用户名: 密码: 验证码:
丙烷氧化脱氢爆炸极限的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从实验和模拟两方面研究了丙烷脱氢过程涉及到的可燃气体爆炸极限问题。结果表明,对烃类气体如甲烷,乙烷,乙烯,丙烷,丙烯等,绝热燃烧压力升曲线上的第二个拐点对应于产物中氢浓度出现最大值的地方,是从燃烧反应向其他反应(如甲烷化反应、裂解反应)的转折点,可以作为爆炸极限的上限标志。以混合气体的导热系数作为体系在燃烧中失热强弱的标志,对由拐点确定的爆炸极限的上限进行修正,可获得较准确的爆炸极限值。但对由两种以上可燃气体的混合物,由于燃烧动力学上的差异,不能利用拐点法确定爆炸极限上限。根据丙烷脱氢的平衡气体组成,模拟计算了在工业反应温度下、在不同氧浓度下的绝热燃烧压升。结果表明,只要氧浓度低于40%,理论压力升都将低于3.2大气压。这为氧混合器的设计提供了基础。在丙烷脱氢反应体系中,由于氧的引入量不会超过氢完全燃烧的化学耗氧量,因此不会落在爆炸范围内。
This thesis studies by experimental and simulation the issue of combustible gas explosion limits involved in the propane dehydrogenation process. The results show that, for hydrocarbon gases such as methane, ethane, ethylene, propane, propylene, etc., the second inflection point on the adiabatic combustion pressure rise curve, which corresponds to the maximum equilibrium hydrogen concentration and indicates the shifting from combustion reaction to other reactions such as methanation reaction, cracking reaction etc, This can be used to determine the upper explosion limit. The thermal conductivity of the gas mixture can be used to adjust the calculated explosion limit. However, this method is not valid for mixture of two combustible gases that are very different in combustion kinetics. According to the equilibrium composition propane dehydrogenation, we simulate the adiabatic combustion pressure rise at different industrial reaction temperature under different oxygen concentration. The results show that as long as the oxygen concentration is less than 40%, the theoretical pressure will be lower 3.2 atm. This provides the basis for the design of oxygen mixers. In the propane dehydrogenation reaction system, due to the introduction of oxygen for hydrogen combustion does not exceed the stochiometric amount for complete hydrogen combustion, the mixture will not fall within the explosion envelope.
引文
[1]苏建伟,牛海宁.丙烷脱氢制丙烯技术进展.化工科技.2006,14(4):62-66
    [2]余长林,葛庆杰,徐恒泳,李文钊.丙烷脱氢制丙烯研究新进展.化工进展.2006,25(9):977-982
    [3]Robert K. Grasselli, David L. Stern, John G. Tsikoyiannis. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC) I. DH--SHCDH catalysts in series (co-fed process mode).Applied catalysis.1999,189:1-8
    [4]Robert K. Grasselli, David L. Stern, John G. Tsikoyiannis. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC) II. DH+SHC catalysts physically mixed (redox process mode). Applied catalysis.1999,189: 9-14
    [5]Creaser D., Andersson B., Hugins R. R., Silveston P. L. Cyclic operation of the oxidative dehydrogenation of propane. Chemical Engineering Science.1999,54:4437-4448
    [6]董文生,王心葵,彭少逸.丙烷脱氢制丙烯研究进展.合成化学.1997,5(3):246-250
    [7]苏品书译.气相防爆技术-气体粉尘预防爆炸理论实务[M].台南:复汉出版社,1994
    [8]Kenneth L. Cashdollar, Isaac A. Zlochower, Gregory M. Green, Richard A. Thomas. Flammability of methane, propane, and hydrogen gases. Journal of loss prevention in the process industries.2000,13:327-340
    [9]杨国刚,丁信伟,王淑兰.管内可燃气云爆炸的实验研究与数值模拟.煤炭学报.2004,29(5):572-575
    [10]Jenq-Renn Chen, Zhao-Sheng Huang, Chun-Der Liu, Pavel A. Fomin. Experimental studies of ignition and explosion in a water colum bubbling with hydrogen and ocygen. Journal of Loss Prevention in the Process Industries.2009,22:7-14
    [11]John E. Going, Kris Chatrathi, Kenneth L. Cashdollar. Flammability limit measurements for dusts in 20-L and 1-m3 vessels. Journal of Loss Prevention in the Process Industries. 2000,13:209-219
    [12]刘琪,谭迎新.粉尘爆炸基本特性及防爆措施.工业安全与环保.2008,34(3):17-19
    [13]毕明树,丛立新,丁信伟.可燃气云内置障碍物对爆炸冲量场影响的实验研究.2004,12(6):63-67
    [14]Deshaies. B, leyer. J. C. Flow field induced by unconfined spherical accelerating flames. Combustion and Flames,1981,40:141-153
    [15]王汉良,周凯元等.气体爆轰波在管道中绕射和反射的实验研究.火灾科学.2005,14(3):177-181
    [16]周凯元,李宗芬.丙烷-空气爆燃波的火焰面在直管道中的加速运动.爆炸与冲击.2000,20(2):137-142
    [17]黄超.高温醇-水体系爆炸极限的测定.公安大学学报.2002,5:72-75
    [18]Hjertager. B. H. Simulation of transient compressible turbulent reactive flows. Combustion Science and Technology.1982,27:159-170
    [19]Fairweather. M, Hargrave. G. K, Walker. D. G. Studies of predicted flame propagation in explosion tubes. Combustion and Flame.1999,116:504-518
    [20]Ibrahim S. S, Masri A. R. The effect of obstructions on overpressure resulting from premixed flame deflagration. Journal of loss prevention in the process industries.2001, 14:213-221
    [21]毕明树,王淑兰,丁信伟等.平板形障碍物对气云爆燃威力加强作用.石油化工设备.2001,30(4):13-15
    [22]Norton D. G, Vlachos D. G. A CFD study of propane/air microflame stability. Combustion and Flame.2004,138:97-107
    [23]吴晓春,邓军.采空区瓦斯气体爆炸极限参数的实验研究.西安科技大学硕士学位论文.2007
    [24]肖丹,齐庆杰.受限空间瓦斯爆炸特性及其影响因素研究.辽宁工程技术大学硕士学位论文,2006
    [25]Nikolaev A. Y, Vasilev A. A, Ulyanitskii B. Y. Gas Detonation and its Applicationin Engineering and Technologies (Review). Combustion, Explosion, and Shock Waves. 2003,39(4):382-410
    [26]赵学庄.化学反应动力学原理.北京:高等教育出版社,1984
    [27]许满贵,徐精彩.工业可燃气体爆炸极限及其计算.西安科技大学报.2005,25(2):139-142
    [28]程超,邓军,陈晓坤.CO2,N2,H2,C2H4对CH4爆炸极限参数影响的实验结果.西安科技大学硕士学位论文.2007
    [29]Wiemarm W. Influence of Temperature on the Explosion Characteristics and the Neutralisation of Methane-air Mixtures[C]. International Conference of Safety in Mines Research Institutes,1983
    [30]田贯三,马一太等.可燃制冷剂爆炸极限及抑制的理论与实验研究.山东建筑工程学院学报,2001(6):58-63
    [31]赵正红.爆炸极限的影响因素与防爆措施.化工安全与环境.2003,8:9-12
    [32]空气中可燃气体爆炸极限的测定方法,GB/T 12474-90:380-382
    [33]邓军,吴晓春,程超.CH4,CO,C2H4多元可燃气体爆炸的实验研究.煤矿现代化.2007.5:63-65
    [34]Hu Yao-yuan, Zhou Bang-zhi, Yang Yuan-fang, Li Yong, Zhu Kai-han. Study on the explosive limits and its container factor of polybasic explosive mixture gas (?)ontaining H2, CH4and CO. Sci. China, Ser. B.2002,32(1):35-40
    [35]赵衡阳.气体和粉尘爆炸原理.北京:北京理工大学出版社,1996
    [36]Kee R. J., Rupley F. M., Meeks E., Miller J. A. Chemkin II:A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Laboratories Technical Report, SAND89-8009,1989
    [37]Kee R. J, Grcar J. F., Smooke M. D., Miller J. A. PREMIX:A Fortran program for modeling steady laminar one-dimensional premixed flames. Sandia National Laboratories Technical Report, SAND85-8240,1994.
    [38]Yang Lizhong, Fan Weicheng, Zhou xiaodong, Wang Qing'an. Analysis of fire and explosion hazards of some hydrocarbon-air mixtures. Journal of Hazardous Materials. 2001, A84:123-131
    [39]Norman F., Van den Schoor F., Verplaetsen F. Auto-ignition and upper limit of rich propane-air mixtures at elevated pressures. Journal of Hazardous Materials.2006, A137: 666-671
    [40]Pekalski A. A., Terli E., Zevenbergen J. F., Lemkowitz S. M, Pasman H. J. Influence of the ignition delay time on the explosion parameters of hydrocarbon-air-oxygen mixtures at elevated pressure and temperature. Prcoceedings of the Combustion Institute.2005, 30:1933-1939
    [41]Domnina Razus, Codina Movileanu, Venera Brizea, Oancea D. Explosion pressure of hydrocarbon-air mixtures in closed vessels. Journal of Hazardous Materials.2006, B135: 58-65
    [42]Domnina Razus, Venera Brinzea, Maria Mitu, Oancea D. Temperature and pressure influence on explosion pressure of closed vessel propane-air deflagrations. Journal of Hazardous Materials.2010,174:548-555
    [43]柴诚敬,张国亮.化工流体流动与传热.北京:化学工业出版社,2000
    [44]乐慧慧,张浩,朱中南.乙烯-醋酸-氮气-二氧化碳系统爆炸极限的测定研究.化学反应工程与工艺.1995,11(1):80-85
    [45]黄超,杨绪杰.烷烃高温下爆炸极限的测定.化工进展.2002,21:496-498
    [46]United States Patent. Reaction for catalytic dehydrogenation of hydrocarbons with selective oxidation of hydrogen. Patent Number:5997 826,1999
    [47]郑远攀,张应安等.基于多能法和概率方程的井喷爆炸后果分析.科技导报.2008,26(21):43-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700