 5181--5190
    [157] Snyder R L. A field study of wave induced pressure fluctuation above surface gravitywaves.
     J. Mar. Res., 1974, 32(3): 497--531
    [158] Mitusyasu H et al. Observations of the power spectrum of ocean waves using a clo-verleaf
     buoy. J. Phys. Oceanogr. , 1980,10(2):286-296
    
    
    参考文献
    [159] Goda. A comporative review on the functional forms of directional wave spectrum.
     Coastal Eng. J. 1999, 41(1):1~20
    [160] 工程水文学(下册,海港水文),人民交通出版社,1982
    [161] 夏运强,陈兆林,圆筒形水工建筑物波浪荷载的试验研究,海洋工程,2002.8
    [162] 孔宪雷等,在墩柱群周围波浪变形的数值模拟,水运工程,2002.11
    [163] 张务德,作用在墩柱平台结构上的波浪力,科技通报,2001.7
    [164] 欧进萍,王光远,结构随机振动,高等教育出版社,1998
    [165] 现代数学手册,武汉,华中科技大学出版社,2000
    [166] Z. X. Lei, Y. K. Cheung & L. G. Tham. Vertical response of single piles: transient analysis
     by time-do-main BEM. Soil Dynamic and Earthquake Engineering, No. 12, 37~49, 1993.
    [167] Peck, R. B. and Terzaghi, K. (1983). “1883—1963”, Geotechnique, Vol.33, No.3, pp349;
    [168] 大圆筒结构稳定性验算,中国科学院力学研究所,2002.9
    [169] Goda. A comporative review on the functional forms of directional wave spectrum.
     Coastal Eng. J. 1999, 41(1):1~20
    [170] 陈云敏,桩基动力学及其工程应用,浙江大学岩土工程研究所
    [171] Zhong Z H. Finite Element Procedures for Contact Impact Problems. Oxford: Oxford
     University Press, 1993
    [172] Wriggers P. Finite element algorithms for contact problems. Archive of Computational
     Methods in Engineering, 1995, 2(4): 1-49
    [173] Herz H. über die Berührung fester elastischer K?per. Journal für die reine und angewandte
     Mathematik, 1882, 92: 156-171
    [174] Goldsmith W. Impact – the Theory and Physical Behaviour of Colliding Solids. London:
     Edward Arnold Publ, 1960.
    [175] Gladwell G M L. Contact problems in the Classical Theory of Elasticity. Alphen ann den
     Rijn: Sijthoff & Noordhoff, 1980
    [176] Johnson K L. Contact Mechanics. New York: Cambridge University Press, 1985
    [177] Curnier A , Alart P. A generalized Newton method for contact problems with friction.
     Journal of Theoretical and Applied Mechanics, 1988, 7(1):67-82
    [178] Giannakopoulos A E. The return mapping method for the integration of friction constitutive
     relations. Computer & Structure, 1989, 32(1):157-167
    [179] Oden J T , Martins J A C. Models and computational methods for dynamic friction
     phenomena. Computer Methods in Applied Mechanics and Engineering, 1986, 52: 527-634
    [180] Zhong Z H, Mackerle J. Static contact problems – a review. Engineering Computations,
     1992, 9: 3-37
    [181] 关于重力式于海上水工建筑物钢筋混凝土薄壳断面计算的建议,前苏联交通建设部,
     1985
    [182] M.G.哈勒姆等,海洋建筑物动力学,海洋出版社,山西,1981.6
    [183] 大连理工大学,大圆筒结构波浪力测试断面模型是研究报告,1999.7
    [184] 杨海元,张敬宇等,《固体力学的数值方法》,天津大学出版社,1991;
    [185] I. M. 伊德里斯等著,谢君斐等译,《地震工程和土动力问题译文集》,地震出版社,
     1985;
    [186] 殷学钢,陈淮等,结构振动分析的子结构方法,中国铁道出版社,北京,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700