用户名: 密码: 验证码:
三维编织复合材料力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维编织复合材料是纺织复合材料的一种,三维编织技术可以制造任意复杂形状的构件并且三维编织复合材料具有更高的抗冲击性能和损伤容限,使三维编织复合材料的研究受到高度的关注。三维编织陶瓷基复合材料还具有轻质、耐高温、抗冲刷性能好的特点,是航天、航空发动机以及航天飞机热结构用的理想材料。
     对于三维编织复合材料尤其是三维编织陶瓷基复合材料力学行为的认识还只是处于初级阶段,还需要一个逐步认识逐步了解的过程。只有对三维编织复合材料的力学性能进行更深入的研究,才能更好地指导材料的设计和应用。基于这一前提,本文对三维编织复合材料的力学行为进行了研究。本文的研究工作主要包括:
     1.通过对三维编织T300/QY9512树脂基复合材料和三维编织C/SiC陶瓷基复合材料的基本力学性能进行试验,系统地研究了这两种材料的基本力学性能、应力—应变曲线特性、损伤演化、破坏特征以及其声发射特性,发现两种复合材料具有相同的拉伸破坏模式和压缩破坏模式,拉伸破坏主要是由纤维束断裂控制,而压缩破坏则主要表现为界面的滑移和纤维束的剪切和压缩的破坏;两种复合材料的四点弯曲模量和强度均高于拉伸值,与单向复合材料明显不同,这是因为编织结构的表面和内部不同,表面的模量和强度均比内部高的缘故。
     2.同时我们还发现三维编织C/SiC复合材料具有以下特性:拉伸、压缩的应力—应变曲线具有明显的非线性特性,这种伪塑性特性是因为材料内部有大量的初始孔穴和微裂纹,加载的过程中材料的损伤缓慢发展导致的;声发射数据表明在达到破坏载荷的70%~80%之前,损伤发展较慢,但之后损伤迅速发展,直到破坏;通过加—卸载方法发现在拉伸过程中试件的卸载模量和残余应变和材料的损伤变化有关,提出了用卸载模量和残余应变来表征拉伸试验中损伤演化的非线性方程。另外,通过进一步的分析发现三维编织C/SiC复合材料中纤维束的就位性能远远低于其
    
    摘要
    原位性能,这正是C/siC复合材料的拉伸性能远低于T300/QY9512复合
    材料的主要原因。
    3.提出了一种预测三维编织复合材料弹性性能的单胞模型,考虑了各类单
     胞中纤维体积含量不同以及表面单胞、角单胞中纤维的弯曲因素,预测
     了三维编织T300/QY9512复合材料和三维编织c/siC复合材料的弹性性
     能,预测结果与试验结果吻合较好;分析了纤维体积含量和编织角对材
     料性能的影响以及试件的形式和尺寸对所测得性能数据的影响;同时还
     初步预测了三维编织SIC/siC复合材料的弹性性能;通过进一步的分析,
     发现纤维束的各向异性程度和基体、纤维的模量差别对复合材料的主泊
     松比vl:影响很大,从理论上解释了三维编织复合材料主泊松比v,:较大
     的原因。
    4.通过试验和有限元分析发现,造成对三点弯曲试验测得的三维编织复合
     材料的弯曲模量远低于四点弯曲试验结果的原因:材料的各向异性和泊
     松比对于三点弯曲试验的压头和支座处的局部接触变形影响很大.从而
     论证了对于三维编织复合材料,测试弯曲模量和强度使用四点弯曲试验
     更合适。
    5.通过对三维编织T300/QY9512复合材料和三维编织C/SIC复合材料的破
     坏机理分析,建立了以内部单胞为基础的纤维失效模型和单向复合材料
     杆失效模型和相应的应变失效判据:对三维编织T300/Q Y9512复合材料
     和三维编织C/SIC复合材料的纵向拉伸和纵向压缩强度进行预测,预测
     值与试验值吻合较好:通过分析,还得到了两种三维编织复合材料纵向
     拉伸、压缩强度与纤维体积含量和编织角以及试件的形式和尺寸的关
     系。
Three dimensional braided composite is one kind of textile composite. Structures with complex shape can be manufactured easily by three dimensional braiding technologies. Three dimensional braided composite has higher impact resistance and higher damage tolerance than other textile composite have. That attracts much more attentions. Three dimensional braided ceramic matrix composites (CMC) also have characters such as low density, high temperature resistance and wash out resistance. It is a potential high temperature structure material used in airplane engine and space shuttles.
    It is a long way to understand mechanical properties of three dimensional braided composite. In order to instruct material design and material application, mechanical properties of three dimensional braided composite should be investigated thoroughly. Based on previous reason, study on mechanical behaviors of three dimensional braided composite was carried out.
    The following works are included in this thesis.
    1. Experiments of three dimensional braided T300/QY9512 composite and three dimensional braided C/SiC composite was conducted. And characters of stress-strain curves, damage development, and failure were analyzed. The following properties were found. Tensile and compress failure mode of two composites are the same. Tensile failure was caused by fiber fracture and compress failure was caused by interface failure and fiber bundle's shear, compress failure. For two materials shear modulus of four point bending are greater than those of tensile test. It is because of the different properties between interior and surface of specimens.
    2. For three dimensional braided C/SiC composite, stress-strain curve shows a nonlinear character. It induced by initial voids and microcracks in materials. Acoustic Emission data reveal that damage develops slowly before the load reaches its failure value. Damage develops fast after that period. And a nonlinear formula with parameter of unloading modulus and residual strain was brought out to describe damage development in tensile test. It is also found that mechanical properties of C fiber are much less than those of T300 fiber bundles.
    
    
    
    3. An unit cell model taking account of the difference among unit cells was established to predict elastic properties of three dimensional braided T300/QY9512 composites and three dimensional braided C/SiC composite. Predicted results agreed well with test results. Influence of fiber volume content and braiding angle on specimens' elastic properties was analyzed. Furthermore the influence of shape and dimension were analyzed. Elastic properties of three dimensional braided SiC/SiC composite were predicted. The conclusion that anisotropy of fiber bundles and modulus difference between matrix and fiber bundles influence specimens' Poission's ratio was also concluded.
    4. Experimental and Finite Element Analysis of three point bending (TPB) test were conducted. It is found material's anisotropy of anisotropic materials and poission's ratio of isotropic materials all had influence on contact deformation between specimen and fixture. So it is wise to get flexural properties using four point bending test.
    5. A failure criterion for three dimensional braided composite was introduced to predict composite's strength. Prediction values of two braided composites agree well with their experimental values. Influence of fiber volume content and braiding angle on specimens' strength was analyzed. The influence of shape and dimension were also analyzed
引文
[1] Brand J., Drechesler K., Richter H., The Application of 2-D and 3-D Woven Thermoplastic Fiber Preforms for Aerospace Components. In: Stinson J. ed. 36th International SAMPE Symposium. California, April 15-18, 1991:92-98
    [2] 复合材料设计,Stephen W.Tsai著,陈绍杰等译,航空工业部第六○一研究所,1988年2月
    [3] Marvin B. Dow and H. Benson Dexter, Development of Stitched, Braided and Woven Composite Structures in the ACT Program and at Langley Research Center (1985 to 1997)-Summary and Bibliography. NASA/TP-97-206234
    [4] Ishkawa T., and Chou T. W., One-dimensional micromechanical analysis of woven fabric composites. AIAA Journal, 21(12), 1714-1721, 1983.
    [5] Vandeurzen P., Ivens J., and Verpoest I., Structure-performance analysis of two-dimensional woven fabric composite. In the 10th International Conference on Composite Material, Vol. Ⅳ, Whisterler, British Columbia, Canada, 14-18 August, 261-268, 1995.
    [6] Chou T W., Ko F K. Textile Structural Composites. Composite Material Series, Volume 3, Elsevier, 1989
    [7] Kostar T D, Chou T W. Process Simulation and Fabrication of Advanced Multi-step Three-dimensional Braided Preforms. Journal of Materials Science, 1994,29:2159-2167
    [8] Du G W, Popper P, Chou T W. Analysis and Automation of two-step Braiding. Proc. of FIBER-TEX'88, NASA Conference Publication(1989)
    [9] Li W, Kang T J, Shiekh A E. Structural Mechanics of 3-D Braided Preforms for Composites, Part Ⅰ: Geometry of Fabric Produced by 4-step Process. Proc. of FIBER-TEX'87, NASA Conference Publication(1988)
    [10] 师昌绪,二十一世纪初的材料科学技术,中国科学院院刊。2001年年第2期,pp.93-100
    [11] 曹英斌、张长瑞、陈朝辉、周新贵,C_f/SiC陶瓷基复合材料发展状况,宇航材料工艺,1999年第5期,pp.10-14
    [12] 陈光,航空发动机发展综述,航空制造技术。2000年第6期,pp.24-27
    [13] 何新波、杨辉、张长瑞、周新贵,连续纤维增强陶瓷基复合材料概述。材料科学与工程,第20卷2002年第2期,pp.273-279
    [14] 周洋、袁广江、徐荣九、杜林虎、李宏泉、陈大明,高温结构陶瓷基复合材料的研究现状与展望,硅酸盐通报.2001年第4期,pp.31-36
    [15] 张建艺,陶瓷基复合材料在喷管上的应用,宇航材料工艺。2000年第4期,pp.14-16
    [16] 邹武、张立同、张康助,陶瓷基复合材料在火箭发动机上的应用,固体火箭技术,第23卷第2期,2000年,pp.60-68
    
    
    [17] Ma C L, Yang J M, and Chou T W. Elastic stiffness of three-dimensional braided textile structural composites, Composite Materials: Testing and Designing (Seventh Conference), ASTM STP893, 1986:404-421
    [18] Yang J M, Ma C L, and Chou T W. Fiber inclination model of three-dimensional textile structural composites. Journal of Composite Materials. 1986, 20(9)472-484
    [19] Chou T W. Mierostrueturai design of fiber composites. Lecture in Tongji University, Shanghai, 1991
    [20] Sun H Y, Qiao X. Prediction of mechanical properties of three-dimensionally braided composites. Composites Science and Technology, 1997, 57
    [21] 孙慧玉.编织结构复合材料的力学性能预报和成型工艺研究,南京航空航天大学博士学位论文,1996年1月
    [22] Wu D L.Three-cell model and 5D braided structural composites. Composite Science and Technology, 1996, 56:225-233
    [23] 吴德隆、郝兆平,五向编织结构复合材料的分析模型。宇航学报,1993,13-16
    [24] Chen L, Tao X M, and Choy C L, On the microstructure of three-dimensional braided performs. Composite Science and Technology, 1999, 59:391-404
    [25] Chen L, Tao X M, and Choy C L, A study on the microstructure of three-dimensional braids, Eleventh International Conference on Composite Materials, Australia, July, 1997:317-327
    [26] 陈利,三维编织复合材料的细观结构及其弹性性能分析,天津纺织工学院博士学位论文
    [27] 梁军,三维编织复合材料力学性能的细观研究,哈尔滨工业大学博士学位论文,1996
    [28] 陶亮、矫桂琼、于洋,三维编织CMC断裂韧性表征形式的实验研究,应用力学学报 2002,3
    [29] 陶亮、矫桂琼、王波,三维编织CMC弯曲断裂失效模型,第十二届全国复合材料会议论文集
    [30] 陶亮,三维编织C/SiC复合材料断裂韧性的表征方法和理论,西北工业大学博士学位论文,2003年4月
    [31] 庞宝君、杜善义、吴培莲,三维多向编织复合材料弹性常数细观力学分析,哈尔滨工业大学学报,第31卷第三期,1999年6月
    [32] Zhang W, Hinoki T, Katoh Y, Kohyama A, Noda T, Muroga T, and Yu J. Crack initiation and growth characteristics SiC/SiC under indentation test. Journal of Nuclear Materials, 1998, 258-263: 1577-1581
    [33] Siron O, and Lamon J. Damage and failure mechanisms of a 3-directional carbon/carbon composite under uniaxial tensile and shear loads. Acta mater. Vol. 46, No. 18, pp. 6631-6643, 1998
    [34] Pappas Y Z, Markopoulos Y P, and Kostopouios V. Failure mechanisms analysis of 2D
    
    carbon/carbon using acoustic emission monitoring. NDT & E International, Vol. 31, No. 3, 1998, pp157-163
    [35] Jekabsons N and Varna J. Micromechanics of damage accumulation in a 2.5D woven C-fiber/SiC ceramic composite. Mechanics of Composite Materials, Vol. 37, No. 4, 2001, pp.287-298
    [36] Weigel N, Kroplin B, and Dinkler D. Micromechanical modeling of damage and failure mechanisms in C/C-SiC. Computational Materials Science 16 (1999) 120-132
    [37] Weigel N, Dinkier D, and Kroplin B. Micromechanically based continuum damage mechanics material laws for fiber-reinforced ceramics. Computers and Structures 79 (2001) 2277-2286
    [38] Xu Y D, Zhang L T, Cheng L F, and Yan D T, Microstructure and mechanical properties of three-dimensional C/SiC composite fabricated by chemical vapor in filtration, Carbon 1998;36(7-8): 1051-1056.
    [39] Macander AB, Crane R Metal. Fabrication and mechanical properties of multi-dimensionally (X-D) braided composite materials. In: Whitney JM, Composite Materials: Testing and Design (7thConf.), STP893, ASTM, 1986:422-443
    [40] Fukuta K. Three-dimensional braided composite material. J.of the Japan Society for Composites Materials, 1995, 21(2): 51-60
    [41] Ifju.P.G., 1995, Shear testing of textile composite materials. Journal of Composite Technology & Research, Vol.17, No.3, pp.199-204
    [42] Avva.V.S., Sadler.R.L., Shivakumar.K.N., Morgan.B.D., 1996, Mechanical properties of 3-D braided composite panels fabricated form using RTM techniques. In: 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference, Partl, pp.1838-1847
    [43] V. Sarma Avva, Robert L. Sadler and Malcolm Lyon, Tesile Properties of Textile Composites, AIAA N93-14754
    [44] Kishore Pochiraju, T-W. Chou, and Bharat M. Shah, Experimental Characterization of 3-D Woven and Braided Composites, AIAA-96-1526-CP
    [45] 庞宝君、杜善义、严勇、赫晓东、韩杰才,三维四向碳/环氧编织复合材料剪切力学性能实验研究,实验力学,第14卷第2期1999年6月,pp.209-215
    [46] 庞宝君、杜善义、韩杰才、赫晓东、严勇,三维四向编织碳/环氧复合材料实验研究,复合材料学报,第16卷第4期,1999年10月,pp136-141
    [47] 刘谦、李嘉禄、李学明,三维编织工艺参数对复合材料拉伸性能的影响,宇航材料工艺,2000年第1期,pp.55-58
    [48] 刘谦、李嘉禄、李学明,三维编织复合材料的弯曲和压缩性能探讨研究,材料工程,2000年第8期,pp.3-6
    [49] 沈真主编,复合材料结构设计手册,中国航空研究院编著。北京,航空工业出版社,
    
    2001年11月。
    [50] 张长瑞、郝元凯,陶瓷基复合材料—原理、工艺、性能和设计。长沙:国防科技大学出版社,2001年1月
    [51] 韩杰才、黄玉东、郝晓东等,多向细编碳/碳复合材料界面力学性能测试与表征,复合材料学报,1995年,第12卷第4期,72-78
    [52] 孔宪仁、黄玉东、范洪涛等,细编穿刺C/C复合材料不同层次界面剪切强度的测试分析,复合材料学报,2001年第18卷 第2期,57-60
    [53] 杜双明,乔生儒、纪岗昌、韩栋,3D-C/SiC复合材料拉—拉疲劳模量和电阻的变化,宇航材料工艺,2002年第5期,pp.38-44
    [54] 杜双明、乔生儒、纪岗昌,韩栋,3D-C/SiC复合材料在室温和1300℃的拉-拉疲劳行为,材料工程.2002年9期,pp.22-25
    [55] 苟文选主编,材料力学(Ⅱ),西安:西北工业大学出版社,2000年1月
    [56] Wang YQ, Wang ASD. On the topological yarn structure of 3-D rectangular and tubular braided performs. Composite Science and Technology, 1994, 51:575-585
    [57] 李嘉禄、刘谦,三维编织复合材料中纤维走向的研究。纺织学报,1999年第20卷第四期,203-206
    [58] 沃丁柱主编,复合材料设计大全。北京:化学工业出版社,2000年1月
    [59] 王波,矫桂琼,陶亮,潘文革。三维编织复合材料拉压破坏的试验研究。实验力学,2002,17(3):301-306
    [60] 蒋咏秋、陆逢升、顾志建,复合材料力学。西安:西安交通大学出版社,1990年3月
    [61] 沃丁柱主编,复合材料设计大全。北京:化学工业出版社,2000年1月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700