用户名: 密码: 验证码:
无机表面薄膜力学及耐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面薄膜赋予材料表面耐磨、耐蚀、耐热、耐疲劳以及特殊的光、热、电和磁等多种功能,在现代高新技术中受到了越来越多的重视,成为材料科学中最活跃的研究领域之一。薄膜材料和薄膜技术为机械、能源和交通等部门,以及现代军事提供了具有优异性能的新材料和器件,极大地促进了光电子技术、计算机技术、航空航天技术等现代高新技术的发展,在高新技术产业中具有举足轻重的作用。本文研究了三种无机薄膜的制备工艺及其力学和耐蚀性能,获得了一些有意义的结果。
    采用磁控溅射方法在硅和玻璃基体上沉积了BaTiO3(BTO)薄膜,通过原位测试不同厚度BTO薄膜的应力、介电常数和铁电性能随温度的变化规律,系统研究了薄膜的铁电性能与厚度和应力的关系,并用两种方法确定BTO薄膜的双轴杨氏模量和热膨胀系数。实验结果表明,BTO薄膜中的应力为张应力。膜中张应力随薄膜厚度的减小而增大,导致居里温度下降,剩余极化减小,矫顽场增大。特别是当厚度较小(35~250nm)时,这种变化更加明显。张应力对薄膜居里温度的影响主要位于300-450Mpa应力区间,在该区间内,应力增大导致薄膜居里温度线性下降(0.16℃/Mpa)。根据温度升高过程中BTO薄膜应力曲线的斜率变化、介电常数峰值、电滞回线收缩等确定的居里温度一致。由于薄膜中张应力的存在,BTO薄膜相变温度比体材料的相变温度低。电滞回线表明铁电-顺电相变开始于BTO薄膜的居里温度,并持续到接近BTO体材料的居里温度。说明BTO薄膜中存在多种畴。BTO薄膜的铁电性能主要由膜内畴决定,而表面畴的影响相对很小。另外,根据升温过程中铁电-顺电相变时晶胞体积和应变的变化,以及不同基体上BTO薄膜应力随温度变化率的计算结果表明,BTO薄膜双轴杨氏模量比体材料的稍大,而热膨胀系数比体材料的偏小。
    薄膜应力的存在和变化对薄膜与基体的粘结强度有很大影响。为了制备高质量的类金刚石(DLC)薄膜,并改善DLC薄膜和基体之间的粘接强度,采用双离子束轰击混合(DIBM)技术+离子束沉积(IBD)技术在钢基体上沉积DLC膜,研究了DLC膜的力学性能和耐蚀性能。实验结果表明,利用DIBM + IBD沉积技术可以明显提高DLC膜和钢基的复合硬度,而且还使硬度峰值向低能方向偏移; 同时显著地提高了DLC膜/基的粘结强度(当DIBM技术中所用中能Ar+束能量为30 keV时,其沉积的DLC膜临界载荷Pc为IBD工艺沉积膜Pc的2倍以上)。钢表面类金刚石膜改性后,不仅具有减摩作用,而且表现出良好的耐磨性。失重试验结
The coating technology is very important and applied widely in industry due to the excellent performance of film, such as good resistance to wear, corrosion, heat, and excellent optical, thermal, magnetism and electrics properties. The advances made in thin film drive the expansion of photoelectronics, computer, microelectronics, sensors and information industry and provide high-tech materials and devices for mechanics, energy sources, traffic and national defence department. In this thesis, the film deposition technique, the mechanical and anti-corrosion behaviors of films are studied by analyzing the BTO, DLC and Fe-P films. Some interesting results are obtained.
     Thin BTO films were deposited by magnetron sputtering on Si and glass substrates. The thickness of the BTO layer was varied between 35 nm and 1 μm. The stress, dielectric permittivity, and ferroelectric hysteresis loop were measured after deposition and during heating. The combined effect of film thickness and stress on BTO ferroelectric behavior was studied. The thermal expansion and bilayer-modulus were calculated by two methods. It is found that the BTO films are under tensile stress at the Curie temperature. The tensile stress in BTO films increases with decreasing film thickness leading to a shift of the Curie point to a lower temperature, a decrease of remanent polarization, and an increase of the coercive field, especially obvious as the film thickness lower than 250 nm. The effect of tensile stress on the Curie temperature is dominant within a restricted range of stresses between 300 and 450 mega Pascals(MPa), where the Curie temperature decreases linearly by about 0.16℃/Mpa. A good correlation is found among the stress, dielectric and ferroelectric measurements with respect to the temperature of the Curie point, which is determined based on identifying changes in the slope of film stress versus temperature plot, the peak characteristic of dielectric permittivity and the shrinkage of hysteresis loop during heating. The ferroelectric hysteresis loop shows that the ferroelectric-paraelectric phase transition starts at the Curie temperature of the BTO films and continues within a range of temperatures until about the Curie temperature of the bulk BTO material. The ferroelectric behavior indicates the presence of various types of domains. The ferroelectric domains within the interior part of the BTO film have a dominant effect
    on its ferroelectric behavior, while the contribution of surface domains is relatively small. The biaxial modulus and expansion coefficient of BTO films were determined based on the change of stress in BTO films and of the volume of BTO unit cell due to phase transition or the stress slope of BTO films on Si and glass substrates versus temperature plot. The biaxial modulus of BTO film is little higher than that of bulk BTO materials, while the expansion coefficient of BTO films is little lower than that of bulk BTO materials. To improve the adhesion strength of film on substrate, a dual ion-beam bombardment and mixing (DIBM) technique was developed and employed to prepare diamond-like carbon (DLC) films on steel substrates. The mechanical performance and anti-corrosion behavior of DLC films were studied. The results show that DIBM technology not only increases the compound hardness of DLC film and steel substrate, but also leads to an energy shift corresponding to the maximum microhardness to lower ion energy. By implanting with medium energy Ar ion beam and introducing a mixed interface, DIBM technology improves the anti-wear performance and adhesion strength of DLC film, the critic load of DLC films prepared by DIBM + IBD increases by more than a factor of two than that by IBD. Also, the DLC films increase the stability and reduce corrosion rate of substrates in corrosive solution by functioning as a physical barrier and restraining from anodizing. In addition, the DLC films improve the steel substrate resistance to pitting corrosion remarkably. Thus, the DLC film provides a favorable protection for steel to be applied in corrosion environments. Also studied in the thesis was the effect of bath composition and process on the deposition rate and corrosion behavior of electroless Fe-P deposits by weight and electrochemical method. During the deposition process, the copper substrate was coupled with aluminum foil, which shifted the potential negatively and decreased the resistance for cathodic and anodic reaction, thus induced the Fe-P deposition. The reaction orders of bath composition and the activation energy were determined by plotting the logarithm of deposition rate versus the logarithm of concentration of bath and reciprocal of temperature, respectively. And the reaction orders of NaH2PO2、FeSO4、 H+ and the activation energy are 0.34、 0.18、 0.13 and 4.425 Kcal/mol, respectively. The deposition rate determined by electrochemical method is higher than that by weight method due to the other reactions, such as hydrogen evolution. Compared with the corrosion rate in NaCl solution, the corrosion rate in acid solution
    is large. In the polarization curve of Fe-P deposits in NaOH solution, there are several current peaks, suggesting the appearance of new reaction or the change of surface state. The cycle voltammetric behavior at different scan rate of the deposits in NaOH solution shows that the oxidation reaction is irreversible.
引文
[1] Amanda K P L , Structural characterisation of multilayer films. Thin Solid Films,1996,275:35-39
    [2] 许 俊 华 , 李 戈 扬 , 顾 明 元 等 , 理 化 检 测 — 物 理 分 册 PTCA(PART A),1998,34(12):28-32
    [3] Stamopoulos D, Pissas M, Manios E, Ferromagnetic-superconducting hybrid films and their possible applications: A direct study in a model combinatorial film. Phys.Rev.B, 2005,71(1): 014522-1-6
    [4] Ludwig A, Quandt E, Giant magnetostrictive thin films for applications in microelectromechanical systems. J. Appl. Phys., 2000, 87( 9):4691-4695
    [5] Zhao Y G, Wang Y H, Zhang G M, et al., Universal behavior of giant electroresistance in epitaxial La0.67Ca0.33MnO3 thin films. Appl. Phys. Lett., 2005,86(12), 122502-1-3
    [6] 唐伟忠,薄膜材料制备原理、技术及应用. 北京:冶金工业出版社,1999 [7 ] 徐滨士,刘世参,表面工程. 北京:机械工业出版社,2000
    [8] Huang G F,Zhou L P, Huang W Q, et al., The mechanical performance and anti-corrosion behavior of diamond-like carbon film. Diamond Relat. Mater., 2003,12(8):1406-1410 [9 ] 潘颐,吴希俊,纳米材料制备、结构及性能. 材料科学与工程,1993,11(4):16-19
    [10] 滕 荣 厚 , 纳 米 级 材 料 的 内 涵 、 判 据 及 其 研 究 方 向 . 钢 铁 研 究 学 报 , 1998,10(2):61-65
    [11] Wu Z Q, Huang N D, Liu Z R et al.,Ferroelectricity in Pb.Zr0.5Ti0.5O3 thin films: Critical thickness and 180° stripe domains. Phys.Rev.B, 2004,70(10), 104108-1-4
    [12] Jeon H J, Kim I, Kim J, et al., Thickness effect on magnetic properties of nanocrystalline CoFeBN soft magnetic thin films. Journal of Magnetism and Magnetic Materials, 2004, 272-276: 382-384
    [13] Tanaka M, Spintronics: recent progress and tomorrow’s challenges. Journal of Crystal Growth, 2005, 278:25–37
    [14] Zeng J M, Wang H, Wang M, et al., Structural and electrical characteristics of thin films of BaTiO3 prepared by atmospheric-pressure metal–organic chemical vapour deposition. J. Phys. D: Appl. Phys. 1998,31:2416–2420
    [15] Pontesa F M, Leitea E R, Lee E J H, et al., Dielectric properties and microstructure of SrTiO3/BaTiO3 multilayer thin films prepared by a chemical route. Thin Solid Films, 2001,385: 260-265
    [16] Gupta S, Investigations of micro-stress and phase transition in sol–gel-derived multideposited coatings of barium titanate using Raman spectroscopy. J. Raman Spectrosc., 2002; 33: 42–49
    [17] Li D, Lin X W, Cheng S C et al., Synthesis of superhard carbon nitride composite coatings. Appl.Phys.Lett., 1995,67(2):203-205
    [18] Zhu Y, Huang M, Huang J, et al., Vacuum plasma sprayed nanostructured titanium oxide films. J Thermal Spray Technology,1999 ,8 (2):219-222.
    [19] Kwak B S, Zhang K, Boyd E P,et al. Metalorganic chemical vapor deposition of BaTiO3 thin films. J. Appl. Phys., 1991,69 (2):767-772
    [20] Hovsepian P E, Lewis D B, Munz W D, Recent progress in large scale manufacturing of multiplayer/superlattice hard coatings. Surf.Coat.Technol., 2000,133-134:166-175
    [21] 林 文 松 , 李 培 耀 , 钱 士 强 等 , 纳 米 涂 层 的 研 究 现 状 与 展 望 , 材 料 保 护 , 2003,36(7):1-3
    [22] Donnet C, Erdemir A, Historical developments and new trends in tribological and solid lubricant coatings. Surface and Coatings Technology, 2004, 180-181: 76-84
    [23] Collins R W, Koh J, Fujiwara H et al., Recent progress in thin film growth analysis by multichannel spectroscopic ellipsometry . Applied Surface Science, 2000,154-155: 217-228
    [24] 曾哓雁,吴懿平,表面工程学,机械工业出版社,2003,P295
    [25] Doerner M F, Nix W D, A method for interpreting the data from depth-sensing indentation instruments. J.Mater.Res. 1986,1:601-609
    [26] Segmueller A, Murakami M, X-ray Diffraction Analysis of Strains and Stresses in Thin Films. in Treatise on Materials Science and Engineering, H.Herman, ed., Academic Press, New York, 1988,27, pp143-200
    [27] Flinn P A, Gardner D S, Nix W D, Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history. IEEE Transactions on electron devices, 1987,ED-34(3):689-699
    [28] Flinn P A, Principles and applications of wafer curvature techniques for stress measurements in thin films. Mat.Res.Soc.Symp.Proc.Proc., 1989,130:41-52
    [29] Kylner C, An optical instrument for overall stress and local stress relaxation analysis. Rev.Sci.Instrum., 1997,68(1):143-149
    [30] Volkert C A, Stress and plastic flow in silicon during amorphization by ion bombardment. J.Appl.Phys., 1991,70(7):3521-3527
    [31] Malhotra S G, Rek Z U, Yalisova S M, et al., Analysis of thin film stress measurement techniques, Thin Solid Films, 1997,301(1):45-54
    [32] Miura H, Ohta H, Okamoto N, Crystallization-induced stress in silicon thin films. Appl. Phys. Lett., 1992, 60(22), 2746-2748.
    [33] Roll K, Hoffman H, Michelson interferometer for deformation measurement in a UHV system at elevated temperatures. Rev.Sci.Instrum., 1976,47:1183-1185
    [34] Finegan J D, Haffman R W, Stress and stress anisotropy in iron films. in Trans. 8th Nat-vacuum.symp.,L.E.press,Ed.Amer.Vac.Soc.,1961, pp935-946
    [35] Rozgonyi G A, Ciesiclka T J, X-ray determination of stresses in thin films and substrates by automic Bragg angle control. Rev.Sci.Instrum.,1973,44:1053-1057
    [36] Segmuller A, Angilelo J, Laplaca S J, Auyomatic X-ray diffraction measurement of the lattice curvature of substrate wafer for the determination of linear strain pattern. J.Appl.Phys., 1980,51:6224-6230
    [37] Bohg A, Measurement of stresses in thin films on single crystalline substrates. Phys.stat.sol. (a), 1978,46:445-450
    [38] Kuo C L, Vanier P E, Bilello J C, Residual strains in amorphous silicon films measured by x-ray double crystal topography. J.Appl.Phys., 1984,55(2):375-377
    [39] Eernisse E P, Sensitive technique for studying ion-implantation damage. Appl.Phys.lett., 1971,18(12):581-583
    [40] Je J H, Gyarmati E, Naoumidis A, Scratch adhesion test of reactively sputtered TiN coatings on a soft substrate. Thin Solid Films, 1986, 136(1):57-67
    [41] 匡同春,刘正义,周克崧等,用压痕试验法研究 CVD 金刚石膜的粘附性能.无机材料学报,1998,13(1):83-86
    [42] Erch R A, Nichols F, Dierks J F, Pull-test adhesion measurements of diamondlike carbon films on silicon carbide, silicon nitride, aluminum oxide, and zirconium oxide. J Vac Sci Technol A, 1994, 12(4):1583-1586
    [43] Li H, Bradt R C, The indentation size effect and the hardness of single crystal diamond on the (001). Diamond and Related Materials, 1992,1(12):1161-1167
    [44] Mattesini M, Matar S F, Density-functional theory investigation of hardness, stability, and electron-energy-loss spectra of carbon nitrides with C11N4 stoichiometry. Phys.Rev.B, 2002, 65(7),075110-1-075110-14
    [45] Boikov Y A, Claeson T, Microstructure and dielectric parameters of epitaxial SrRuO3/BaTiO3/SrRuO3 heterostructures. J.Appl.Phys., 2001,89(9):5053-5059
    [46] Evangelou E K, Konofaos N, Properties of batium titanate(BaTiO3) Thin Films Grown on Silicon by rf magnetron sputtering. Philosophical Magazine B, 2000,80(3):395-407
    [47] Wang F, Haertling G H, Birefringent bistability in (Pb,La)(Zr,Ti)O3 thin films with a ferroelectric-semiconductor interface. Appl. Phys. Lett., 1993,63(13):1730-1732.
    [48] Zhang Q, Whatmore R W, Improved ferroelectric and pyroelectric properties in Mn-doped lead zirconate titanate thin films. J. Appl.Phys., 2003, 94(8):5228-5233
    [49] Diéguez O, Tinte S, Antons A, et al., Ab initio study of the phase diagram of epitaxial BaTiO3. Phys.Rev B, 2004,69: 212101-1-212101-4
    [50] Galt D, Price J C, Beall J A, et al., Characterization of a tunable thin film microwave YBa2Cu3O7–x/SrTiO3 coplanar capacitor. Appl.Phys.Lett., 1993, 63(22): 3078-3080
    [51] Yu T, Chen Y F, Liu Z G, et al., Epitaxial growth of conductive LaNiO3 thin films by pulsed laser ablation. Mater.Lett., 1996, 26(1-2): 73-76
    [52] Liu Z G, Chen X Y, Liu J M, et al., Pulsed laser deposition of PZT/LSCO heterostructure for integrated ferroelectric devices. Solid. Stat.Commun., 1994, 91(9): 671-673
    [53] Boikov Y A, Claeson T, Microstructure and dielectric parameters of epitaxial SrRuO3/BaTiO3/SrRuO3 heterostructures. J.Appl.Phys., 2001,89(9): 5053-5059
    [54] Evangelou E K, Konofaos N, Properties of batium titanate(BaTiO3) Thin Films Grown on Silicon by rf magnetron sputtering. Philosophical Magazine B, 2000,80(3):395-407
    [55] Boikov Y A, Khamchane K, Claeson T, Ferroelectric domain wall relaxation in Ba0.25Sr0.75TiO3 films displaying Curie-Weiss behavior. J.Appl.Phys., 2004, 96(8):4392-4399
    [56] Fousek J, Janovec V, The Orientation of Domain Walls in Twinned Ferroelectric Crystals J.Appl.Phys., 1969, 40(1):135-142
    [57] Matsunaga T, Hosokawa T, Umetani Y et al., Structural investigation of Pby(Zr0.57Ti0.43)2-yO3 films deposited on Pt(001)/MgO(001) substrates by rf sputtering. Phys. Rev B, 2002, 66:064102-1-064102-8
    [58] Yoon S G, Safari A, (Ba0,5, Sr0.5)TiO3 thin film preparation by r.f. magnetron sputtering and its electric properties. Thin Solid Films, 1995, 254(1):211-215
    [59] Gao Y, Tran T, Alluri P, Isotopic study of metalorganic chemical vapor deposition of (Ba, Sr)TiO3 films on Pt. Appl.Phys.Lett., 1999,75(3):415-417
    [60] Hoerman B H, Ford G M, Kaufmann LD, et al., Dielectric properties of epitaxial BaTiO3 thin films. Appl. Phys. Lett. , 1998, 73(16):2248-2250
    [61] Joshi P C, Desu S B, Structural, electrical, and optical studies on rapid thermally processed ferroelectric BaTiO3 thin films prepared by metallo-organic solution deposition technique. Thin Solid Films, 1997,300(1,2):289-294
    [62] Gill D M, Block B A, Conrad C W, et al., Thin film channel waveguides fabricated in metalorganic chemical vapor deposition grown BaTiO3 on MgO Appl. Phys. Lett ., 1996, 69(20):2968-2970
    [63] Iijima K, Trashima T, Yamamoto K, et al., Preparation of ferroelectric BaTiO3 thin films by activated reactive evaporation. Appl.Phys.Lett., 1990,56(6 ):527-529
    [64] Kwak B S, Zhang K, Boyd P R, et al., Metalorganic chemical vapor deposition of BaTiO3 thin films. J.Appl.Phys. 1991,69( 2 ):767-772
    [65] Li H C, Si W D, West A D, et al., Near single crystal-level dielectric loss and nonlinearity in pulsed laser deposited SrTiO3 thin films. Appl.Phys.Lett.1998,73(2):190-192; Thickness dependence of dielectric loss in SrTiO3 thin films . 1998,73(4):464-466
    [66] Kamalsanan M N, Chandra S, Joshi P C, et al., Structural and optical properties of sol-gel-processed BaTiO3 ferroelectric thin films, Appl.Phys.Lett., 1991,59(27):3547-3549
    [67] Abe K, Komatsu S, Epitaxial Growth of SrTiO3 Films on Pt Electrodes and Their Electrical Properties. Jpn.J.Appl.Phys.,1992,31(9B):2985-2988
    [68] Kamalasanan M N, Chandra S, Joshi P C, et al., Structural and optical properties of sol-gel-processed BaTiO3 ferroelectric thin films. Appl. Phys. Lett., 1991, 59(27):3547-3549
    [69] Kim Y, Choo S H, Measurements of residual stress in the thin film micro-gas sensors containing metallic layers. Thin Solid Films, 2001,394(1,2):283-290
    [70] Lee E G, Park J S, Lee J G, Ferroelectric properties of crystalline oriented Pb(Zr,Ti)O3 thin films prepared by sol-gel technique. Thin Solid Films, 1998,312(1,2):228-231
    [71] Desu S B, Influence of Stresses on Properties of Ferroelectric BaTiO3 Thin Films. Electrochem.Soc., 1993,140(10):2981-2987
    [72] Desu S B, Sresss Induced Modification in Ferroelectric Films. Phys.Stat.Sol.(a), 1994,141(1)119-133
    [73] Tabata H, Tanaka H, Kawai T, Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Appl. Phys. Lett., 1994,65(14):1970-1972
    [74] Alpay S P, Misirlioglu I B, Sharma A, et al., Structural characteristics of ferroelectric phase transformations in single-domain epitaxial films. J. Appl. Phys., 2004, 95(12):8118-8123
    [75] Haun M J, Furman E, Jang S J, et al., Thermodynamic theory of PbTiO3. J. Appl. Phys., 1987,62(8), 3331-3338
    [76] Hayashi T, Oji N, Maiwa H, Film Thickness Dependence of Dielectric Properties of BaTiO3 Thin Films Prepared by Sol-Gel Method. Jpn. J. Appl. Phys., 1994, 33(9B): 5277-5280
    [77] Ishikawa K, Yoshikawa K, Okada N, Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev., B 1988,37(10):5852-5855
    [78] Lian L, Sottos N R, Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films. J. Appl. Phys., 2000, 87(8):3941-3949
    [79] Zhang J, Yin Z, Zhang M S, et al., Size-driven phase transition in stress-induced ferroelectric thin films. Solid State Communications, 2001,118(5):241-246 .
    [80] Pertsev N A, Zembilgotov A G, Tagantsev A K, Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films. Phys. Rev. Lett., 1998, 80:1988-1991
    [81] Harms U, Schwarz R B, Alamos L, et al., Anomalous modulus and work function at the interfaces of thin films. Phys.Rev.B, 2002,65(8): 085409-1-085409-8
    [82] Kwok C K, Desu S B, Novel method for determining the Curie temperature of ferroelectric films. Rev. Sci. Instrum., 1993,64 (9):2604-2606
    [83] Music D, Chirita V, Schneider J M, et al., Effect of chemical composition on the elastic and electrical properties of the boron-oxygen-yttrium system studied by ab initio and experimental means. Phys.Rev.B, 2004,69, 092103-1-092103-4
    [84] Cambon O, Haines J, Fraysse G, et al., Piezoelectric characterization and thermal stability of a high-performance a-quartz-type material, gallium arsenate. J.Appl.Phys., 2005,97(7): 074110-1-074110-7
    [85] Catalan G, Corbett M H, Bowman R M, et al., Effect of thermal expansion mismatch on the dielectric peak temperature of thin film relaxors, J.Appl.Phys., 2002, 91(4):2295-2301
    [86] Jwo H, Li H, Stress analysis of elastically anisotropic bilayer structures. J.Appl.Phys., 1991,69(3):1384-1388
    [87] Lima Jr M M., Marques F C, Thermomechanical properties of a-Si:H and a-Ge:H. Thin Solid Films, 2001, 398–399:549–552
    [88] Aisenberg S, Chabot R W, Ion-Beam Deposition of Thin Films of Diamondlike Carbon, J Appl Phys, 1971, 42(7):2953-58
    [89] Mori T, Namba Y, Hard diamondlike carbon films deposited by ionized deposition of methane gas. J Vac Sci Technol A, 1983, 1(1):23-27
    [90] Tsai H C, Bogy D B, Characterization of diamondlike carbon films and their application as overcoats on thin-film media for magnetic recording. J Vac Sci Technol, 1987, A5(6):3287-3312
    [91] Li H, Bradt R C, The indentation size effect and the hardness of single crystal diamond on the (001)Si. Diamond and Related Materials, 1992, 1(12):1161-1167
    [92] Xu S, Ostrikov K N, Li Y, et al., Low-frequency, high-density, inductively coupled plasma sources:Operation and applications. Physics of Plasmas, 2001,8(5):2549-2557
    [93] Amarjit S, Pierre L, Deposition of diamond-like carbon films by low energy ion beam and d.c. magnetron sputtering. Surf. Coat. Technol., 1991, 47(1-3):188-200
    [94] Kitabatake M, Wasa K, Growth of diamond at room temperature by an ion-beam sputter deposition under hydrogen-ion bombardment. J Appl Phys, 1985, 58(4):1693-1695
    [95] Cho N H, Veirs D K, Ager III J W et al., Effects of substrate temperature on chemical structure of amorphous carbon films. J Appl Phys, 1992, 71(5):2443-2448
    [96] Weissmante C, Breuer K, Winde B, Hard films of unusual microstructure. Thin Solid Films, 1983, 100(4):383-389
    [97] Sun Z, Xu S, Ostrikov K N, E and H regimes of plasma enhanced chemical vapor deposition of diamond-like carbon film in low frequency inductively coupled plasma reactor. Diamond Relat. Mater., 2001,11(1):92-97.
    [98] Iyer SB, Harshavaardhan KS, Kumar V, Buckling patterns in diamond-like carbon films. Thin Solid Films, 1995,256(1-2): 94-100
    [99] Wei Q, Sankar J, Narayan J, Structure and properties of novel functional diamond-like carbon coatings produced by laser ablation. Surf. Coat. Technol., 2001, 146-147: 250-257.
    [100] Schroer A, Ensinger W, Frech G, The properties of amorphous carbon films obtained by ion-beam-assisted carbon evaporation. Surf. Coat. Technol., 1991, 47(1-3): 418-425
    [101] Varma A, Palshin V, Meletis E I, Structure–property relationship of Si-DLC films. Surf. Coat. Technol., 2001,148(2-3): 305-314
    [102] Weissmantel C, Ion-based growth of special films: Techniques and mechanisms. Thin Solid Films, 1982, 92(1-2): 55-63
    [103] Robertson J, Diamond-like amorphous carbon. Materials Science and Engineering R, 2002,37:129-281
    [104] Scott W W, Bhushan B, Corrosion and wear studies of uncoated and ultra-thin DLC coated magnetic tape-write heads and magnetic tapes. Wear, 2000, 243(1-2): 31-42
    [105] Massi M, Mansano R D, Maciel H S, et al., Effects of plasma etching on DLC films. Thin Solid Films, 1999,343-344: 381-384
    [106] Walter K C, Nastasi M, Munson C, Adherent diamond-like carbon coatings on metals via plasma source ion implantation. Surf. Coat. Technol., 1997, 93(2-3): 287-291
    [107] Park Y S, Myung H S, Han J G, Characterization of CNx thin films prepared by close field unbalanced magnetron sputtering. Thin Solid Films, 2005, 475(1-2): 298-302
    [108] Walter K C, Nastasi M, Baker N P, et al., Advances in PSII techniques for surface modification. Surf. Coat. Technol., 1998, 103-104: 205-211
    [109] Hakovirta M, He M X, Nastasi M, Optical properties of fluorinated diamond-like carbon films produced by pulsed glow discharge plasma immersion ion processing. J. Appl. Phys., 2000, 88 (3):1456-1459
    [110] He X M, Walter K C, Nastasi M, et al., Investigation of Si-doped diamond-like carbon films synthesized by plasma immersion ion processing. J. Vac. Sci. Technol..A, 2000, 18(5): 2143-2148.
    [111] Yang X D, Saito T, Nakamura Y, et al., Mechanical properties of DLC films prepared inside of micro-holes by pulse plasma CVD. Diamond Relat. Mater., 2005,13 (11-12):1984-1988
    [112] Zhang W, Tanaka A, Wazumi K, et al., The effect of annealing on mechanical and tribological properties of diamond-like carbon multilayer films. Diamond Relat. Mater. 2005,13 (11-12): 2166-2169
    [113] 刘声雷,毛友德. 金属表面类金刚石防护层的研究,腐蚀与防护,1992,13(3):128-130
    [114] Papakonstantinou P, Zhao J F, Lemoine P, et al., The effects of Si incorporation on the electrochemical and nanomechanical properties of DLC thin films. Diamond Relat. Mater., 2002, 11(3-6): 1074-1080
    [115] Papakonstantinou P, Zhao J F, Richardot A, et al., Evaluation of corrosion performance of ultra-thin Si-DLC overcoats with electrochemical impedance spectroscopy, Diamond Relat. Mater., 2002,11(3-6):1124-29.
    [116] Liu Z H, Hao J F, Mclaughlin J, A study of microstructural and electrochemical properties of ultra-thin DLC coatings on altic substrates deposited using the ion beam technique, Diamond Relat. Mater., 1999,8(1):56-63
    [117] Souza C A, May J E, Bolfarini L, et al., Influence of composition and partial crystallization on corrosion resistance of amorphous Fe-M-B-Cu. Journal of non-crystalline Solids, 2001,284:99-104
    [118] Rüdiger A, Koster U, Corrosion behavior of Al-Cu-Fe quasi crystal. Materials science and engineering, 2000,294-296:890-893
    [119] R ü diger A, Koster U, Corrosion of Al-Cu-Fe quasi crystals and related crystalline phases. Journal of non-crystalline solids, 1999,250-252:898-902
    [120] Pang S J, Zhang T, Asami K, Bulk glassy Fe-Co-Mo-C-B alloys with high corrosion resistance. Corrosion Science, 2002,44:1847-1856
    [121] Pang SJ, Zhang T, Asami K, Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance. Acta Materialia, 2002,50:489-497
    [122] Fernelgel W, Rodewald W, Blank R, et al., The influence of Co on the corrosion resistance of sintered Nd-Fe-B magnets. Journal of magnetism and magnetic materials, 1999,196-197:288-290
    [123] Pang S J, Zhang T, Asami K, Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance. Acta Materialia, 2002,50:489-497
    [124] Tartaj P, Gonza lez-Carren T, Bomat?-Miguel O, et al., Magnetic behavior of superparamagnetic Fe nanocrystals confined inside submicron-sized spherical silica particles. Phys.Rev.B, 2004,69(9): 094401-1-8
    [125] Brosseau C, Mallégol S, Quéffelec P, et al., Nonreciprocal electromagnetic properties of nanocomposites at microwave frequencies. Phys.Rev.B, 2004,70(9): 092401-1-4
    [126] Mathieu R, Jonsson P E, Nordblad P, Memory and chaos in an Ising spin glass. Phys.Rev.B, 2001, 65(1), 012411-1-4
    [127] Chu C M,The Effect of Complexing Agents on the Electrodeposition of Fe-Ni Powders,J. Chin. Inst. Chem. Engrs., 200334(6):689-695
    [128] Sanches L S, Domingues S H, Carubelli A et al.,Electrodeposition of Ni–Mo and Fe-Mo Alloys from Sulfate-Citrate Acid Solutions. J.Braz.Chem.Soc., 2003,14(4):556-563,.
    [129] Armyanov S, Vitkova S, Blajiev O, Internal Stress and Magnetic Properties of Electrodeposited Amorphous Fe-P Alloys, Journal of Applied Electrochemistry, 1997,27(2):185-191
    [130] Xue D, Shi H,The fabrication and characteristic properties of amorphous Fe1?xPx alloy nanowire arrays,Nanotechnology, 2004,15:1752–1755
    [131] Brenner A, Riddell G, Nickel Plating on Steel by Chemical Reduction, J.Research, National Bureau of Standards, Vol XXXVII, 1946, pp. 31-34
    [132] Ruscior C, Croiala E, Chemical Iron Phosphorus Films. J.Electrochem.Soc., 1971,18(5):696-699
    [133] Zhang B W, Hu W Y, Zhu D Q, Magnetic properties of crystalline and amorphous Fe-B alloys prepared by electroless plating. Physica B, 1993, 183(1-2):205-210
    [134] Hu W Y, Zhang B W, Electroless Deposition of Iron Boron Alloys. Trans.Inst.Metal Finish, 1993,71(1),30-35
    [135] Hu W Y, Zhang B W, Structure and Crystallization of Amorphous FeB Alloys Obtained by Chemical Plating. Physica B, 1991, 175(2):396-400
    [136] Wang L L, Zhao L H, Huang G F, et al., The Structure & Microhardness of Ni-Fe-P & Ni-Fe-P-B Alloy Deposits Prepared by Electroless Plating. Plat. Surf. Finsh., 2001, 88(6):92-95
    [137] Wang L L, Zhao L H, Huang G F, et al., The Structure and Crystallization of Amorphous Ni-Fe-P-B Alloys Prepared by Electroless Plating. Z. Metallkd., 2001, 92(4):391-395; Study of magnetic properties of Ni-Fe-P and Ni-Fe-P-B chemical films. Z. Metallkd., 2002, 93(4):298-302
    [138] Wang L L, Zhao L H, Huang G F, et al. Composition, structure and corrosion characteristics of Ni-Fe-P and Ni-Fe-P-B alloy deposits prepared by electroless plating. Surf. Coat. Tech.,2000, 126(3):272-278
    [139] Wang L L, Zhao L H, Ouyang Y F, et al., Electroless Deposition of Fe-Mo-W-B Amorphous Alloys. RARE METALS,2000, 19(4):261-265
    [140] Watanabe Y, Tamamura M, Matsumoto Y, Memory Retention and Switching Speed of Ferroelectric Field Effect in (Pb, La)(Ti, Zr)O3/La2CuO4:Sr Heterostructure. Jpn. J. Appl. Phys., 1996,35: 1564-1568
    [141] Desu S B, Metallorganic chemical vapor deposition: a new era in optical coating technology . Mater.Chem.Phys., 1992,31(4):341-345
    [142] Wang X S, Wang C L, Zhong W L, et al., The effects of uniaxial stress distribution on the ferroelectric properties of thin films with first-order phase transition. Solid State Commun., 2002,121(2-3):111-115
    [143] Shebanov L A, Phys.Stat.Sol.(a), 1981,65(1):321-25
    [144] Zeng J M, Wang H, Wang M, et al., Preparation and ferroelectric properties of BaTiO3 thin films by atmospheric-pressure metalorganic chemical vapor deposition. Thin Solid Films, 1998,322:104–107
    [145] Yamanashi A, Tanaka K, Nagatomo T, et al. BaTiO3 Films for Silicon-on-Insulator Structure. Jpn.J.Appl.Phys., 1993,32(9B):4179-4181
    [146] Powder diffraction file #5-626, JCPDS, USA (1988).
    [147] Powder diffraction file #33-711, JCPDS, USA (1988)
    [148] McDonald G, Hendricks R C, Effect of thermal cycling on ZrO2---Y2O3 thermal barrier coatings. Thin Solid Films, 1980,73(2):491-96
    [149] Zhao J H, Ryan T, Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films. J.Appl.Phys., 1999,85(9):6421-6424
    [150] Brazier M, Mcelfresh M, Origin of anomalous polarization offsets in compositionally graded Pb(Zr, Ti)O3 thin films. Appl.Phys.Lett., 1999,74(2):299-301
    [151] Klocek P, Handbook of Infrared Optical Materials, Marcel Dekker, Inc.1991,P209
    [152] Robertson J, Properties of diamond-like carbon, Surf.Coat.Technol., 1992, 50(3):185-203
    [153] Chandra L, Allen M, Butter R, et al., The effect of biological fluids on the response of DLC films to a novel erosion durability test , Diamond Rel.Mater., 1996,5(3-5):388-400
    [154] Lifshitz Y, Diamond-like carbon — present status , Diamond Rel.Mater., 1999,8(8-9):1659-1676
    [155] 杨武保,范松华,刘赤子等,脉冲高能量密度等离子体法类金刚石膜的制备及分析. 物理学报,2003,52(1):140-144
    [156] Raveh A, Martina L, Hawthorne H M, et al., Mechanical and tribological properties of dual-frequency plasma-deposited diamond-like carbon. Surf.Coat.Technol., 1993, 58(1):45-55
    [157] 陈 岩,黄荣芳,闻立时等. 硅酸盐学报,1993,21(3):203
    [158] 李国卿,张家良,牟宗信等. 半导体学报,1998,35(5):44
    [159] Oh S J, Cook D C, Townsend H E, Atmospheric corrosion of different steels in marine, rural and industrial environments. Corrosion Science, 1999,41(9):1687-1702
    [160] Ibrahim M A M, Korablov S F, Yoshimura M, Corrosin of stainless steel coated with TiN, (TiAl)N and CrN in aqueous environments. Corrosion Science, 2002,44(4):815-828
    [161] Kawakita J, Kuroda S, Oscillational corrosion potential of HastelloyC coatings fabricated by GS-HVOF spraying. Corrosion Science,2005,47(8):2053-2062
    [162] Meguid E A A, Mahmoud N A, Rehim S S A, The effect of some sulphur compounds on the pitting corrosion of type 304 stainless steel. Mat. Chem. Phys., 2002,63(1):67-74
    [163] Nazila D, doctoral dissertation, Halifax, Nova Scotia, Canada, 2002
    [164] Pannovic M, Electrochemical aspects of electroless nickel deposition. Plat.Surf.Finish., 1983,70(2):62-66
    [165] Mital C K, Shrivastava P B, Studies of electroless nicknel deposition using electroanalytical techniques. Metal Finish., 1987,85(6):87-90
    [166] 刘贵昌,刘杰,于同敏等,化学镀 Ni-P 机理研究. 大连理工大学学报,1998,38(5):603-606
    [167] Mallory GO, Lloyd VA, Kinetics of electroless nicknel deposition with sodium hypophosphite-an empirical rate law. Plat.Surf.Finish., 1985,72:52-57
    [168] 方景礼, 化学镀镍诱发过程的研究. 化学学报, 1983,41(2):129-136
    [169] Latimer W M, Oxidation potentials(2 Edn.), Prentice Hall, Englewood Cliffs, New York,USA. 1952,p198-200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700