用户名: 密码: 验证码:
爆炸荷载作用下饱和土及准饱和土中隧道的瞬态动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速增长和城市化进程的加速,为了缓解地面交通的压力,各大城市都开始积极的新建地铁。地铁隧道在给人们带来巨大交通便利的同时,也存在一定的负面效应,其密闭的环境常会成为恐怖爆炸袭击和意外爆炸事故的频发场所。地下交通系统空间小、通风条件差,一旦受到爆炸荷载的冲击,往往造成惨重的人员伤亡和重大经济损失。由于地铁一般修建在沿海经济发达地区的城市中,沿海城市地铁隧道多埋置在饱和土和准饱和体中,因此研究土体中爆炸波的传播规律以及爆炸荷载作用下饱和土和准饱和土体中埋置的地下隧道的灾变机理具有非常重要的意义,以便采取必要的防护措施降低爆炸荷载对地下结构的破坏作用。
     本文采用解析法研究了爆炸荷载作用下土体中埋置隧道的瞬态动力响应,研究内容主要包括以下几个方面:
     本文首先研究了饱和土体中埋置的隧道在爆炸荷载下的瞬态动力响应,建立了计算隧道动力响应的模型,假设圆形隧道中心处发生爆炸,采用Biot波动方程模拟饱和土体,爆炸荷载采用峰值递减的三段突加三角形荷载形式,并引入基于Flugge壳体理论的衬砌运动方程,采用Laplace积分变换,在变换域中得到了饱和土体中隧道的动力响应解答。利用Laplace数值逆变换得到时域中的结果,通过算例给出了爆炸荷载作用下隧道的位移、环向应力和孔压的响应,并分析了饱和土体参数、衬砌的相对刚度和相对厚度对响应的影响。
     接着,本文研究了粘弹性土体中埋置的隧道在爆炸荷载下的瞬态动力响应。采用Biot波动方程模拟饱和土体,将土骨架视为Kelvin-Voigt体,并考虑了衬砌的运动方程,利用Laplace积分变换与数值逆变换,得到了隧道响应在时域中的结果,通过算例给出了反映饱和土体渗透性的参数b*对响应的影响,并与单相介质进行了对比,分析了粘滞阻尼系数对土体响应的影响,最后给出了两种粘弹性饱和土中响应的时程曲线,对比分析了不同模型参数和排水条件的影响。
     最后,研究了准饱和土体中埋置的半封闭隧道在爆炸荷载下的瞬态动力响应问题。文中对比了混合物理论和Biot理论的异同,推导了基于VB理论的准饱和土控制方程。计算模型中,考虑了衬砌的运动方程,引入衬砌的无量纲渗透参数来描述半封闭隧道,采用Laplace积分变换,在变换域中得到了准饱和土体中隧道的动力响应的解答。利用Laplace数值逆变换得到时域中的结果,进而通过算例给出了不同饱和度情况下准饱和土中隧道的位移、环向应力和孔压随无量纲时间和径向距离的变化曲线,并讨论了在不同衬砌的相对渗透性参数情况下准饱和土中响应时程曲线和影响范围曲线的变化规律。
With the rapid development of China's economy and the acceleration of urbanization, major cities are beginning to build new subways in order to alleviate the stress of ground transportation. Subway tunnel brings huge transport facilities to people, but there are some negative effects in the same time. The internal enclosed environment of subway will provide the favorable conditions for terrorist bomb attack and accidental explosion. The space of underground transportation system is always small and poor ventilation. Once a blast occurs in the tunnel, it will cause serious casualties and great economic losses. As the general subways are build in the coastal developed cities, the main subways in coastal cities are always embedded in saturated soil and partially saturated soil. So the study of blast wave propagation in the soil and dynamic response of underground tunnel in saturated soil and partially saturated soil under blast loads are very important, which is used to take protective measures to reduce the destructive effects of underground structures.
     In this paper, analytical method is used to study dynamic transient response of buried tunnel in the soil under blast loads. The study mainly includes the following aspects:
     Firstly, the transient dynamic response of buried tunnel in saturated soil under blast load is studied. Assuming that the blast occurs in the center of the tunnel, a model is established using decrease three-stage triangle loads. The motions of the. liner are considered specially based on Fliigge theory. Biot's theory is used to describe saturated soil. The analytical solutions of displacement and hoop stress induced by the blast loads are derived using Laplace transforms. Numerical results are obtained by inversion of Laplace transforms, such as the curve of displacement, hoop stress and pore water pressure with time. The influence of saturated soil parameters, the relative stiffness and thickness of the linear are emphatically analyzed.
     Secondly, the transient dynamic response of buried tunnel in viscoelastic soil under blast load is studied. Biot's theory is used to describe saturated soil and Kelvin-Voigt model is for soil skeleton. The motions of the liner are considered specially based on Fliigge theory. By introducing potential functions, numerical results are obtained by using the Laplace transforms and inversion of Laplace transforms. The curves of displacement and hoop stress with time for different b* on the interface between the liner and soil are presented. The influences of viscous damping coefficient are emphatically analyzed in viscoelastic saturated soil. At last, the curves of displacement and hoop stress with time of two different viscoelastic medium are given, and the influences of different model and boundary conditions are analyzed.
     At last, the transient dynamic response of buried tunnel in partially saturated soil under blast load is studied. The similarities and differences between Biot's theory and mixture theory are compared. The control equation of partially saturated soil based on VB theory is derived. In the calculation model, the motions of the liner are considered specially based on Flugge theory. The dimensionless permeability parameter of linear is introduced to describe the semi-enclosed tunnel. The analytical solutions of displacement and hoop stress induced by the blast loads are derived using Laplace transforms. Numerical results are obtained by inversion of Laplace transforms and the curves of displacement and hoop stress with time on the interface between the liner and soil are presented, and as also the curves of displacement and hoop stress with the distance rising. The influence of different degree of saturation to the response is analyzed and the variation of different permeability parameter of the liner is discussed in partially saturated soil.
引文
[1]Abozena AM. Radiation form a finite cylindrical explosive source[J].Geophysics,1977,42(7):1384-1393.
    [2]Acharya D. P.,Indrajit Roy, Biswas P. K..无限非均质横观各向同性黏弹性介质中具有圆柱孔洞时的振动,应用数学和力学[J],2008,29(3):331-341
    [3]Aki K, Richards P G. Quantitative seismology.2nd Ed. SansalitoCA:University Science Books,2002. 1-700.
    [4]Akihiko Miura, Toshiharu Mizukaki, Takuya Shiraishi,et al.Spread behavior of explosion in closed space.Journal of Loss Prevention in the Process Industries,2004,17:81-86.
    [5]Ayaho Miyamoto, Michael W King, Manabu Fuji. Analysis of failure modes for reinforced concrete slabs under impulsively loads. ACI Structural Journal,1991,9(10):538-545.
    [6]Baker W.E., Cox P.A. Westine P.S. et al. Explosion hazards and evaluation(fundamental studies in engineering). Amsterdam, the Netherlands:Elsevier Scientific Publishing Company,1983,238-243.
    [7]Biot M A. Mechanics of deformation and acoustic propagation in porous medium[J]. Journal of Applied Physics,1962,33(4):1482—1498.
    [8]Buchen P W. Plane waves in linear viscoelastic media. Geophys,1971,23:531-542.
    [9]Cao Y Z, Lu Z S. Numerical simulations of blast flow fields in closed blast-resistant containers[J]. Chinese Journal of High Pressure Physics.15(2):127-132.
    [10]Cao Zhi-yuan,Zeng San-ping. Nonlinear dynamic interaction between under ground structure and surrounding medium under blast loading[J]. Explosion and shock waves,2003,23(5): 355-390.(inchinese)
    [11]Chan P C, Klein H H, Study of blast effects inside an enclosure, Journal of Fluids Engineering Transaction,ASME,Vol.116,No.3,September 1994,ASME, New York,NY,USA,450~455.
    [12]Cheung Y K, Zhu J X. Dynamic interaction analysis of a circular cylindrical shell of finite length in a half-space[J]. Earthquake Engineering & Structural Dynamics,1992,21(9):799-809.
    [13]Christensen R M. Theory of Viscoelastic an Introduction.2nd Ed.New York:Academic Press Inc,1982, 1~364.
    [14]Cichocki K, Maier G, Perego U. Analysis of damages due to underwater explosion on a hybrid structures. International Journal of Analysis and Design,1994a,1:341-361.
    [15]Cichocki K, Computer analysis of dynamic response due to underwater explosion on a hybrid structure. In:HKS, editor, Proceedings of ABQUS User's Conference, Newport, USA,1994b:207-220.
    [16]Cichocki K. Effect of underwater blast loading on structures with protective elements. International Journal of Impact Engineering,1999,22:609-617.
    [17]Ching S C, Lun M. Modeling of Discrete Granulates as Micropolar Continua.1990,116(12):2703-2721.
    [18]Davies M C R, Willims A J. Centrifuge modeling the protection of buried structures subjected to blast loading[C]//Structures Under shock and Impact Ⅱ. Southamptom: Computational Mechanics Publications,1992:663-674.
    [19]Dontsov V E, Nakoryakov V E. Enhancement of shock waves in A Porous Medium Saturated With A Liquid Containing Soluble-Gas Bubbles. International Journal of Multiphase Flow,2001,27(12): 2023-2041.
    [20]Drake J L, Walker R E. Slawson T. Backfill effect on buried structure response[A]//Coustin Lily C editor. Proceedings of the fourth international symposium on the interaction of non2nuclearmunitionswith structures, vol.2[C]. Panama City Beach, FL:IFS Ltd. Publishing Company,1989:209-221.
    [21]Durbin F. Numerical inversion of Laplace transforms efficient improvement to Durbin and Abate's method[J]. Computer Journal,1974,17(4):371-376.
    [22]Fatt M.S.H., Ouyang X. Dianan R J. Blast response of walls retrofitted with slastomer coatings. Structures and Materials,2004,15(4):129-138.
    [23]Feldgun V R, Kochetkov A V, Karinski Y S, et al. Internal blast loading in a buried lined tunnel[J]. International Journal of Impact Engineering,2007,74(1):2-12.
    [24]Flugge W., Stress in shells, Acoustical Society of America, New York,1973.
    [25]Gao G Y, Gao M, Feng S J. Analytical solution for the dynamic response of tunnel to an internal explosion in infinite elastic medium[J]. Northwestern Seismological Journal.2008,30(2):124-127.
    [26]高广运,高盟,冯世进.无限弹性介质中隧道内爆炸动力响应的解析解[J].西北地震学报.2008,30(2):124-127.
    [27]Heelan R.A.. Radiation form a cylindrical source of finite length[J].Geophysies,1962,18:685-696.
    [28]亨利奇.J著,爆炸动力学及其应用(熊建国等译),北京:科学出版社,1987:8-15,123-133.
    [29]Honig G., Hirdes U.. A method for the numerical inversion of Laplace transforms[J]. Journal of Computational and Applied Mathematics,1984,10(1):113-132
    [30]Ishikawa N., Beppu M. Lessons from past explosive tests on protective structures in Japan. International Journal of Impact Engineering,2007,34:1535-1545.
    [31]Islam M N, Kormi K, Al-Hassani STS. Dynamic response of a thin-walled cylinder to side pressure pulse. Engng Struct,1992,395-412.
    [32]Josef Henrych, The dynamics of explosion and its use,Amsterdam,New York:Elsevier Scientific Pub.Co.New York:distribution for the U.S.A.and Canada, Elsevier/North-Holland,1979.42~47,63~ 81,151~157.
    [33]Jun.He,Yalun.Yu,Zhongwua,Li,Mathematical Model for the Demolition of Tubular Structures by Controlled Blasting.FRAGBLAST,Vol.3,No.2,1999,127~135.
    [34]江青松,李永池,陈正翔等.横向冲击荷载下加筋板的非线性动力响应.中国科学技术大学学报,2000,30(4):406-413.
    [35]Krauthammer T, Ku C K. Back fill effects on partially-buried shelter response under close-in conventional explosions[C].//Proceedings of the 3rd International Conference on Structures under Shock and Impact III. Southamptom:Computational Mechanics Publications,1994:349-354.
    [36]Krauthammer T. Shallow-buried RC box-type structure. Journal of Structure Engineering,1984, 110(3):637-651.
    [37]Krauthammer T., Assadi-Lamouki A., Shanaa H.M. Analysis of impulsively loaded reinforced concrete elements-Ⅰ:theory. Computers and Structures,1993a,48(5):851-860.
    [38]Krauthammer T., Assadi-Lamouki A., Shanaa H.M. Analysis of impulsively loaded reinforced concrete elements-Ⅱ:implementation. Computers and Structures,1993b,48(5):861-871.
    [39]Krvmskii A V, Lyakhov G M. Waves From an Underground Explosion. Journal of Applied
    [40]Kumar R, Miglani A, Debnath L. Radial displacements of an infinite liquid saturated porous medium with cylindrical cavity[J]. Computers and Mathematics with Applications,1999, (37):117-123.
    [41]Kwon Y.W, Fox P.K. Underwater shock response of a cylinder subjected to a side-on explosion. Comput Structut,1993,48:347-363.
    [42]Lee E.L, Finger M., Conllins W.JWL equation of state coefficient for high explosive. Lawrence Live more Laboratory Report UCID-16189,1973.
    [43]Li X,.Stress and displacement field around a deep circular tunnel with partial sealnig.Compuetr and Geotechnics,1999,4:125-140.
    [44]Li X., Chen Y.. Transient dynamic response analysis of orthotropic circular cylindrical shell under external hydrostatic pressure[J]. Journal of Sound and Vibration,2002,257(5):967-976.
    [45]Lunderman C.L., Ohrt A.P. Small-scale experiment of in-tunnel airblast from external and internal detonations. Proceedings of the 8th International Symposium on Interaction of the Effects of Munitions with Structures. Mclean Virginia,1997:209-221.
    [46]李欢秋,卢云芳,吴翔等.应力波在有地下符合结构的岩石介质中的传播规律研究.岩石力学与工程学报,2003,22(11):1832-1836.
    [47]李翼祺,马素贞,爆炸力学,北京,科学出版社,1992.76-79,249-274.
    [48]李秀地,郑颖人,李列胜等.长坑道中化爆冲击波压力传播规律的数值模拟.爆破器材,2005,34(5):4-7.
    [49]Li Z X, Liu Y, Tian L. Dynamic response and blast-resistance analysis of double track subway tunnel subjected to blast loading within one side of tunnel[J]. Journal of Beijing University of Technology,2006, 32(2):173-181.
    [50]李忠献,田力.地下爆炸波作用下基底滑移隔震建筑-土-隧道相互作用的动力分析.工程力学,2004,21(6):56-64.
    [51]李忠献,刘杨,田力.单侧隧道内爆炸荷载作用下双线地铁隧道的动力响应与抗爆分析.北京工业大学学报,2006,32(2):173-181.
    [52]凌贤长,胡庆立,欧进萍等.土-结构爆炸冲击互相作用模爆试验相似设计方法,岩土力学,2004,25(8):1249-1253.
    [53]刘沐宇,卢志芳.接触爆炸荷载下长江隧道的动力响应分析[J].武汉理工大学学报,2007,29(1):113-117.
    [54]Liu M Y, Lu Z F.Analysis of dynamic response of Yangtze River tunnel subjected to contact explosion loading[J]. Journal of Wuhan University of Technology,2007,29 (1):113-117.
    [55]柳景春,方秦等.爆炸荷载作用下钢筋混凝土梁的动力响应及破坏形态分析.爆破与冲击,2003,23(1):25-30.
    [56]刘国华,王振宇.爆破荷载作用下隧道的动力响应与抗爆分析.浙江大学学报(工学版),2004,38(2):204-209.
    [57]Low H.Y., Hao H. Reliability analysis of reinforced concrete slabs under explosive loading. Structure Safety,2001,23(2):157-178.
    [58]Lua Y, Wang Z Q, Chong K. A comparative study of buried structure in soil subjected to blast loadusing 2D and 3D numerical simulations[J].Soil Dynamics and Earthquake Engineering,2005,25(4):275-255.
    [59]Ma G w, Hao H, Zhou Y X. Modeling of Wave propagation Induced by Underground ExPlosion. Computers and Geotechnics,1998,22(3-4):283-303.
    [60]Marconi F Investigation of the interaction of a blast wave with an internal structure.AIAA Journal,1994,32,(8),1561-1567.
    [61]Mechanics and Technical Physics,1984,25(3):361-367.
    [62]宁建国,王仲奇,赵衡阳等.爆炸冲击波绕流的数值模拟研究.北京理工大学学报,1999,19(5):543-547.
    [63]O'Daniel J L, Krauthammer T. Assessment of numerical simulation capabilities for medium-structure interaction systems under explosive loads[J].Computers and structures,1997,63(5):875-857.
    [64]庞伟宾,何翔,李茂生等.空气冲击波在坑道内走时规律的试验研究.爆炸与冲击,2003,23(6):573-576.
    [65]Penzen J, Wu Ching L. Street in linings of bored tunnels. Earthquake Engineering and Structure Dynamics,1988,27:283-300.
    [66]皮爱如,沈兆武,王肖钧等.土壤冲击特性的实验研究.振动与冲击,2003,22(3):28-29.
    [67]Pritchard D K, Freeman D J, Guilbert P W, Prediction of explosion pressures in confined spaces,Journal of Loss Prevention in the Process Industries, Vol.9,Issue:3,1996,205-215.
    [68]戚承志,王明洋,钱七虎等.弹粘塑性孔隙介质在冲击荷载作用下的一种本构关系-第一部分:状态方程.岩石力学与工程学报,2003,22(9):1405-1410.
    [69]戚承志,王明洋,钱七虎等.弹粘塑性孔隙介质在冲击荷载作用下的一种本构关系-第二部分:弹粘塑性孔隙介质的畸变行为.岩石力学与工程学报,2003,22(9):1763-1766.
    [70]Richer N H. Transient waves in visco-elastic media. Amsterdam:Elsevier Scientific Pub Co, New York: distributed for the US andCanada, Elsevier/North-Holland,1977,1-278.
    [71]Senjuntichai T., Rajapakse R.K.N.D.. Tranisent response of a circular cavity in a poroelastic medium[J]. Int J for Numerical and Analytical Method in Geomechanics.1993,17:357-383.
    [72]Slawson T R, Woodson S C. Shock environment in a civil defense blast shelter[J]. Shock and Vibration Bulletin,1985,6:95-100.
    [73]Smith P.D, Mays GC, Rose T.A. et al. Small scale of complex geometry for blast overpressure assessment. International Journal of Impact Engineering,1992,12(3):345-360.
    [74]Syrunin M.A., Fedorenko A.G., Ivanov A.G. Dynamic strength of fiber glass shells. Journal of Physics,1997,7(3):517-521.
    [75]Thiruvenkatachar V R, Viswanathan K. Dynamic response of an elastic half space with cylindrical cavity to time-dependent surface tractions over the boundary of the cavity [J]. Journal of Methematics and Mechanics,1965,14(4):541-572.
    [76]谭忠盛,杨小林,王梦恕.复线隧道施工爆破对既有隧道的影响分析.岩石力学与工程学报,2003,22(2):281-285.
    [77]Verruijt A. Elastic storage of aquifers, Flow through porous media[M]. R. J. M de Wiest, ed. Academic, London,1969,331—376.
    [78]Watson G.N., A treatise on the theory of Bessel Function[M]. Cambridge University Press, Cambridge, 1994.
    [79]Wang Z Q, Hao H, Lu Y. A Three-phase Soil Model for Simulating Stress Wave Propagation Due to Blast Loading. International Journal for Numerical and Analytical Methods in Geomechanics,2004, 28(l):33-56.
    [80]王明洋,钱七虎,颗粒介质的弹塑性动态本构关系研究.固体力学学报,1995,16(2):175-180.
    [81]王明洋,钱七虎,应力波作用下颗粒介质的动力特性研究.爆炸与冲击,1996,16(1):11-20.
    [82]王明洋,钱七虎,爆炸波作用下准饱和土的动力模型研究.岩土工程学报,1995,17(6):103-110.
    [83]Welch C R, In-tunnel airblast engineering model for internal and external detonations, Proceedings of the 8th International Symposium on Interaction of the Effects of Munitions with Structures, Mclean Virginia,1997:195-208.
    [84]Woznica K.A., Fedorenko A.G., Ivanov A.G Dynamic strength of failure modes for reinforced concrete slabs under impulsive loads. ACI Structural Journal,1991,9(10):538-545.
    [85]吴世明,土介质中的波[M].北京:科学出版社,1997,16-22.
    [86]Xie Kang-he, Liu Gan-bin, Shi Zu-yuan. Dynamic response of partially sealed circular tunnel in viscoelastic saturated soil[J]. Soil Dynamic and Earthquake Engineering.2004,24:1003-1011.
    [87]Xu C J, Cai Y Q. Dynamic response of spherical cavity in nearly saturated viscoelastic soils[J]. Rock and Soil Mechanics.2001,34(4):88-92.
    [88]徐长节,蔡袁强.粘弹性饱和土中球空腔的动力响应.土木工程学报[J],2001,34(4):88-92.
    [89]严长林,马东军,容器内强爆炸波的高分辨率的数值模拟,中国科学技术大学学报,1998,25(1):10-16.
    [90]Yang Jun, Gong Quan-mei, Wu Shi-ming. Transient response of a cylindrical cavity in a saturated soil body[J]. Shanghai Journal of mechanics,1996,17(1):39-45.
    [91]杨科之,杨秀敏,坑道内化爆冲击波的传播规律,爆炸与冲击,2003.23(1):37~40.
    [92]赵跃堂,郑守军,郑大亮等.爆炸波在饱和土介质中传播时压力变化规律的试验研究.防灾减灾工程学报,2004,24(1):60-65
    [93]Zakout U, Akkas N. Transient response of a cylindrical cavity with and without a bonded shell in an infinite elastic medium[J]. International Journal of Engineering Science,1997,35(12):1203-1220.
    [94]朱振海.爆炸波与地下结构物互相作用的动光弹性探讨.爆炸与冲击,1989,9(3):276-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700