用户名: 密码: 验证码:
沙尘输运对脉动风响应的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙尘在实际脉动或阵风风场中的输运规律不同于定常来流风场下的输运规律。输沙对不同脉动参数的风场具有不同程度的响应,因而导致了输沙率、输沙结构等物理量的差别,故对该响应规律的准确认识对理解实际沙尘的输运规律和输运性质进而准确预测沙尘暴具有重要意义。本学位论文针对跃移风沙流输沙率对变化风场的响应时间以及沙尘在阵风作用下向高空的输运规律展开数值模拟研究。主要工作如下:
     1、针对击溅函数的选择对风沙流数值模拟结果的影响展开研究。分析四种典型击溅函数在不同的来流风场下的溅起沙粒数、风沙流结构(输沙率沿高度的分布)以及输沙率的差别。结果表明,利用Kok&Renno的击溅函数模拟的输沙率可以获得与现有的风洞实验一致的结果,同时也描述了输沙量沿高度出现分层点的变化规律。
     2、基于定常与非定常来流下的风沙流模型,开展了输沙率对风场响应时间的数值模拟研究。结果表明:定常来流下,当风场突然加速时,响应时间随初始来流平均风速增大而减小,随粒径增大而增加;当风场突然减速时,则表现出相反的规律。正弦风场来流下,输沙率对风场响应时间均随平均风速及振幅增大而减小,随周期增大而增大,并在周期为20s左右时趋于常值;且波峰的加速响应时间要小于波谷的减速响应时间。
     3、开展了沙尘在阵风作用下输运规律的数值模拟研究。结果表明:沙尘的垂向输运高度和水平输运距离随粒径增大而减小,且小粒径对风的跟随性比大粒径要好;混合粒径情况下,空中的粒径分布和床面的初始粒径分布规律一致,空中平均粒径与距离地面高度相关,当高度在10m-20m之间时,平均粒径开始减小。
Dust and sand transport law shows differences between the actual fluctuating or gust wind field and steady wind flow. The response time of sand transport rate to varies with fluctuating parameters of wind field, which leads to the differences of the sand transport rate, sand structure and other physical quantities. And the response degree is of great significance for understanding the actual dust transport law, transport properties, which is benefit of accurately predicting of dust storms. The thesis focus on the response time of sand transport rate to wind speed fluctuations of near-surface saltation sand flow and the dust transport law of high-altitude in the role of the gust. The main works are concluded as following,
     1. We simulate splashing sand number, sand flow structure (sediment transport rate along the height distribution) and sand transport rate wind-sand flux by using flow typical splash functions. By comparison of results, it can be found that the sand transport rate simulated by the splash function reported by Kok&Renno can be consistent with results measured in wind tunnel, and simulated results can also describe the law of the stratified point along height for sand transport rate.
     2. Based on the steady-state and unsteady wind-blown sand model, we simulate the response time of sand transport rate to wind speed. It is found that the response time decreases with the increase of flow average wind speed, and increases as the particle size increases in the steady stream; nevertheless, the response time of sudden deceleration of the flow displays instead of the law. The response time in the sinusoidal wind stream decreases with increasing the average wind speed and amplitude, and increases with increasing of the cycle; and the time tends to a constant value at about20s as the cycle increases. In addition, the peak acceleration response time is less than the valley deceleration response time.
     3. The study of dust and sand transport in gusts wind is carried out through numerical simulation. It is found that the transport height and horizontal distance decreases with the increase of the grain size, and the smaller particles can follow the wind more easily for the dust and sand transport. In case of a mixed particle diameter, the particle size distribution in the air depends on the particle size distribution of initial bed. The average particle diameter is related to the height from the ground. When the height is between10m and20m, mean particle diameter begins to decrease.
引文
[1]Anderson, R. S., Eolian sediment transport as a stochastic process:The effects of a fluctuating[J]. J Geol.1987,95:497-512.
    [2]Anderson, R. S., Elian sediment transport as a stochastic process:the effects of a fluctuation wind on particle trajectories[J]. Journal of Geology.1987,95(4):497-512.
    [3]Anderson, R. S., Haff PK. Simulation of eolian saltation[J]. Science.1988,241:820-823.
    [4]Anderson, R. S., Haff P K. Wind modification and bed response during saltation of sand in air[J]. Acta. Mech.1991. (Supp.) 1:21-25.
    [5]Anderson, R. S., Sorenson, M., Willetts B. B., A review of recent progress in our understanding of aeolian sediment transport[J]. Acta Mechanica. (Suppl.) 1991,1:1-19.
    [6]Andrear M. Climate effects of changing atmospheric aerosol levels[C]. Henderson-sellers A. Future Climate of the World. Amsterdam:Elserier,1995:311-392.
    [7]Andreotti,B-A two-species model of Aeolian sand transport[J]. Journal of Fluid Mechanics. 2004,510:47-70.
    [8]Andreotti,B. Claudin P. Pouliquen O. Measurements of the Aeolian sand transport saturation length [J]. Geomorphology.2010,123:343-348.
    [9]Baas A C W. Wavelet power spectra of aeolian sand transport by boundary layer turbulence[J]. Geophysical Research Letters.2006,33, L05403.
    [10]Bauer, B. O., R. G. D. Davidson-arnott, N. K. F. Ordstrom, J. Ollerhead, N. L. Jackson Indeterminacy in Aeolian Sediment Transport Across Beaches[J]. Journal of Coastal Research.1996,12(3):641-653.
    [11]Baas, A. C. W. The Formation and Behavior of Aeolian Streamers[D]. PhD Dissertation, University of Southern California. Los Angeles.2003.
    [12]Baas, A. C. W., D. J. Sherman, Formation and behavior of Aeolian streamers[J]. Journal of Geophysical Research.2005,110, F03011.
    [13]Baas A C W., Wavelet power spectra of aeolian sand transport by boundary layer turbulence[J], Geophysical research letters.2006,33(5):L05403.
    [14]Baas, A.C.W., Sherman, J.S., Spatiotemporal variability of aeolian sand transport in a coastal dune environment[J]. Journal of Coastal Research.2006,22(5),1198-1205. West Palm Beach (Florida), ISSN 0749-0208.
    [15]Bagnold, R.A., The movement of desert sand[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1936.157:594-620.
    [16]Bagnold,R. A The physics of blown sand and desert dune[M].London:Methuen.1941.
    [17]Bass A. C.W., Complex systems in aeolian geomorphology [J]. Geomorphology.2007, 91:311-331.
    [18]Barchyn, T.E., Hugenholtz, C.H., Field comparison of four piezoelectric sensors for detecting aeolian sediment transport[J]. Geomorphology.2010,120,368-371.
    [19]Bauer, B. O., R. G. D. Davidson-arnott, N. K. F. Ordstrom, J. Ollerhead, N. L. Jackson Indeterminacy in Aeolian Sediment Transport Across Beaches[J]. Journal of Coastal Research.1996,12(3):641-653.
    [20]Bauer, B. O., S. L.Namikas, D. J. Sherman, Event detection and conditional averaging in unsteady Aeolian systems[J], Journal of Arid Environments.1998,39:345-375.
    [21]Bauer B O, Contemporary research in aeolian geomorphology[J]. Geomorphology.2009, 105,1-5.
    [22]Beladjine,D.,et al.,Collision process between an incident bead and a three-dimensional granular packing[J]. Phys.Rev.E,2007,75(6),06130 5,doi:10.1103.
    [23]Berman, S., Estimating the longitudinal wind spectrum near the ground[J]. Quarterly Journal of the Royal Meteorological Society.1965,91:302-317.
    [24]Butterfield, G. R. Grain transport rates in steady and unsteady turbulent airflows[J]. Acta Mechanica. (Suppl.) 1991,1:97-122.
    [25]Butterfield, G. R. Sand transport response to fluctuating wind velocity. In:Turbulent: Perspectives on Flow and Sediment Transport [J]. (Ed. By N. J. Clifford, J. R. Trench and J. Hardisty),1993, pp.305-335. John Wiley & Sons, New York.
    [26]Butterfield, G. R., Transitional behaviour of saltation:wind tunnel observations of unsteady winds[J]. Journal of Arid Environments.1998,39,377-394.
    [27]Butterfield, G. R., Application of thermal anemometry and high-frequency measurement of mass flux to aeolian sediment transport research[J]. Geomorphology.1999,29:31-58.
    [28]Cheng X L, Zeng Q C, and Hu F, Characteristics of gusty wind disturbances and turbulent fluctuations in windy atmospheric boundary layer behind cold fronts[J]. Journal of Geophysical Research.2011,116,D06101.
    [29]Cheng XueLing, Zeng QingCun, Hu Fei, Stochastic modeling the effect of wind gust on dust entrainment during sand storm[J]. Atmospheric Science.2012,57(27):3595-3602.
    [30]Chepil,W.S. Dynamics of wind erosion. I.Nauture of movement of soil by wind[J].Soil Sci. 1945,60:305-320
    [31]Chepil,W.S.The physics of wind erosion and its control[J].Adren,in Agron.1963,15:3-11
    [32]Cleaver J W, Yates B. Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow[J]. Journal of Colloid and Interface Science.1973,44(3):464-474.
    [33]Creyssels, M., et al., eds. Saltating particles in a turbulent boundary layer:experiment and theory[J]. Vol.625.2009.47.
    [34]Davidson-Arnott, R.G.D., McQuarrie, K., Aagaard, T., The effects of wind gusts on aeolian sediment transport on a beach[J]. Geomorphology.2005,68:115-129.
    [35]Davidson-Arnott, R.G.D., Bauer, B.O., Walker, I. J., Hesp, P.A., Ollerhead, J., Instantaneous and mean aeolian sediment transport rate on beaches:an intercomparison of measurements from two sensor types[J], Journal of Coastal Research, SI 56 (Proccddeing of the 10th International Coastal Symposium).2009,297-301,
    [36]Djaoued Beladjine, Madani Ammi, Luc Oger, and Alexandre Valance.Collision process between an incident bead and a three-dimensional granular packing[J].PHYSICAL REVIEW E.2007,75:061305.
    [37]Dong Zhibao, Hongtao Wang, Zhao A., Impact-entrainment relationship in a saltating cloud[J]. Earth surface processes and landforms.2002,27:641-658.
    [38]Dong Z.B., X P Liu.,H T Wang., X M Wang. Aeolian sand transport:a wind tunnel model[J]. Sedimentary Geology.2003,71-83.
    [39]Dong Zhibao, Wang H., Liu X., Wang X., Li F., and Zhao A.. Experimental investigation of the velocity of a sand cloud blowing over a sandy surface[J]. Earth surface processes and landforms.2004,29:343-358.
    [40]Ellis J T, Sherman D J, Farrell E J, et al. Temporal and spatial variability of aeolian sand transport:Implications for field measurements[J]. Aeolian Research.2012,3(4):379-387.
    [41]Francois Rioual, Alexandre Valance, and Daniel Bideau. Experimental study of the collision process of a grain on a two-dimensional granular bed[J]. PHYSICAL REVIEW E. 2000.62,2:2450-2458.
    [42]G.S.Ma., X.J.Zheng,The fluctuation property of blown sand particles and the wind-sand flow evolution studied by numerical method[J]. Eur.Phys.J.E.2011,34:54 DOI 10.1140.
    [43]Hinze, J. O., Turbulence[M],1975.
    [44]Huang N, Zheng X J, Zhou Y H. The simulation of wind-blown sand movement and probability density function of lift-off velocities of sand particles[J]. Journal of Geophysical Research.2006,111:D20201.
    [45]Hua Lu, Yaping Shao, Toward quantitative prediction of dust storms:an integrated wind erosion modelling system and its applications[J]. Environmental Modelling &Software. 2001,233-249.
    [46]John D. Anderson, Computational Fluid Dynamics[M].1995.
    [47]Jackson, D. W. T., Potential inertial effects in Aeolian sand transport:preliminary results[J]. Sedimentary Geology.1996,106:193-201.
    [48]Jackson, D. W. T., McCloskey, J., Preliminary results from a field investigation of aeolian sand transport using high resolution wind and transport measurements[J]. Geophysical Research Letter.1997,24(2):163-166.
    [49]Jackson, N.L., Sherman, D.J., Hesp, P.A., Klein, A.H.F., Ballasteros Jr., F., Nordstrom, K.F., Small-scale spatial variations in aeolian sediment transport on a finesand beach[J]. J. Coastal Res.2006,39,379-383.
    [50]Kaimal, J. C., Wyngaard, J. C., Izumi, Y., Cote, O. R., Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society.1972,98: 563-589.
    [51]Kaimal, J.C, Turbulenece spectra length scales and structure parameters in the stable surface layer[J], Boundary Layer Meteorology.1973,289-309.
    [52]Kang, L.Q., et al., Wind tunnel experimental investigation of sand velocity in Aeolian sand transport[J]. Geomorphology.2007.97(3-4):p.438-450.
    [53]Karman, T Von, Aerothermodynamics and combustion theory[M], L'Aerotecnica,1953.
    [54]Kawamura, R., Study on sand movement by wind[J]. Reports of Physical Sciences Research Institute of Tokyo University.1951,5:95-112.
    [55]Kok, J.F., Renno, N.O. A comprehensive numerical model of steady state saltation (COMSALT) [J]. Journal of Geophysical Research.2009,114:D17204.
    [56]Legg B J,Raupach M R.Markov-chain simulation of particles in inhomogeneous flows:The mean drift velocity variance[J]. Bound Layer Meteor.1982,24:3-13.
    [57]Leenders J K, van Boxel J H, Sterk G. Wind forces and related saltation transport[J]. Geomorphology.2005,71:357-372.
    [58]Li, W.Q. Zhou, Y.H. Statidtical behaviors of different-sized grains lifting off in stochastic collisions between mixed sand grains and the bed in Aeolian saltation[J].Journal of Geophysical Research.2007,112:D22106.
    [59]Li, Z. S., D. J. Feng, S. L. Wu, A.G.L. Borthwick, J.R.Ni, Grain size and transport characteristics of non-uniform sand in aelian saltation[J]. Geomorphology.2008,484-493.
    [60]Oger, L., M. Ammi, A. Valance, D. Beladjine. Study of the collision of one rapid sphere on 3D packings:Experimental and numerical results.Computers and Mathematics with Applications [J]. Computers and Mathematics with Applications.2008,55:132-148.
    [61]Madani Ammi, Luc Oger, Djaoued Beladjine, and Alexandre Valance. Three-dimensional analysis of the collision process of a bead on a granular packing[J]. PHYSICAL REVIEW E. 2009,79:021305
    [62]Mao Xing, The harmonious character in equilibrium aeolian transport on mixed sand bed[J]. Geomorphology.2007,86:230-242
    [63]McEwan, I.K., Willetts, B.B. Numerical model of the saltation cloud[J]. Acta Mechanica(Suppl.).1991,1:53-66.
    [64]McEwan,I.K., B.B.Willetts, M. A. Rice, The grain/bed collision in sand transport by wind[J]. Sedimentology.1992,39:971-981.
    [65]McEwan, I. K., B. B. Willetts, Adaptation of the near-surface wind to the development of sand transport[J]. J. Fluid Mech.1993,252:99-115.
    [66]Mitha, S., Tran, M.Q., Werner, B.T., and Haff, P.K.. The grain-bed impact in Aeolian saltation[J]. Acta Mechanica.1986,62:268-278
    [67]Morsi, S.A. A.J. Alexander. An investigation of particle trajectories in two-phase flow systems [J]. J Fluid Mech.1972,55:193-208.
    [68]Nalpanis P,Hunt J.C.R and Barrett,C.F. Saltating particales over flat beds[J].Fluid Mech. 1993,251:661-685.
    [69]Nemoto M., K. Nishimura, Numerical simulation of snow saltation and suspension in a turbulent boundary layer[J]. Journal of Geophysical Research.2004, D18206
    [70]Oger, L., et al., Discrete Element Method studies of the collision of one rapid sphere on 2D and 3D packings[J]. European Physical Journal E.2005,17(4),467-476
    [71]Owen, P. R., Saltation of uniform grains in air[J]. Journal of Fluid Mechancis. 1964,20(2),225-242.
    [72]Pfeifer Sascha, Hans Jurgen Schonfeldt,The response of saltation to wind speed fluctuations[J]. Earth Surf Process. Landforms.2012.DOI:10.1002/esp.3237.
    [73]Pyke K. Aolian dust and dust deposits[M]. London:Academic Press Inc. Ltd.,1987.113-126.
    [74]Rasmussen, K.R. Mikkelsen, H.M. On the efficiency of vertical array aeloian field traps[J]. Sedimentology.1998.1365-3091.
    [75]Rasmussen, K. R., M. S(?)rensen, Aeolian mass transport near the saltation threshold[J], Earth Surf. Process. Landforms.1999,24:413-422.
    [76]Rice, M.A., Willetts, B.B.,McEwan,I.K. An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed [J]. Sedimentology. 1995,42(4):695-706.
    [77]Rice, M.A., Willetts, B.B.,McEwan,I.K. Observations of collisions of multiple grains with a granular bed from high-speed cine-film[J]. Sedimentology.1996,43(1):21-31.
    [78]Rioual, F., et al., Experimental study of the collision process of a grain on a two-dimensional granular bed[J]. Physical Review E.2000,62(2),2450-2459.
    [79]Sascha, P. Hans J.S. The response of saltation to wind speed fluctuations [J]. Earth Surface Processes and Landforms.2012,37:1056-1064.
    [80]Sawford B.L., Guest F.M., Lagrangian statistical simulation of the turbulent motion of heavy particles[J]. Boundary Layer Meteorol,1991,54:147-166.
    [81]Sch6nfeldt H-J, von L6wis S. Turbulence-driven saltation in the atmospheric surface layer[J]. Meteorologische Zeitschrift,2003,12:257-268.
    [82]Schonfeldt H-J. High resolution sensors in space and time for de-termination saltation and creep intensity[J]. Earth Surface Processes and Landforms.2012. DOI.10.1002/esp.3228
    [83]Shao.Y. P., Raupach M. R.,The Overshoot and Equilibration of Saltation[J]. Journal of Geophysical Research.1992,VOL.97,No.D 18,20,559-20,564.
    [84]Shao, Y. P., A Lagrangian Stochastic Model for nopassive particle diffusion in turbulent flows[J]. Mathl Comput Modelling.1995,21(9):31-37.
    [85]Shao, Y. P., Li A, Numerical modeling of saltation in atmospheric surface layer[J]. Boundary-Layer Meteorol,1999,91:199-225.
    [86]Shao,Y.P. Physics and modeling of wind erosion[M]. Kluwer Academic Publishers,Boston. 2000.
    [87]Shao, Y. P, A similarity theory for saltation and application to Aeolian mass flux[J]. Boundary-Layer Meteorology.2005,115:319-338.
    [88]Shao, Y. P., Mikami,M. Heterogeneous saltation:theory,observation and comparison [J]. Boundary-Layer Meteorology.2005,115(3):359-379.
    [89]Spies P.J. McEwan, I.K. Butterfield GR. One-dimensional transition behavior in saltation [J]. Earth Surface Processes and Landforms.2000,25:437-453.
    [90]Sherman, D. J., B. O. Bauer, B. O. Gares, x D. W. T. Jackson, Wind blown sand at Castroville, California. Proceedings,25th International Conference[J]. Coastal Engineering, 1996, pp.4214-4226.
    [91]S(?)rensen M. An analytical model of wind-blown sand transport[J]. Acta Mechanica Supplementum,1991.1:67-81.
    [92]Sorensen, M., On the effect of time variability of the wind on rates of aeolian sand transport[J]. Aarhus Geoscience,1997,7:73-77, (Department of Earth Sciences, University of Aarhus).
    [93]Sterk G, Jacobs A F G, Van Boxel J H. The effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer[J]. Earth Surface Processes and Landforms,1998,10:877-887.
    [94]Stout, J. E., Zobeck, T. M., Intermittent saltation[J]. Sedimentology,1997,44:959-972.
    [95]Svasek, J. N., J. H. J. Terwindt, Measurements of sand transport by wind on a natural beach[J]. Sedimentology,1974,311-322.
    [96]Udo, K., Kuriyama, Y., Jackson, D. W. T., Observations of wind-blown sand under various meteorological conditions at a beach[J]. J Geophys Res,2008,113, F04008, doi:10.1029/2007JF000936.
    [97]Ungar, J.E., P.K. Haff, Steady-state saltation in air[J]. Sedimentology,1987.34(2): 289-299.
    [98]Van Boxel JH, Sterk G, Arens SM. Sonic anemometers in Aeolian sediment transport research [J]. Geomorphology.2004,59:131-147.
    [99]Wang, D.W., et al.Statistical analysis of sand grain/bed collision process recorded by high-speed digital camera[J]. Sedimentology.2008,55(2),461-470.
    [100]Wang P, Zheng X J, Hu W W, Saltation and suspension of wind-blown particle movement[J]. Science in China (Series G),2008.51(10):1586-1596.
    [101]Wang P, Zheng,X. J., Saltation transport rate in unsteady wind variations[J]. Europe Journal of Physical E, in submission
    [102]Werner. A physical model of wind-blown sand transport[D]. California Insititute of Technology,Pasadena.1987.
    [103]Werner B.T., Haff, P.K, The impact process in aeolian saltation:two-dimensional simulations[J]. Sedimentology,1988,35,189-196.
    [104]Werner., A steady-state model of wind-blown sand transport[J]. JGR,1990,98:1-16.
    [105]Wiggs, G. F. S, AJ Baird, RJ Atherton The dynamic effects of moisture on the entrainment and transport of sand by wind[J], Geomorphology,2004.59,297(13-30).
    [106]White, B.R., J.C. Schulz, Magnus effect in saltation[J]. J.Fluid Mech,1977.81:p.497-512.
    [107]Willetts B.B., Rice M.A. Collision in Aeolian transport[J]. Acta Mech,1986,23:255-265.
    [108]Willetts,B.B., M.A.,Rice, Collisions in aeolian saltation appli cations of the mechanics of Granular materials in Geophysics[J]. Eur omech 201 conference Interlaken Switzerland. (1985)Oct:13-18.
    [109]Williams.G, Some aspects of the eolian saltation Ioad[J]. Sedimentology 1964,3:257-287.
    [110]Wilson J D,Sawford B L, Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere[J]. Bound-Layer Meteor,1996,78:191-210
    [111]Wyngaard, J. C. (1992), Atmospheric Turbulence[J]. Annual Review of Fluid Mechanics,24: 205-234.'
    [112]Xie Li. Theoretical study on liftoff velocity distribution and splash of sand particles based on particle-bed collision in wind-blown sand flux[D].2005, Lanzhou university.
    [113]Xie, L., Z.B. Dong, and X.J. Zheng, Experimental analysis of sand particles' lift-off and incident velocities in wind-blown sand flux[J]. Acta Mechnica Sinica,2005.21:p.564-573.
    [114]Yue G W, Zheng X J, Electric field in wind-blown sand flux with thermal diffusion[J], Journal of Geophysical Research,111 2006:D16106.
    [115]You-He Zhou,Wan-Qing LI,Xiao-Jing Zheng. PDM simulations of stochastic collisions of sandy grain-bed with mixed size in aeolian sand saltation[J]. Journal of Geophysical Research,2006,111:D15108
    [116]Zeng Q, Cheng X, Hu F, et al. Gustiness and coherent structure of strong winds and their role in dust emission and entrainment [J]. Advances in atmospheric sciences,2010,27(1): 1-13.
    [117]Zheng X J, Xie L, Zou X Y. Theoretical prediction of liftoff angular velocity distributions of sand particles in wind-blown sand flux[J].Journal of Geophysical Research,2006a, D11109.
    [118]Zheng X J, Huang N, Zhou Y H, The effect of electrostatic force on the evolution of sand saltation cloud[J], The European Physical Journal E (IF:2.503),19(2) 2006b:129-138
    [119]Zheng X J. Xie L, Xueyong Zon. Theoretical prediction of liftoff angular velocity distributions of sand particles in wind-blown sand flux[J]. Journal of Geophysical Research, 2006,1111:D11190.
    [120]Zheng X J.,Ning Cheng and Li Xie. A three-dimensional analysis on lift-off velocities of sand grains in wind-blown sand flux[J]. Earth Surf. Process. Landforms,2008,33:1824-1838.
    [121]Zheng X J. Mechanics of wind-blown sand movements [M]. Environmental Science and Engineering. Springer-Verlag,2009.
    [122]Zheng X J, Zhang J H, Characteristics of near-surface turbulence during a dust storm passing Minqin on March 19,2010[J], Chinese Science Bulletin,2010,55(27-28):3107-3112.
    [123]Zhou Y H, Guo X, Zheng X J. Experimental measurement of wind-sand flux and sand transport for naturally mixed sands[J], Phys Rev E,2002,66:021305.
    [124]Zhou, Y.H., Li, W.Q., Zheng, X.J. PDM simulation of stochastic collisions of sandy grain-bed with mixed size in Aeolian sand saltation [J]. Journal of Geophysical Research. 2006,111:D15108.
    [125]Zingg, A. W. (1953), Some characteristics of aeolian sand movement by saltation process[J]. Edition du Center National de la Recherche Scientifique 7e:197-208.
    [126]Zou Xue-Yong, Zhou-Long Wang, et al, The distribution of velocity and energy of saltating sand grains in a wind tunnel[J]. Geomorphology,2001,36:55-165.
    [127]Z.S. Li, D.J. Feng, S.L. Wu, A.G.L. Borthwick, J.R. Ni,The harmonious character in equilibrium aeolian transport[J], Geomorphology 100 (2008) 484-493.
    [128]包慧娟,李振山.风沙流中风速纵向脉动的实验研究[J].中国沙漠.2004,24(2):244-247.
    [129]程雪玲,曾庆存,胡非,大气边界层强风的阵性和相干结构[J].气候与环境研究.2007(3):227-243.
    [130]程雪玲,曾庆存,胡非等,大气边界层强风的阵性和相干结构[J].气候与环境研究.2007,12:227-243.
    [131]程雪玲,胡非,曾庆存,格子玻尔兹曼方法模拟大气边界层中的阵风结构[J].科学通报.2012,57,10:846-853.
    [132]董治宝,慕青松,王洪涛,风沙流中风速廓线的数值模拟与实验验证[J].气象学报.2008,66(2):158-166.
    [133]董玉祥,马骏,风速对海岸风沙流中不同粒径沙粒垂向分布的影响[J].中山大学学报.2008,47(5):98-103.
    [134]黄宁,辜艳丹,粉尘释放和沉积机制的研究进展[J].地球科学进展.2009,(24):1175-1184.
    [135]胡泽勇,黄荣辉,卫国安,等.2000年6月4日沙尘暴过境时敦煌地面气象要素及地表能量平衡特征的变化[J].大气科学,2002,26:1-8.
    [136]胡隐樵,光田宁,强沙尘暴微气象特征和局地触发机制[J].干旱气象,1997,21(5):581-589.
    [137]李岩瑛,杨晓玲,王式功,河西走廊东部近50a沙尘暴成因、危害及防御对策[J].中国沙漠,2002,22(3):283-286.
    [138]李岩瑛,张强,薛新玲,王荣基,民勤大气边界层特征与沙尘天气的气候学关系研究[J].中国沙漠.2011,3.757-764.
    [139]李万青,风沙跃移运动的粒-床随机碰撞数值模拟研究[D].2007.
    [140]李晓岚,张宏升,我国沙尘天气微气象学和湍流输送特征研究进展[J].干旱气象.2010,28,256-264.
    [141]李祥余,何清,黄少鹏,等.南疆一次强沙尘暴前后塔中近地面各气象要素的变化特征[J].高原气象.2009,6:652-662
    [142]李振山,张琦封,风沙流的输沙率沿程变化规律[J].中国沙漠.2006,26(2),189-193
    [143]鲁录义,顾兆林,罗昔联,雷康斌,一种风沙运动的颗粒动力学静电起电模型[J].物理学报.2008,57(1).
    [144]倪晋仁,李振山,近床面区挟沙气流流速垂线分布特征[J].泥沙研究.2001,03.
    [145]彭珍,刘熙明,洪钟祥等,北京地区一次强沙尘暴过程的大气边界层结构和湍流通量输送特征[J].气候与环境研究.2007,12:267-276.
    [146]彭晓庆,王萍,正弦风速下的非平稳跃移风沙运动模拟[J].中国沙漠.2011,31(3):588-592.
    [147]史培军,严平,高尚玉,王一谋,哈斯,于云江.我国沙尘暴灾害及其研究进展与展望[J].自然灾害学报.2000,9(3):71-77.
    [148]王式功,王金艳,周自江,等,中国沙尘天气的区域特征[J].地理学报.2003,58(2):193-200.
    [149]王萍,非定常风场中的风沙流演化过程研究[D].兰州大学.2011.
    [150]王萍,胡文文,郑晓静,沙粒的跃移与悬移[J].中国科学.2008,38,1:908-918
    [151]吴正.风沙地貌学[M].1987:21-22.
    [152]谢亮,张静红,沙尘暴期间的温度脉动脉动特征分析[J].中国沙漠.2011,31,649-654.
    [153]杨斌,王元,刘江,张洋,风沙流中沙粒相浓度的高频测量[J].实验流体力学.2010,24(5):47-50.
    [154]杨斌,王元,王大伟,风沙两相流测量技术研究进展[J].力学进展.2006,36(4):580-590.
    [155]岳高伟,黄宁,郑晓静,沙粒形状的不规则性及静电力对起动风速的影响[J].中国沙漠.2003,23(6)621-627
    [156]游来光,马培民,陈君寒,栗柯,沙暴天气下大气中沙尘粒子空间分布特点及其微结构[J].应用气象学报.1991,2(1):13-21.
    [157]曾庆存,董超华,彭公炳,千里黄云:东亚沙尘暴研究[M].科学出版社,2006
    [158]曾庆存,程雪玲,胡非,大气边界层非常定下沉急流和阵风的起沙机理[J].气候与环境研究2007,12(3):
    [159]张强;曹晓彦,敦煌地区荒漠戈壁地表热量和辐射平衡特征的研究[J].大气科学.2003,(02):245-254
    [160]张成君,胡轶鑫,钱韵砚等,兰州市冬季大气沉降尘粒度特征及来源解析[J].兰州大学学报(自然科学版),2006,42:39-44.
    [161]李振山,倪晋仁.风沙流中风速脉动的实验测量[J].应用基础与工程科学学报.2003,11(4):352-360.
    [162]张克存,屈建军,董治宝,俎瑞平,方海燕.风沙流中风速脉动对输沙量的影响[J].中国沙漠.2006,26(3):336-340.
    [163]张树,胡赞远,吕志咏.风沙运动中MAGNUS效应的数值研究[J].中国沙漠.2010,30(3):498-504.
    [164]詹科杰,赵明,杨自辉,地-气温差对沙尘源区不同下垫面沙尘输运结构的影响[J].中国沙漠.2011,31,655-660.
    [165]赵兴梁,甘肃特大沙尘暴的危害与对策[J].中国沙漠.1993,13(3):1-5.
    [166]郑晓静,王萍.风沙流中沙粒随机运动的数值模拟研究[J].中国沙漠.2006,26:184-188.
    [167]郑晓静,张静红,2010年3月19日沙尘暴期间甘肃民勤地区近地表的湍流性质[J].科学通报.2010,55(22),2235-2240
    [168]周秀骥,徐祥德,颜鹏,翁永辉,2000年春季沙尘暴动力学特征[J].中国科学D辑.2002.,32(4):327-334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700