用户名: 密码: 验证码:
增强体准连续网状分布钛基复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以提高钛基复合材料室温塑性和高温强度为目标,设计出一种增强体呈准连续网状分布的钛基复合材料,并利用原位反应自生技术结合粉末冶金的方法,采用机械混粉加热压烧结技术,基于大尺寸钛合金粉与细小TiB2粉成功制备出增强体准连续网状分布的TiB晶须增强钛基复合材料(TiBw/Ti)。网状分布的增强相有效地提高了增强体的增强效果及基体的韧化效果,因此复合材料表现出优异的室温及高温综合力学性能。采用扫描电镜(SEM)对复合材料中增强体准连续网状分布结构特征、增强体形态与分布、基体组织及裂纹扩展行为进行了研究。采用室温拉伸、室温压缩、超声共振技术及高温拉伸方法对不同状态复合材料强度、塑性、弹性模量、泊松比及高温性能进行了测试及评价,分析了增强体网状分布复合材料的增强机制;并研究了后续热挤压、热轧制、热处理等强化手段对其组织与性能的影响。
     采用相同的原料及烧结工艺、不同的球磨工艺,成功制备出了增强体分别呈均匀分布与准连续网状分布的TiBw/Ti复合材料。室温拉伸性能测试表明,增强体呈准连续网状分布较增强体呈均匀分布的烧结态TiBw/Ti复合材料显示出了更优异的强度及塑性。增强体体积分数为8.5%的TiBw/Ti复合材料抗拉强度较纯Ti提高了71%,室温延伸率保持到11.5%。
     采用相同工艺制备了系列不同增强体含量的准连续网状结构TiBw/TC4(200μm)复合材料,优化了网状结构参数(网的尺寸及网中局部增强相含量)。其中网的尺寸取决于原始基体颗粒尺寸;网中局部增强相含量取决于原始基体颗粒尺寸和复合材料平均增强相含量。室温拉伸性能及SEM组织分析表明,由于特殊的网状结构,存在最佳的增强体含量及基体颗粒尺寸。其中对于直径为200μm的TC4原始基体颗粒,当复合材料平均增强相含量为5vol.%时,得到最佳的网状结构和综合性能。在网状结构中,除了观察到大量的棒状晶须,还发现了树枝状、自焊接、机械锁、爪子状等分叉晶须,进一步增加了增强相晶须的增强效果和裂纹阻碍作用。在复合材料冷却过程中,由于β→α相变的体积收缩受到网状结构的限制,促进了网内等轴α相的形成,提高了基体塑性。
     原始颗粒尺寸和复合材料平均增强相含量对复合材料拉伸性能有很大影响。当原始颗粒尺寸一定时,随平均增强相含量的提高,复合材料的强度提高,塑性下降;当平均增强相含量一定时,随原始颗粒尺寸的增加,复合材料的强度提高,塑性下降。当原始TC4颗粒尺寸为110μm,复合材料平均增强相含量为8.5vol.%时,烧结态TiBw/TC4复合材料抗拉强度与延伸率分别达到1288MPa和2.6%;当原始TC4颗粒尺寸为200μm,复合材料平均增强相含量为3.5vol.%时,TiBw/TC4复合材料抗拉强度与延伸率分别达到1035MPa和6.5%。网状结构的高效承载能力和梯度界面导致高的界面结合强度是复合材料强化的主要原因;网内基体合金塑性的充分发挥和网中晶须对裂纹的阻碍作用是复合材料塑性提高的主要原因。
     断裂研究表明,在复合材料整体断裂之前,网中部分晶须发生折断,并伴随着微裂纹的产生,裂纹在网中扩展过程中受到晶须阻碍作用,裂纹发生分叉,提高了断裂消耗的能量,改善了复合材料的强韧性。
     由于网状结构中,局部增强相含量较高,使网状结构具有较高的高温承载能力,同时网中晶须的梯度分布使网与基体的界面结合强度提高,形成高温“晶界强化”效应,导致网状结构TiBw/TC4复合材料表现出更高的高温强度。高温拉伸性能测试表明,以相同的拉伸强度为判据,网状结构TiBw/TC4复合材料的使用温度比TC4合金可以提高150~200℃。
     热变形和热处理可以进一步改善复合材料的力学性能。热挤压变形导致基体形变及热处理强化、晶须定向排列和局部增强相含量降低,有效地提高了复合材料的强度和塑性。热处理强化了基体合金,提高了复合材料的强度,但降低了塑性。烧结态TiBw/TC4复合材料经强化热处理后最高抗拉强度可以达到1423MPa。
The aim of the present work is to increase the room temperature ductility and high temperature strength of titanium matrxi composites (TMCs). TiB whiskers (TiBw) reinforced titanium matrix (TiBw/Ti) composites with a novel quasi-continuous network reinforcement distribution were designed and successfully fabricated by in situ technique, powder metallurgy (PM) method and mechanical blending and hot-press sintering process based on the system of large and spherical Ti powders and fine TiB2 powders. The prepared composites exhibit a superior combination of mechanical properties: high strength at room and high temperatures due to the strenghening effect of reinforcement and high tougheness by tailoring the novel network reinforcement distribution. The characteristic of the reinforcement quasi-continuous network structures, morphology and distribution, the matrix microstructure and the crack propagation behavior are studied by a scanning electron microscopy (SEM). To evaluate the strength, ductility, elastic modulus, possion’s ratio and high temperature properties of TMCs with different treated conditions, tensile and compressive testing, elastic modulus testing at room temperature and tensile testing at high temperatures are carried out. And then, the strengthening mechanism of the network distributed reinforcement is analyzed. The effects of subsequent hot-extrusion, hot-rolling and heat treatment on the microstructure and mechanical properties of TMCs with a network reinforcement distribution are also studied in the present work.
     Using the same raw materials and sintering parameters but different ball milling parameters, TiBw/Ti composites with different reinforcement distributions (homogeneous and quasi-continuous network) have been successfully fabricated. The results of tensile testing and SEM microstructure analysis show that TiBw/Ti composites with a quasi-continuous network reinforcement distribution exhibit much superior strength and ductility over those with a homogeneous reinforcement distribution. For the 8.5vol.%TiBw/Ti composite with a network microstructure, the elongation is 11.5%, and the ultimate tensile strength increases by 71% compared with that of pure Ti fabricated by the identical process.
     A range of TiBw/TC4(200μm) composites with different volume fractions of reinforcement have been fabricated by the same process and parameters, and the network parameters are optimized by comparison. The network structure parameters mean the network size and the local reinforcement fraction. The network size is related to the matrix particle size of raw materials while the local reinforcement fraction to the matrix particle size and the average reinforcement fraction of the composite. The results of tensile testing and SEM microstructure analysis show that the optimal size of matrix particle and volume fraction of reinforcement must be considered due to the special quasi-continuous network microstructure. The optimal combination of properties of the composite with a network microstructure can be obtained by coordinating 5vol.% of the average reinforcement fraction and 200μm of the matrix particle size. TiB whiskers with multi-branching, self-joining, mechanical locking and claw-like shapes are observed besides the rod-like whisker. These unexpected pretty structures of whiskers are believed to be beneficial to the mechanical properties of TiBw/TC4 composites with a network microstructure by increasing the strengthening effect of reinforcement and the blocking effect to crack propagation. In the matrix of the prepared composite with a network structure, equiaxedαmicrostructure instead of the widmanst?tten microstructure is formed because the equiaxed network structure effectively constrains the shrinkage of matrix during the cooling process of the sintered composites, which improves the ductility of matrix.
     The tensile properties are obviously affected by the matrix particle size and the average reinforcement fraction. For the same matrix particle size of different composites with a network microstructure, the strength of the composites increases but the ductility decreases with increasing the average reinforcement fraction. For the same average reinforcement fraction, the strength of the composites increases but the ductility decreases with increasing the matrix particle size. When 110μm of the matrix particle size coordinates with 8.5vol.% of the average reinforcement fraction, the ultimate strength and elongation of the as-sintered TiBw/TC4 composite with a network microstructure reach to 1288MPa and 2.6%, respectively. When 200μm of the matrix particle size coordinates with 3.5vol.% of the average reinforcement fraction, the ultimate strength and elongation of the composite reach to 1035MPa and 6.5%, respectively. The main reasons for the superior strength of the composites with a quasi-continuous network microstructure are that the network structure can effectively bear load and the the interface bonding strength can be effectively increased by the gradient distribution of TiB whiskers in the network structure. The main reasons for the superior ductility are that the ductility of matrix can be effectively exploited since crack propagation is effectively blocked by the TiB whiskers in the network structure.
     The analysis of fractographs and crack propagation path show that partial TiB whisker breaks in the network structure, which leads to the generation of micro-crack before the overall fracture of the composite. The toughness of the composite is improved due to the increasing fracture energy by crack branching generated by the effective blocking effect of TiB whiskers in the network structure.
     The superior ability of the network structure to bear load due to the much higher local reinforcement fraction in the network structure, and the superior interface bonding strength due to the gradient distribution of TiB whiskers can achieve the“intercrystalline strengthening effect”at high temperatures, which makes TiBw/TC4 composites with a network microstructure exhibit superior mechanical properties at high temperatures. The tensile tests at high temperature show that on the basis of the judgment criteria of the same tensile strength, the service temperature can be increased by an increment of 150~200oC compared with that of the monolithic TC4 alloy.
     The mechanical properties of TiBw/TC4 composites with a quasi-continuous network microstructure can be further improved by subsequent hot deformation and heat treament. The strength and the ductility of the composite can be effectively increased by hot extrusion which leads to working hardening and heat treatment strengthening effect of matrix, orientation arrangement of TiB whisker along the extrusion direction and decrease of reinforcement local fraction. The strength of the composite can be effectively increased but the ductility is decreased by heat treatment which mainly leads to heat treatment strengthening effect of matrix. The ultimate tensile strength of the as-sintered TiBw/TC4 composite can be increased to 1423MPa by heat treatment.
引文
1 S. C. Tjong, Z. Y. Ma. Microstructural and Mechanical Characteristics of In-Situ Metal Matrix Composites. Materials Science and Engineering: R. 2000, 29: 49~113
    2益小苏,杜善义,张立同.复合材料手册.化学工业出版社. 2009 : 1~10
    3毛小南.颗粒增强钛基复合材料在汽车工业上的应用.钛工业进展. 2000, 2: 5~12
    4耿林,倪丁瑞,郑镇洙.原位自生非连续增强钛基复合材料的研究现状与展望.复合材料学报. 2006, 23(1): 1~11
    5 K. Morsi, V. V. Patel. Processing and Properties of Titanium–Titanium Boride (TiBw) Matrix Composites-A Review. Journal of Materials Science. 2007, 42(6): 2037~2047
    6倪丁瑞.反应热压(TiB+TiC)/Ti复合材料的制备及力学性能研究.哈尔滨工业大学博士学位论文. 2007: 1~3
    7冯海波. SPS原位TiB增强Ti基复合材料的组织结构与TiB生长机制.哈尔滨工业大学博士学位论文. 2005: 1~5
    8吕维洁,张荻.原位合成钛基复合材料的制备、微结构及力学性能.高等教育出版社. 2005: 1~5
    9 H. X. Peng, F. P. E. Dunne, P. S. Grant, B. Cantor. Dynamic Densification of Metal Matrix-Coated Fibre Composites: Modeling and Processing. Acta Materialia. 2005, 53(3): 617~628
    10朱艳. SiC纤维增强Ti基复合材料界面反应研究.西北工业大学博士学位论文. 2003
    11 L. Geng, D. R. Ni, J. Zhang, Z. Z. Zheng. Hybrid Effect of TiBw and TiCp on Tensile Properties of In SituTitanium Matrix Composites. Journal of Alloys and Compounds. 2008, 463(1-2): 488~492
    12 Z. Hashin, S. Shtrikman. A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials. Journal of the Mechanics and Physics of Solids. 1963, 11(2): 127~140
    13 D. Hull and T. W. Clyne. An Introduction to Composite Materials. Cambridge Second Edition. University Press. 1996: 30~36
    14 K. B. Panda and K. S. Ravi Chandran. Synthesis of Ductile Titanium–TitaniumBoride (Ti-TiB) Composites with a Beta-Titanium Matrix: The Nature of TiB Formation and Composite Properties. Metallurgical and Materials Transactions A. 2003, 34(6): 1371~1385
    15 V. V. Patel, A. El-Desouky, J. E. Garay, K. Morsi. Pressure-less and Current- Activated Pressure-Assisted Sintering of Titanium Dual Matrix Composites: Effect of Reinforcement Particle Size. Materials Science and Engineering A. 2009, 507(1-2): 161~166
    16 S. F. Corbin and D. S. Wilkinson. The Influence of Particle Distribution on the Mechanical Response of a Particulate Metal Matrix Composite. Acta Metallurgica et Materialia. 1994, 42(4): 1311~1318
    17 F. R. Cichocki. Microstructure Design and Processing of Aluminum-Alumina Composites. Ph.D thesis of Purdue University. 2000
    18 J. S. Park. Effect of Contiguity on the Mechanical Behavior of Co-continuous Ceramic Metal Composites. PHD thesis of Purdue University. 2003
    19 I. Sinclair and P. J. Gregson. Structural Performance of Discontinuous Metal Matrix Composites. Materials Science and Technology. 1997, 13(9): 709~726
    20 S. Qin and G. Zhang. Preparation of High Fracture Performance SiCp-6061A1/ 6061A1 Composite. Materials Science and Engineering A. 2000, 279(1-2): 231~236
    21 A. B. Pandey, B. S. Majumdar and D. B. Miracle. Laminated Particulate- Reinforced Aluminum Composites with Improved Toughness. Acta materialia. 2001, 49(3): 405~417
    22 D. S. Wilkinson, W. Pompe and M. Oeschner. Modeling the Mechanical Behaviors of Heterogeneous Multi-phase Materials. Progress Material Science. 2001, 46(3-4): 379~405
    23 H. X. Peng, Z. Fan, D. S. Mudher, J. R. G. Evans. Microstructures and Mechanical Properties of Engineered Short Fibre Reinforced Aluminium Matrix Composites. Materials Science and Engineering A. 2002, 335(1-2): 207~216
    24 K. Lu. The future of metals. Science. 2010, 328: 319-320
    25 S. C. Tjong, Y. W. Mai. Processing-Structure-Property Aspects of Particulate and Whisker-Reinforced Titanium Matrix Composites. Composite Science and Technology. 2008, 68(3-4): 583~601
    26 T. Saito. The Automotive Application of Discontinuously Reinforced TiB-TiComposites. JOM. 2004, 56(5): 33~36
    27 W. J. Lu, D. Zhang, X. N. Zhang, R. J. Wu, T. Sakata, H. Mori. Microstructure and Tensile Properties of In Situ (TiB+TiC)/Ti6242 (TiB:TiC=1:1) Composites Prepared by Common Casting Technique. Material Science and Engineering A. 2001, 311(1-2): 142~150
    28 M. Wang, W. Lv, J. Qin, F. Ma, J. Lu, D. Zhang. Effect of Volume Fraction of Reinforcement on Room Temperature Tensile Property of In Situ (TiB+TiC)/Ti Matrix Composites. Materials and Design. 2006, 27(6): 494~498
    29 F. C. Ma, W. J. Lv, J. N. Qin and D. Zhang. Hot Deformation Behavior of In Situ Synthesized Ti-1100 Composite Reinforced with 5 vol.% TiC Particles. Materials Letters. 2006, 60(3): 400~405
    30 H. J. Dudek, R. Borath, R. Leucht, W. A. Kaysser. Transmission Electron Microscopy of the Fibre-Matrix Interface in SiC-SCS-6-Fibre-Reinforced IMI834 Alloys. Journal of Materials Science. 1997, 32(20): 5355-5362
    31 A. Vassel. Interface Consideration in High-Temperature Titanium Metal Matrix Composites. Journal of Microscopy. 1997, 158(2): 303~309
    32吕维洁,杨志峰,张荻,张小农,吴人洁.原位合成钛基复合材料增强体TiC的微结构特征.中国有色金属学报. 2002, 12(3): 511~515
    33覃业霞,朱建勇,吕维洁,徐栋,覃继宁,张荻.原位合成TiC /Ti基复合材料氧化行为.航空材料学报. 2006, 26(4): 105~109
    34吕维洁,覃业霞,张荻,张小农,吴人洁.原位合成增强体TiB层错的透射电镜分析.上海交通大学学报. 2003, 37(2): 245~247
    35覃业霞,吕维洁,徐栋,张荻.原位合成TiB/ Ti基复合材料的氧化行为.中国有色金属学报. 2005, 15(3): 352~357
    36 Z. Yang, W. Lu, J. Qin, D. Zhang. Microstructure and Tensile Properties of in situ Synthesized (TiC+TiB+Nd2O3)/Ti-alloy Composites at Elevated Temperature. Materials Science and Engineering A. 2006, 425(1-2): 185~191
    37 M. M. Wang, W. J. Lu, J. N. Qin, D. Zhang, B. Ji, F. Zhu. Superplastic Behavior of in situ Synthesized (TiB + TiC)/Ti Matrix Composite. Scripta Materialia 2005, 53(2): 265~270
    38杨志峰,吕维洁,覃业霞,张荻.石墨添加对原位合成钛基复合材料高温力学性能的影响.复合材料学报. 2004, 21(5): 1~6
    39吕维洁,徐栋,覃继宁,张荻.原位合成多元增强钛基复合材料(TiB+TiC+Y2O3)/Ti.中国有色金属学报. 2005, 15(11): 1727~1732
    40 Z. F. Yang, W. J. Lv, L. Zhao, J. N. Qin, D. Zhang. Microstructure and Mechanical Property of In Situ Synthesized Multiple-reinforced (TiB+TiC+La2O3)/Ti Composites. Journal of Alloys and Compounds. 2008, 455(1-2): 210~214
    41覃业霞,吕维洁,徐栋,张荻.原位合成(TiB+TiC)/Ti6242基复合材料高温氧化行为.稀有金属材料与工程. 2006, 35(10): 1647~1650
    42 Z. Y. Ma, S. C. Tjong, L. Gen. In-situ Ti-TiB Metal-Matrix Composite Prepared by a Reactive Pressing Process. Scripta Materialia. 2000, 42(4): 367~373
    43 Z. Y. Ma, R. S. Mishra, S. C. Tjong. High-Temperature Creep Behavior of TiC Particulate Reinforced Ti–6Al–4V Alloy Composite. Acta Materialia. 2002, 50(17): 4293~4302
    44 H. B. Feng, Y. Zhou, D. C. Jia, Q. C. Meng. Microstructure and Mechanical Properties of In Situ TiB Reinforced Titanium Matrix Composites Based on Ti–FeMo–B Prepared by Spark Plasma Sintering. Composites Science and Technology. 2004, 64(16): 2495~2500
    45 H. B. Feng, Y. Zhou, D. C. Jia, Q. C. Meng. Stacking Faults Formation Mechanism of In Situ Synthesized TiB Whiskers. Scripta Materialia. 2006, 55(8): 667~670
    46 Q. C. Meng, H. B. Feng, G. C Chen et al. Defects Formation of the In Situ Reaction Synthesized TiB Whiskers. Journal of Crystal Growth. 2009, 311(6): 1612~1615
    47金云学,曾松岩,王宏伟,张二林,朱兆军.硼化物颗粒增强钛基复合材料研究进展.铸造. 2001, 50(12): 711~716
    48徐强,张幸红,赫晓东,韩杰才. TiB/Ti复合材料自蔓延高温燃烧合成的研究.材料科学与工艺. 2001, 9(4): 347~351
    49 X. H. Zhang, Q. Xu, J. C. Han, V. L. Kvanin. Self-Propagating High Temperature Combustion Synthesis of TiB/Ti Composites. Materials Science and Engineering A. 2003, 348(1-2): 41~46
    50汤慧萍,黄伯云,刘咏,王海兵.粉末冶金颗粒增强钛基复合材料研究进展.粉末冶金技术. 2004, 22(5): 293~296
    51陈丽芳,刘咏,汤慧萍,刘海彦,黄愿平.原位生成TiC颗粒增强Ti基复合材料的显微组织.稀有金属材料与工程. 2005, 34(10): 1609~1612
    52曾立英,毛小南,戚运莲,张鹏省,张廷杰. TiC粒子增强钛基复合材料的显微组织与性能研究.稀有金属. 2004, 28(1): 5~8
    53蔡海斌,樊建中,左涛,肖伯律,赵志毅.原位合成TiB增强钛基复合材料的微观组织研究.稀有金属. 2006, 30(6): 808~812
    54李四清,雷力明,刘瑞民.钕对颗粒增强钛基复合材料组织和性能的影响.材料工程. 2004, 9: 23~26
    55 Z. H. Zhang, X. B. Shen, S. Wen, J. Luo, S. K. Lee, F. C. Wang. In situ reaction synthesis of Ti-TiB composites containing high volume fraction of TiB by spark plasma sintering process. Journal of Alloys and Compounds. 2010, 503(1): 145~150
    56 D. Liu, S. Q. Zhang, A. Li, H. M. Wang. Creep Rupture Behaviors of a Laser Melting Deposited TiC/TA15 in situ Titanium Matrix Composite. Materials and Design. 2010, 31(6): 3127~3133
    57 D. R. Ni, L. Geng, J. Zhang, Z. Z Zheng. Fabrication and Tensile Properties of In Situ TiBw and TiCp Hybrid-Reinforced Titanium Matrix Composites Based on Ti-B4C-C. Materials Science and Engineering A. 2008, 478(1-2): 291~296
    58 A. M. Antonio, F. Santos, R. Strohaecker. Microstructural and Mechanical Characterisation of a Ti6Al4V/TiC/10p Composite Processed by the BE-CHIP Method. Composites Science and Technology. 2005, 65(11-12): 1749~1755
    59 K. Kawabata, E. Sato, K. Kuribayashi. High Temperature Deformation with Diffusional and Plastic Accommodation in Ti/TiB Whisker-Reinforce In-Situ Composites. Acta Materialia. 2003, 51(7): 1909~1922
    60 K. Kawabata, E. Sato, K. Kuribayashi. Composite Weakening and Strengthening of Ti/TiB(w) Composites during Steady-state Creep at High Temperature in theβ-matrix Region. Scripta Materialia. 2004, 50(4): 523~527
    61 T. Yamamoto, A. Otsuki, K. Ishihara, P. H. Shingu. Synthesis of Near Net Shape High Density TiB:Ti Composite. Materials Science and Engineering A. 1997, 239-240: 647~651
    62 T. Kuzumaki, O. Ujiie, H. Ichinose and K. Ito. Mechanical Characteristics and Preparation of Carbon Nanotube Fiber-Reinforced Ti Composite. Advanced Engineering Materials. 2000, 2(7): 416~418
    63 M. Kobayashi, K. Funami, S. Suzuki, C. Ouchi. Manufacturing Process and Mechanical Properties of Fine TiB Dispersed Ti–6Al–4V Alloy CompositesObtained by Reaction Sintering. Materials Science and Engineering A. 1998, 243(1-2): 279~284
    64 Y. Tanaka, J. M. Yang, Y. F. Liu and Y. Kagawa. Characterization of Nanoscale Deformation in a Discontinuously Reinforced Titanium Composite Using AFM and Nanolithography. Scripta Materialia. 2007, 56(3): 209~212
    65 K. B. Panda, K. S. Ravi Chandran. First Principles Determination of Elastic Constants and Chemical Bonding of Titanium Boride (TiB) on the Basis of Density Functional Theory. Acta Materialia. 2006, 54(6): 1641~1657
    66 S. Gorsse, D. B. Miracle. Mechanical Properties of Ti-6Al-4V/TiB Composites with Randomly Oriented and Aligned TiB Reinforcements. Acta Materialia. 2003, 51(9): 2427~2442
    67 C. J. Boehlert, S. Tamirisakandala, W.A. Curtin and D. B. Miracle. Assessment of In Situ TiB Whisker Tensile Strength and Optimization of TiB-Reinforced Titanium Alloy Design. Scripta Materialia. 2009, 61(3): 245~248
    68 W. Chen, C. J. Boehlert, E. A. Payzant, J. Y. Howe. The Effect of Processing on the 455℃Tensile and Fatigue Behavior of Boron-Modified Ti-6Al-4V. International Journal of Fatigue. 2010, 32(3): 627~638
    69 W. Chen, C. J. Boehlert. The Elevated-Temperature Fatigue Behavior of Boron-Modified Ti-6Al-4V(wt.%) Castings. Materials Science and Engineering A. 2008, 494(1-2): 132~138
    70 W. Chen and C. J. Boehlert. The 455℃Tensile and Fatigue Behavior of Boron-Modified Ti-6Al-2Sn-4Zr-2Mo-0.1Si(wt.%). International Journal of Fatigue. 2010, 32(5): 799~807
    71 C. Schuh and D. C. Dunand. Load Transfer during Transformation Superlasticity of Ti-6Al-4V/TiB Whisker-Reinforced Composites. Scripta Materialia. 2001, 45(6): 631~638
    72 S. Abkowitz, P. F. Weihrauch, F. H. Abkowitz, H. L. Heussi. The Commercial Application of Low-cost Titanium Composites. JOM. 1995; 47: 40~41
    73 S. Abkowitz, S. M. Abkowitz, H. Fisher, P. J. Schwartz. Cerme-Ti Discontinuously Reinforced Ti-Matrix Composites: Manufacturing, Properties and Applications. JOM. 2004; 56: 37~41
    74 W. O. Soboyejo, R. J. Lederich and S. M. L. Sastry. Mechanical Behavior of Damage Toleant TiB Whisker-Reinforced In-Situ Titanium Matrix Composites.Acta Metallurgica et Materialia. 1994, 42(8): 2579-2591
    75 Z. Fan and A. P. Miodownik. Microstructural Evolution in Rapidly Solidified Ti-7.5Mn-0.5B Alloy. Acta Materialia. 1996, 44(1): 93~110
    76 Z. Fan, Z. X. Guo, B. Cantor. The Kinetics and Mechanism of Interfacial Reaction in Sigma Fibre-Reinforced Ti MMCs. Composites part A 1997, 28(2): 131~140
    77 B. V. Radhakrishna Bhat, J. Subramanyam, V. V. Bhanu Prasad. Preparation of Ti-TiB-TiC & Ti-TiB Composites by In-situ Reaction Hot Pressing. Materials Science and Engineering A. 2002, 325(1-2): 126~130
    78 Y. J. Kim, H. Chung and S. J. L. Kang. In Situ Formation of Titanium Carbide in Titanium Powder Compacts by Gas-Solid Reaction. Composites Part A. 2001, 32(5): 731~738
    79 Y. J. Kim, H. Chung and S. J. Kang. Processing and Mechanical Properties of Ti–6Al–4V/TiC In Situ Composite Fabricated by Gas–Solid Reaction. Materials Science and Engineering A. 2002, 333(1-2): 343~350
    80 B. J. Kooi, Y. T. Pei, J. Th. M. De Hosson. The Evolution of Microstructure in a Laser Clad TiB–Ti Composite Coating. Acta Materialia. 2003, 51(3):831~845
    81 O. O. Bilous, L. V. Artyukh, A. A. Bondar et al. Effect of Boron on the Structure and Mechanical Properties of Ti–6Al and Ti–6Al–4V. Materials Science and Engineering A. 2005, 402(1-2): 76~83
    82 J. Segurado, C. Gonzalez, J. Llorca. A Numerical Investigation of the Effect of Particle Clustering on the Mechanical Properties of Composites. Acta Materialia. 2003, 51(8): 2355~2369
    83 H. X. Peng, Z. Fan, J. R. G. Evans. Bi-continuous Metal Matrix Composites. Materials Science and Engineering A. 2001, 303(1-2): 37~45
    84 H. X. Peng, Z. Fan, J. R. G. Evans. Factors Affecting the Microstructure of a Fine Ceramic Foam. Ceramics International. 2000, 26(8): 887~895
    85 F. Wang, J. Mei, X. H. Wu. Direct Laser Fabrication of Ti6Al4V/TiB. Journal of Materials Processing Technology. 2008, 195(1-3): 321~326
    86黄陆军. TC11钛合金等轴化处理及高温变形行为的研究.哈尔滨工业大学硕士学位论文. 2007: 1~7
    87 D. Liu, S. Q. Zhang, A. Li and H. M. Wang. High Temperature Mechanical Properties of a Laser Melting Deposited TiC/TA15 Titanium Matrix Composite.Journal of Alloys and Compounds. 2010, 496(1-2): 189~195
    88 Y. X Qin, D. Zhang, W. J. Lv, W. Pan. A New High-Temperature, Oxidation- Resistant In Situ TiB and TiC Reinforced Ti6242 Alloy. Journal of Alloys and Compounds. 2008, 455(1-2): 369~375
    89 W. J. Lv, L. Xiao, K. Geng, J. N. Qin, D. Zhang. Growth Mechanism of In Situ Synthesized TiBw in Titanium Matrix Composites Prepared by Common Casting Technique. Materials Characterization. 2008, 59(7): 912–919
    90 D. R. Ni, L. Geng, J. Zhang, Z. Z Zheng. Effect of B4C Particle Size on Microstructure of In Situ Titanium Matrix Composites Prepared by Reactive Hot Processing of Ti-B4C System. Scripta Materialia. 2006, 55(5): 429~432
    91 H. Chung, Y. J. Kim, B. K. Kim, J. Q. Jiang. Process for Producing Ti/TiC Composites by Hydrocarbon Gas and Ti Powder Reactions, US Patent No. 5, 722, 037. 1998
    92 Z. Fan, L. Chandrasekaran, C. M. Ward-Close and A. P. Miodownik. The Effect of Pre-consolidation Heat Treatment on TiB Morphology and Mechanical Properties of Rapidly Solidified Ti-6Al-4V-XB Alloys. Scripta Metallurgical et Materialia. 1995, 32(6): 833~838
    93 E. L. Zhang, S. Y. Zeng, B. Wang. Preparation and Microstructure of In Situ Particle Reinforced Titanium Matrix Alloy. Journal of Materials Processing Technology. 2002, 125-126: 103~109
    94 L. Cao, H. W. Wang, C. M. Zou, Z. J. Wei. Microstructural Characterization and Micromechanical Properties of Dual-phase Carbide in Arc-melted Titanium Aluminide Base Alloy with Carbon Addition. Journal of Alloys and Compounds. 2009, 484(1-2): 816~821
    95 S. Tamirisakandala, R. B. Bhat, J. S. Tiley, D. B. Miracle. Grain Refinement of Cast Titanium Alloys via Trace Boron Addition. Scripta Materialia. 2005, 53(12): 1421~1426
    96 C. J. Boehlert, C. J. Cowen, S. Tamirisakandala, D. J. McEldowneyc and D. B. Miracle. In Situ Scanning Electron Microscopy Observations of Tensile Deformation in a Boron-Modified Ti–6Al–4V Alloy. Scripta Materialia. 2006, 55(5): 465~468
    97 I. Sen, S. Tamirisakandala, D. B. Miracle, U. Ramamurty. Microstructural Effects on the Mechanical Behavior of B-Bodified Ti–6Al–4V Alloys. ActaMaterialia. 2007, 55(15):4983~4993
    98 J. Q. Lu, J. N. Qin, W. J. Lv, Y. Liu, J. J. Gu, D. Zhang. In Situ Preparation of (TiB + TiC+Nd2O3)/Ti Composites by Powder Metallurgy. Journal of Alloys and Compounds. 2009, 469(1-2): 116~122
    99 Y. Choi, M. E. Mullins, K. Wijayatilleke, et al. Fabrication of Metal Matrix Composites of TiC-Al through Self-propagating Synthesis Reaction. Metallurgical Transactions A. 1992, 23: 2387~2392
    100 G. A. D. Frari. The Influence of the Microstructural Shape on the Mechanical Behavior of Interpenetrating Phase Composites. Master thesis of University of Saskatchewan. 2005: 1~30
    101 S. V. Kamat, J. P. Hirth, R. Mehrabian. Mechanical Properties of Particulate- Reinforced Aluminum-Matrix Composites. Acta Metall Materialia. 1989, 37(9): 2395~2402
    102 C. W. Nan. Physics of Inhomogeneous Inorganic Materials. Progress in Material Science. 1993, 37(1):1~116
    103 A. Slipenyuk, V. Kuprin, Y. Milman, J.E. Spowart, D. B. Miracle. The Effect of Matrix to Reinforcement Particle Size Ratio (PSR) on the Microstructure and Mechanical Properties of a P/M Processed AlCuMn/SiCp MMC. Materials Science and Engineering A. 2004, 381(1-2): 165~170
    104 E. Weissenbek, H.E. Pettermann, S. Suresh. Elasto-Plastic Deformation of Compositionally Graded Metal-Ceramic Composites. Acta Materialia. 1997, 45(8): 3401~3417
    105 M. Geni, M. Kikuchi. Damage Analysis of Aluminum Matrix Composite Considering Non-uniform Distribution of SiC Particles. Acta Materialia. 1998, 46(9): 3125~3133
    106 K. T. Conlon, D. S. Wilkinson. Effect of Particle Distribution on Deformation and Damage of Two-phase Alloys. Material Science and Engineering A. 2001, 317(1-2): 108~114
    107 J. Segurado, J. Llorca. Computational Micromechanics of Momposites: The Effect of Particle Spatial Distribution. Mechanics of Materials. 2006, 38(8-10): 873~883
    108 J. Llorca, J. Segurado. Three-dimensional multiparticle cell simulations of deformation and damage in sphere-reinforced composites. Materials Scienceand Engineering A. 2004, 365(1-2): 267~274
    109 L. Yin. Composites Microstructures with Tailored Phase Contiguity and Spatial Distribution. Doctor thesis of University of Bristol. 2009: 2~25
    110 H. X. Peng, Z. Fan and J. R. G. Evans. Novel MMC Microstructure with Tailored Distribution of the Reinforcing Phase. Journal of Microscopy. 2001, 201(2): 333~338
    111 L. J. Huang, L. Geng, A. B. Li, F. Y. Yang, H. X. Peng. In-situ TiBw/Ti-6Al-4V Composites with Novel Reinforcement Architecture Fabricated by Reaction Hot Pressing. Scripta Materialia. 2009, 60(11): 996~999
    112 G. O. Shonaike, S. G. Advani. Advanced Polymeric Materials: Structure Property Relationships. CRC press. 2003: 440~443
    113 H. T. Tsang, C. G. Chao and C. Y. Ma. Effects of Volume Fraction of Reinforcement on Tensile and Creep Properties of In-Situ TiB/Ti MMC. Scripta Materialia. 1997, 37(9): 1359~1365
    114 K. S. R. Chandran, K. B. Panda. Titanium Matrix Composites with TiB Whiskers. Advanced Materials and Processes. 2002, 160: 59~62
    115 H. T. Tsang, C. G. Chao and C. Y. Ma. In Situ Fracture Observation of a TiC/Ti MMC Produced by Combustion Synthesis. Scripta Materialia. 1996, 35(8): 1007~1012
    116 W. O. Soboyejo, W. Shen, T. S. Srivatsan. An Investigation of Fatigue Crack Nucleation and Growth in a Ti–6Al–4V/TiB In Situ Composite. Mechanics of Materials. 2004, 36(1-2): 141~159
    117 T. W. Clyne, P. J. Withers. An Introduction to Metal Matrix Composites. Cambridge University Press. 1993: 12~16
    118 S. Gorsse, Y. L. Petitcorps, S. Matar, F. Rebillat. Investigation of the Young's Modulus of TiB Needles In Situ Produced in Ttanium Matrix Composite. Materials Science and Engineering A. 2003, 340(1-2): 80~87
    119 H. X. Peng. A Review of“Consolidation Effects on Tensile Properties of an Elemental Al Matrix Composite”. Materials Science and Engineering A. 2005, 396(1-2): 1~2
    120 R. R. Atri, K. S. Ravichandran, S. K. Jha. Elastic Properties of In-situ Processed Ti–TiB Composites Measured by Impulse Excitation of Vibration. Materials Science and Engineering A. 1999, 271(1-2): 150~159
    121 S. Madtha, C. Lee and K. S. R Chandran. Physical and Mechanical Properties of Nanostructured Titanium Boride (TiB) Ceramic. Journal of American Ceramic Society. 2008, 91(4): 1319~1321
    122姚强,邢辉,孟丽君,孙坚. TiB2和TiB弹性性质的理论计算.中国有色金属学报. 2007, 17(8): 1297~1301
    123 G. J. Cao, L. Geng, M. Naka. Elastic Properties of Titanium Monoboride Measured by Nanoindentation. Journal of American Ceramic Society. 2006, 89(12): 3836~3838
    124 Z. Fan, A. P. Miodownik, L. Chandrasekaran, M. Ward-Close. The Young's moduli of In-situ Ti/TiB Composites Obtained by Rapid Solidification Processing. Journal of Materials science. 1994, 29(4): 1127~1134
    125马凤仓,吕维洁,覃继宁,计波,张荻.锻造对(TiB+TiC)增强钛基复合材料组织和高温性能的影响.稀有金属. 2006, 30(2): 236~240
    126 Y. Tanaka, J. M. Yang, Y. F. Liu and Y. Kagawa. Surface Nanodeformation of Discontinuously Reinforced Ti Composite by In Situ Atomic Force Microscope Observation. Journal of Material Research. 2007, 22(11): 3098~3106
    127倪丁瑞,金晓鸥,耿林,王桂松.非连续增强钛基复合材料的热处理研究进展.材料科学与工艺. 2007, 15(2): 2~6
    128张廷杰,曾泉浦,毛小南等. TiC颗粒强化钛基复合材料的高温拉伸特性.稀有金属材料与工程. 2001, 30: 85~88
    129曾泉浦,毛小南,张廷杰.热处理对TP-650钛基复合材料组织与性能的影响.稀有金属材料与工程. 1997, 26(4): 18~21
    130 GB/T228-2002中华人民共和国国家标准--金属材料室温拉伸试验方法。2002: 295-332.
    131 Standard test method for dynamic Young’s Modulus, Shear Modulus, and Possion’s Ratio by Sonic Resonance, ASTM E1875-00. 2004, 3: 1~12
    132 X. N. Zhang, W. J. Lv, D. Zhang and R. J. Wu. In situ Technique for Synthesizing (TiB+TiC)/Ti Composites. Scripta Materialia. 1999, 41(1): 39~46
    133 L. F. Cai, Y. Z. Zhang, L. K. Shi, H. Q. Yang and M. Z. Xi. Research on development of in situ titanium matrix composites and in situ reaction thermodynamics of the reaction systems. Journal of University of Science and Technology Beijing. 2006, 13: 551~557.
    134 L. J. Huang, F. Y. Yang, Y. L. Guo, J. Zhang, L. Geng. Effect of SinteringTemperature on Microstructure of Ti6Al4V Matrix Composites. International Journal of Modern Physics B. 2009, 23(6-7): 1444~1448
    135 L. J. Huang, L. Geng, A. B. Li, G. S. Wang, X. P. Cui. Effects of Hot Compression and Heat Treatment on the Microstructure and Tensile Property of Ti-6.5Al-3.5Mo- 1.5Zr-0.3Si Alloy. Materials Science and Engineering A. 2008, 489(1-2): 330-336
    136 H. B. Feng, Q. C. Meng, Y. Zhou, D. C. Jia. Spark Plasma Sintering of Functionally Graded Material in the Ti-TiB2-B System. Materials Science and Engineering A. 2005, 397(1-2): 92~97
    137 J. A. Rodríguez-Manzo, M. S. Wang, F. Banhart, Y. Bando and D. Golberg. Multibranched Junctions of Carbon Nanotubes via Cobalt Particles. Advanced Materials. 2009, 21: 4477~4482
    138 X. Tao, J. Liu, G. Koley and X. Li. B/SiOx Nanonecklace Reinforced Nanocomposites by Unique Mechanical Interlocking Mechanism. Advanced Materials. 2008, 20: 4091~4096
    139 D. Hill, R. B. Banerjee, D. Huber, J. Tiley, H. L. Fraser. Formation of Equiaxed Alpha in TiB Reinforced Ti Alloy Composites. Scripta Materialia. 2005, 52(5): 387~392
    140 B. Cherukuri, R. Srinivasan, S. Tamirisakandala and D. B. Miracle. The Influence of Trace Boron Addition on Grain Growth Kinetics of the Beta Phase in the Beta Titanium Alloy Ti-15Mo-2.6Nb-3Al-0.2Si. Scripta Materialia. 2009, 60(7): 496~499
    141 J. R?sler, O. N?th, S. J?ger, F. Schmitz, D. Mukherji. Fabrication of nanoporous Ni-based superalloy membranes. Acta Materialia. 2005, 53(5): 1397~1406
    142 D. Mukherji, G. Pigozzi, F. Schmitz, O. N?th, J. R?sler and G. Kostorz. Nano-structured materials produced from simple metallic alloys by phase separation. Nanotechnology. 2005, 16: 2176-2187
    143 K. S. Ravi Chandran, K. B. Panda and S. S. Sahay. TiBw-Reinforced Ti Composites: Processing, Properties, Application Prospects, and Research Needs. JOM. 2004, (56): 42-48
    144朱永昌,蒲素云等译.断裂力学.北京航空航天大学出版社. 1988
    145 S. Dubey, Y. Li, K. Reece, W. O. Soboyejo, R. J. Lederich. Fatigue crackgrowth in an in-situ Titanium matrix composite. Materials Science and Engineering A. 1999, 266(1-2): 303~309
    146 T. Lin, A. G. Evans, and R. O. Ritchie. Stochastic Modeling of the Independent Roles of Particle Size and Grain Size in Transgranular Cleavage Fracture. Metallurgical Transactions A. 1987, 18: 641~651
    147 Y. Fu and A. G. Evans. Microcrack Zone Formation in Single Phase Polycrystals. Acta Metallurgic. 1982, 30: 1619~1625
    148 M. Y. He, J. W. Hutchinson. Kinking of a Crack out of an Interface. Journal of Applied Mechanics. 1989, 56: 270~278
    149 M. Y. He, H. C. Cao and A. G. Evans. Mixed-mode Fracture: the Four-point Shear Specimen. Acta Metallurgic et Materialia. 1990, 38: 839~846
    150 T. Fett, D. Munz. Kinked Cracks and Richard Fracture Criterion. International Journal of Fracture. 2002, 115: 69~73
    151 J. C. Williams, F. H. Froes, J. C. Chesnutt, C. G. Rhodes and R. G. Berryman. Development of High Fracture Toughness Titanium alloy, Toughness and fracture behavior of titanium.Toronto, Canada, 1997
    152 J. Q. Lu, J. N. Qin, Y. F. Chen, Z. W. Zhang, W. J. Lv, D. Zhang. Superplasticity of Coarse-Grained (TiB+TiC)/Ti–6Al–4V Composite. Journal of Alloys and Compounds. 2010, 490(1-2): 118~123
    153 C. Schuh and D. C. Dunand. Whisker Alignment of Ti-6Al-4V/TiB Composites during Deformation by Transformation Superplasticity. International Journal of Plasticity. 2001, 17(3): 317~340
    154 S. M. Allen, E. L. Thomas. The Structure of Materials. John Wiley & Sons. 1999: 359~363
    155 J. C. Halpin, J. L. Kardos. The Halpin-Tsai Equations: A Review. Polymer Engineering and Science. 1976, 16: 344~352
    156 G. Welsch, R. Boyer, E. W. Collings. Materials Properties Handbook: Titanium Alloys. ASM International. 1994: 488~490
    157 S. Tamirisakandala, R. B. Bhat, D. B. Miracle et al. Effect of Boron on the Beta Transus of Ti–6Al–4V Alloy. Scripta Materialia. 2005, 53(2): 217~222
    158黄伯云,李成功主编.中国材料工程大典第四卷第七篇第3章.化学工业出版社. 2006: 607~610

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700