用户名: 密码: 验证码:
肉食性鱼类南方鲇对饲料碳水化合物营养胁迫的生理生态学反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以专性肉食性鱼类南方鲇为实验对象,进行了四个系列的实验。实验一在水温27.5℃的条件下,以含0%、15%和30%糊化玉米淀粉的等能等蛋白饲料分别作为对照、中水平和高水平碳水化合物(CHO)饲料,喂养南方鲇幼鱼0、2、4、8、12和16周,检验饲料碳水化合物水平和喂养时间对南方鲇生长及血糖的影响。实验二在水温17.5、20、22.5、25、27.5、30和32.5℃的条件下,检验不同温度下高水平CHO饲料对南方鲇生长和血糖的影响。实验三检验不同温度下高水平CHO饲料喂养对南方鲇静止代谢的影响。实验四检验不同温度条件下高水平CHO饲料对南方鲇特殊动力作用(SDA)的影响。
     本研究所取得的主要结果如下:
     1.当喂养期不超过12周时,高CHO饲料不影响鱼体的特定生长率(SGR)、饲料效率(FE)和蛋白质累积率(PPV),当喂养期超过12周时,高CHO饲料显著降低鱼体的SGR、FE和PPV(P<0.05)。随喂养时间延长,中、高水平CHO组南方鲇肝糖原含量和肝指数均呈先增高,然后逐渐回复到一定水平的趋势。
     2.各周高CHO组的脂肪累积率(LPV)均>100%,均显著高于中CHO和对照组,高CHO组在8周和12周的葡萄糖6磷酸脱氢酶(G6PDH)活性显著高于对照组(P<0.05),而中CHO组与对照组无显著差异。
     3.从第2周开始以后各周,中CHO和高CHO组的血糖水平均一直显著高于对照组(P<0.05),而中CHO和高CHO组间无显著差异;中CHO和高CHO组的肝指数在第2、4、8周显著高于对照组,肝糖原含量在第2、4、8、12周显著高于对照组(P<0.05)。
     4.17.5℃下,高CHO组的SGR、FE和PPV均显著低于对照组(P<0.05),在其它温度下两组间无显著差异。17.5和20℃下,高CHO组的蛋白质效率(PER)均显著低于对照组(P<0.05),在其它温度下两组间无显著差异。17.5℃下,高CHO组的LPV与对照组无显著差异,而在高于17.5℃的其它温度下,高CHO组的LPV均显著高于对照组(P<0.05)。
     5.发现在较高温度下(≥27.5℃),高CHO组的静止代谢与对照组无明显差异;在中等温度下(20-25℃),高CHO组的静止代谢显著高于对照组(P<0.05);在17.5℃下没有发现高CHO组静止代谢显著增高。
     6.对照组和高CHO组的SDA总耗能量(SDA_E,kJ.kg~(-1))、系数(SDA_(coefficient),%)、峰值(SDA_(peak),mgO_2.kg~(-1).h~(-1))、峰值到达时间(T_(peak),h)、持续时间(SDA_D,h)和峰值比率(Factorial scope)均与温度(T,℃)呈显著的线性相关关系,经拟合得到下列方程:
     Contol:SDA_E=27.133+1.544T(n=26, r~2=0.739,p<0.01)
     High CHO:SDA_E=18.792+1.698T(n=20, r~2=0.720,p<0.01)
     Contol:SDA_(coefficient=4.096+0.223T(n=26, r~2=0.726,p<0.01)
     High CHO:SDA_(coefficient=2.733+0.250T(n=20, r~2=0.721,p<0.01)
     Contol:SDA_(peak)=-69.106+12.258T(n=26, r~2=0.948, p<0.01)
     High CHO:SDA_(peak)=-52.760+10.920T(n=20, r~2=0.927,p<0.01)
     Contol:T_(peak)=24.807-0.525T(n=26,r~2=0.587,p<0.01)
     High CHO:T_(peak)=20.078-0.369T(n=20, r~2=0.349, p<0.01)
     Contol:SDA_D=113.6-1.5T(n=26, r~2=0.542, p<0.01)
     High CHO:SDA_D=110.4-1.5T(n=20, r~2=0.379, p<0.01)
     Contol:Factorial scope=1.850+0.053T(n=26, r~2=0.400, p<0.01)
     High CHO:Factorial scope=1.614+0.055T(n=20, r~2 =0.303, p<0.01)
     7.17.5℃下,高CHO组鱼体初次摄食和喂养1月后的SDA总耗能和SDA系数均显著低于对照组(P<0.05),而在其余温度下差异不显著。
     8.初次摄食的高CHO组SDA峰值在32.5℃下显著低于对照组,而喂养1月后,同样的差异显著性出现在17.5℃条件下,其余的温度下两组间的SDA峰值无显著差异。
     通过讨论本研究提出以下结论:
     1.发现肉食性鱼类承受饲料碳水化合物营养胁迫时,在一定的时期内,其表观生长状况不受影响,而延长胁迫时间会导致其生长状态恶化。
     2.提出了肉食性鱼类能够在一定程度上耐受较高水平的CHO饲料营养胁迫的适应机制:当面临中等水平的CHO胁迫时,鱼体仅反应为血糖水平和肝糖原总量的增高;当面临高水平的CHO胁迫时,既增高血糖水平和肝糖原总量,还增高脂肪的合成和累积率。
     3.摄食中水平CHO饲料的南方鲇与摄食高CHO饲料的鱼体同在较短时间内出现了水平升高幅度相近的高血糖反应,表明鱼体的主动适应机制:可增加无效循环所需糖底物的浓度,从而加速无效代谢,有利于加快鱼体对摄入的碳水化合物的清除速率。
     4.在较低的温度下(17.5℃),南方鲇利用饲料碳水化合物能力较差,高CHO饲料明显抑制了鱼体表观生长状况;随温度升高,鱼体通过合成脂肪和肝糖原及酵解利用碳水化合物的能力逐渐增强,在较高温度下高CHO饲料对鱼体表观生长无明显的抑制作用。这为进一步验证动物对糖类营养的利用率与其体温正相关的理论提供了关于肉食性鱼类的实验资料。
     5.提出肉食性鱼类对饲料碳水化合物的利用能力较差与其静止代谢水平较低的生理生态学特征相关,摄入大量碳水化合物后可能导致供能速率过剩,以血糖的形式在体内堆积。温度升高使鱼体代谢从“需求限制型”逐渐转变为“供给限制型”,可以增强鱼体对饲料碳水化合物胁迫的适应能力。
     6.发现在较低的温度下,鱼体的表观SDA呈现两个峰,提出当温度足够低时,SDA的“机械部分”和“生化部分”的峰值可在时间维度上分离,而南方鲇对食物的机械处理耗能相对比例较大,因此可以观测到两个分离的峰值现象。此发现补充了McCue(2006)总结的外温动物SDA与温度的关系的模式。
     7.提出在较低的温度下,摄食高CHO饲料的南方鲇的SDA耗能量及占摄入能的比例减小,是在低温下摄食高CHO饲料的鱼体生长率和蛋白转化效率降低的生理生态学反应。这为验证Jobling(1985)提出的鱼体SDA效应与其生长及蛋白合成速率正相关的理论提供了实验证据。
Four experiments were conducted on the southern catfish, Silurus meridionalis an obligatory carnivorous species. In experiment I, three isonitrogenous and isoenergetic diets containing 0%, 15%, and 30% level of precooked starch were formulated, and were referred to as the control, middle and high carbohydrate (CHO) diet, respectively. At 27.5°C, the effects of dietary carbohydrate level and feeding period on growth performance and plasma glucose were tested in the fish fed for 0, 2, 4, 8, 12, and 16 weeks, respectively. In experiment II, effects of high CHO diet on growth and plasma glucose in the fish were tested at 17.5, 20, 22.5, 25, 27.5, 30, and 32.5°C, respectively. In experiment III, effects of high CHO diet on resting metabolic rate in the fish at different temperatures were studied. In experiment IV, effects of high CHO diet on SDA in the fish at different temperatures were tested.
     The results were as follows:
     1. Specific growth rate (SGR), feed efficiency (FE), and protein productive value (PPV) in this fish were not significantly depressed by dietary carbohydrate within a feeding period of 12 weeks, but it were when the experiment lasted for more than 12 weeks(P<0.05). With feeding time lasting, there was a trend that hepatic glycogen and Hepatosomatic index (HSI) in the fish fed at the middle or high CHO level increased to their peaks, and then decreased to a low level.
     2. Lipid productive value (LPV) of the high CHO group were more than 100%, and were significantly higher than those of both the control and middle CHO group irrespective of experimental period (P<0.05). G6PDH activities of the high CHO group were significantly higher than those of the control at the 8~(th) and 12~(th) week (P<0.05). No significant difference in LPV and G6PDH activities was found between the control and middle CHO group.
     3. When fed for more than 2 weeks, the plasma glucose of the middle and high CHO groups were significantly higher than those of the control (P<0.05), while no significant difference was found between the middle CHO and high CHO groups. HSI of the middle and high CHO group were significantly higher than those of the control in the 2~(th), 4~(th), and 8~(th) week (P<0.05). Hepatic glycogen contents of the middle and high CHO group were higher than those of the control in the 2~(th), 4~(th), 8~(th), and 12~(th) week (P<0.05).
     4. At 17.5°C, SGR, FE, and PPV of the high CHO group were significantly lower than those of the control (P<0.05), while no significant difference was found at other temperatures. At 17.5 and 20°C, protein efficiency ratio (PER) of the high CHO group were significantly lower than that of the control (P<.05), while no significant difference was found at other temperatures. LPV of the high CHO group were significantly higher than that of the control at temperatures above 17.5°C (P<0.05), while no significant difference was found at 17.5°C.
     5. At higher temperature (≥27.5°C), resting metabolic rate in the high CHO group was not significantly different from that of the control. At moderate temperature (20-25°C), resting metabolic rate in the high CHO group was higher than that of the control significantly (P<0.05). At 17.5°C, no significant increase of rest metabolic rate was found in the high CHO group compared to the control.
     6. Energy expended on specific dynamic action (SDA_E, kJ.kg~(-1)), SDA coefficient(SDA coefficient, %), SDA peak(SDA peak, mgO_2·kg~(-1).h~(-1)), time to the peak(T_(peak), h), SDA duration(SDA_D, h), and factorial scope of both the control and high CHO group increased linearly with temperature(T) significantly(P<0.05), and the relationships could be described as:Contol: SDA_E = 27.133+1.544T (n=26, r~2 =0.739, p<0.01)High CHO: SDA_E = 18.792+1.698T (n=20, r~2 =0.720, p<0.01)Contol: SDA coefficient = 4. 096+0.223T (n=26, r~2 =0.726, p<0.01) High CHO: SDA_(coefficient) = 2.733+0.250T (n=20, r~2 =0.721, p<0.01)Contol: SDA_(peak) = -69.106+12.258T (n=26, r~2 =0.948, p<0.01)High CHO: SDA _(peak) = -52.760+10.920T (n=20, r~2 =0.927, p<0.01)Contol: T_(Peak)= 24.807-0.525T (n=26, r~2 =0.587, p<0.01)HighCHO: T_(peak) = 20.078-0.369T (n=20, r~2 =0.349, p<0.01)Contol: SDA_D= 113.6-1.5T (n=26, r~2 =0.542, p<0.01)HighCHO: SDA_D= 110.4-1.5T (n=20, r~2 =0.379, p<0.01)Contol: Factorial scope = 1.850+0.053T (n=26, r~2 =0.400, p<0.01)High CHO: Factorial scope = 1.614+0.055T (n=20, r~2 =0.303, p<0.01)
     7. At 17.5°C, SDA_E and SDA coefficient in the high CHO group were significantly lower than those of the control at either the initial or the end of a month of feeding (P<0.05), while not significantly different at other temperatures.
     8. At 32.5°C, SDA peak in the high CHO group was significantly lower than those of the control at the initial of the feeding experiment (P<0.05), while the similar significant difference was found at 17.5°C at the end of a month of feeding. No significant difference was found between the two groups at other temperatures.
     The conclusions suggested in this study were as follows:
     1. The results showed that the stress of dietary carbohydrate could not depress apparent growth of carnivorous fish within a certain feeding period; however, the growth performance appeared depressed when the stress period lasted longer.
     2. The adaptive regulation mechanisms in the carnivorous fish under the nutritional stress were presented. As a response to middle level of dietary carbohydrate stress, the fish body increases its sugar store by elevating levels of both plasma glucose and liver glycogen. Under high level of carbohydrate stress, lipid synthesis and deposition in the body would increase in addition to a response as the former.
     3. The similar hyperglycemia response in the southern catfish fed with the middle and high CHO diets appeared in a short feeding period, which showed a positive adaptive mechanism of increasing the concentration of glucose substrate, which could accelerate the futile cycling to dissipate excess ingested carbohydrate.
     4. At a lower temperature (17.5°C), the southern fish utilized dietary carbohydrate poorly and its growth performance was depressed by high CHO diet. The capabilities of carbohydrate utilization by lipogenesis, glycogenesis, and glycolysis increased with temperature gradually, as a result of which dietary carbohydrate would not depress the growth performance at higher temperatures. The study presented the test data about carnivorous fish to support the hypothesis that there would be a positive relationship between body temperature of the animal and its carbohydrate utilization.
     5. The poor utilization of dietary carbohydrate in the carnivorous fish should be due to its low resting metabolic rate, and excess intake of carbohydrate could result in overloaded power input, which would accumulate as hyperglycemia. With temperature increasing, metabolism of fish body would switch gradually from 'demand-limited' to 'supply-limited', which could enhance the capability of fish to adapt dietary carbohydrate stress.
     6. Two peaks appeared during the SDA response in the fish at a lower temperature. It was proposed in this study that the peaks of "mechanical component" and "biochemical component" of SDA could be separated when temperature was low enough. Energy expended on mechanical processes in the southern catfish accounted for a considerable portion in the whole SDA, as a result of which the two separated peaks were observed. It improved the schematic model illustrating relationship of temperature and SDA in ectotherm summarized by McCue (2006).
     7. It was suggested that at lower temperature, energy expended on SDA and its ratio to energy intake decreased in the fish fed with high CHO diet, which reflected as the depressed growth performance and protein efficiency ecophysiologically. The suggestion above would present a test evidence to support the theory proposed by Jobling (1985) that SDA response would be positively correlated with the rate of growth rate and protein synthesis in fish.
引文
艾庆辉、谢小军,南方鲇的营养学研究:饲料中大豆蛋白水平对生长的影响。水生生物学报,2002,26(1):57-65。
    艾庆辉、谢小军,南方鲇的营养学研究:Ⅴ.饲料中大豆蛋白水平对消化率及摄食率的影响,水生生物学报,2002,26(3):215-220。
    成成、谢小军,罗毅平,林小植,饲料碳水化合物对南方鲇肝、胰、肾组织结构的影响。西南师范大学学报(自然科学版),2007(3),待发表。
    邓利、谢小军,南方鲇营养学研究:Ⅰ.人工饵料的消化率。水生生物学报,2000,24:347-355。
    付世建、谢小军,饲料碳水化合物水平对南方鲇生长的影响。水生生物报,2005,29(3):82-86。
    付世建、张文兵、谢小军,南方鲇营养学研究:Ⅲ.饵料脂肪对蛋白质的节约效应。水生生物学报,2001,25:70-75。
    高梅、罗毅平、曹振东,饲料碳水化合物对南方鲇(Silurus meridional is Chen)幼鱼消化酶活性的影响。西南师范大学学报(自然科学版),2006,31(2):119-123。
    何利君、谢小军、艾庆辉,饲喂频率对南方鲇的摄食率、生长率和饲料转化效率的影响。水生生物学报,2003,27(4):434-436。
    李强、谢小军、罗毅平,林小植。饲料碳水化合物对南方鲇免疫力的影响。水生生物学报,2007,31(4),待发表。
    林小植、罗毅平、谢小军,饲料碳水化合物水平对南方鲇幼鱼餐后糖酵解酶活性及血糖浓度的影响。水生生物学报,2006,30(3):304-310。
    施白南,嘉陵江南方大口鲇的生物学研究。西南师范大学学报,1980,2:45-52。
    谢小军,南方大口鲇的年龄和生长的初步研究。生态学报,1987,7:359-367。
    谢小军,南方大口鲇的幼鱼发育的研究。水生生物学报,1989,13:124-133。
    谢小军,孙儒泳,鱼类的特殊动力作用的研究进展。水生生物学报,1991,15:82-90。
    谢小军、何学福、龙天澄,南方鲇的繁殖时间,产卵条件和产卵行为。水生生物学报,1996,20:17-24。
    张文兵、谢小军、付世建,南方鲇的营养学研究:Ⅱ.饵料的最适蛋白质含量。水生生物学报。2000,24:603-609。
    张耀光、谢小军,南方鲇的性腺发育及周年变化的研究。水生生物学报,1996,20:8-16。
    Ackerman P. A., Forsyth R. B., Mazur C. F. and Iwama G. K. Stress hormones and the cellular stress response in salmonids. Fish Physiology and Biochemistry, 2000, 23: 327-336.
    Agutter Paul S. and Wheatley Denys N. Metabolic scaling: consensus or controversy? Theoretical Biology and Medical Modelling. 2004, 1:13
    Ai Qinghui and Xie Xiaojun. Effects of dietary soybean protein levels on energy budget of the southern catfish, Silurus meridionalis. Comparative Biochemistry and Physiology, 2005,141A: 461-469.
    Ali M. and Jauncey K. Optimal dietary carbohydrate to lipid ratio in African catfish Clarias gariepinus (Burchell 1822). Aquaculture International, 2004, 12: 169-180.
    Ali M. Z. and Jauncey K. Optimal dietary carbohydrate to lipid ratio in African catfish Clarias gariepinus (Burchell 1822). Aquaculture International, 2004, 12: 169-180.
    Arnesen P., Krogdahl (?). and Sundby A. Nutrient digestibilities, weight gain and plasma and liver levels of carbohydrate in Atlantic salmon (Salmo salar, L.) fed diets containing oats andmaize. Aquaculture Nutrition, 1995, 1:151-158.
    Averett R. C. Influence of temperature on energy and material utilization by juvenile coho salmon. Ph.D. TheSIS. Oregon State Univ., Corvallis, Oreg, 1969.
    Bacigalupe L. D. and Bozinovic F. Design, limitations and sustained metabolic rate: lessons from small mammals. Journal of Experimental Biology, 2002, 205: 2963-2970.
    Baeverfjord G. Digestible and indigestible carbohydrates in rainbow trout diets. Liver glycogen deposition and liver morphology. Dissertation, Department of Pathology, Norwegian College of Veterinary Medicine, 1992, pp 117.
    Banos N., BaroJ., Castejon C., Navarro I., Gutiorrez J. Influence of high-carbohydrate enriched diets on plasma insulin levels and insulin and IGF-Ⅰ receptors in trout. Regulatory Peptides. 1998, 77: 55-62.
    Beamish F. W. H. Apparent specific dynamic action of largemouth bass, Micropterus salmoides. J. Fish. Res. Board. Can. 1974, 31(11): 1763-1769.
    Bergot F. Effects of dietary carbohydrates and of their mode of distribution on glycaemia in rainbow trout (Salmo gairdneri R.). Comparative Biochemistry and Physiology, 1979b, 64: 543-547.
    Blasco J., Fernandez-Borras, J., Marimon, I., Requena, A., Plasma glucose kinetics and tissue uptake in brown trout in vivo: Effect of an intravascular glucose load. Jounal of Comparative Physiology, 1996, 165 B: 534-541.
    Borrebaek B. and Christophersen B. 2001. Activities of glucose phosphorylation, glucose-6-phosphatase and lipogenic enzymes in the liver of perch, Perca fluviatilis, after different dietary treatment. Aquaculture Research, 2001, 32 (Suppl. 1): 221-224
    Borrebaek B. and Christophersen B. Hepatic glucose phosphorylating activities in perch (Perca fluviatilis) after different dietary treatments. Comparative Biochemistry and Physiology, 2000, 125 B: 387-393.
    Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle dye binding. Analytical Biochemistry, 1976, 72: 248-254.
    Brauge C., Corraze G., Medale F. Effect of dietary levels of lipid and carbohydrate on growth performance, body composition, nitrogen excretion and plasma glucose levels in rainbow trout reared at 8 or 18℃. Reprod. Nutr. Dev. 1995, 35: 277-290.
    Brauge C., Medale F. and Corraze G. Effect of dietary carbohydrate levels on growth, body composition and glycaemia in rainbow trout. Oncorhynchus mykiss, reaered in seawater. Aquaculture, 1994, 123: 109-120.
    Braune P. and Rolff J. Parasitism and survival in a damselfly: does host sex matter? Proceedings of the Royal Society of London. 2001, 268B: 1133-1137.
    Brett J. R. and Groves T. D. D. Physiological Energetics in Fish Physiology [M]. New York : Academic Press. 1979, 8: 279-352.
    Brown J. R. and Cameron J. N. The relation between specific dynamic action and protein synthesis rates in channel catfish. Physiological Zoology, 1991, 64: 298-309.
    Buddington R. K. and Doroshov S. I. Development of digestive secretions in white sturgeon juveniles (Acipenser transmontanus). Comparative Biochemisstry and Physiology, 1986, 83A(2): 233-238.
    Bureau D. The partitioning of energy from digestible carbohydrates by rainbow trout (Oncorhynchus mykiss). Diss. Abst.lnt. Part B- Sci.Eng., 1998, 58B:33-79.
    Capilla E., Medale F., Panserat S., Vachot C., Rema P., Gomes E., Kaushik S.J., Navarro I., and Gutierrez J. Response of hexokinase enzymes and the insulin system to dietary carbohydrates in the common carp, Cyprinus carpio. Reproduction Nutrition Development, 2004, 44: 233-242.
    Capilla Encarnacion, Medale Francoise, Navarro Isabel, Panserat Ste'phane, Vachot Christiane, Kaushik Sadasivam, and Gutierrez Joaquim. Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout. Regulatory peptides. 2003,110:123-132.
    Carefoot T. H. Specific dynamic action (SDA) in the supralittoral isopod, Ligia pallasii: identification of components of apparent SDA and effects of dietary amino acid quality and content on SDA. Comparative Biochemisstry and Physiology, 1990, 95A: 309-316.
    Carefoot T. H. The effect of diet quality on oxygen consumption in the supralittoral isopod Ligia pallasii. Comparative Biochemisstry and Physiology, 1987, 87A: 127-134.
    Caseras A., Meton I., Fernandez F., et al. Glucokinase gene expression is nutritionally regulated in liver of gilthead sea bream (Sparus aurata) [J]. Biochimica et Biophysica Acta. 2000, 1493: 135-141.
    Caseras A., Meton I., Vives C., et al. Nutritional regulation of glucose-6-phosphatase gene expression in liver of the gilthead sea bream (Sparus aurata)[J]. British Journal of Nutrition, 2002, 88: 607-614.
    Chan A. S., Horn M. H., Dickson K. A., and Gawlicka A. Digestive enzyme activities in carnivores and herbivores: comparisons among four closely related prickleback fishes (Teleostei: Stichaeidae) from a California rocky intertidal habitat. Journal of Fish Biology, 2004, 65: 848-858.
    Cho C. Y. and Slinger S. J. Effect of water temperature on energy utilization in rainbow trout (Salmo gairdneri). Proc. 8th Symp. on Energy Metabolism, Cambridge, U.K. 1980, pp:287-291.
    Cho C. Y., Bayley H. S., and Slinger S.J. Energy metabolism in growing rainbow trout: Partition of dietary energy in high protein and high fat diets. Proc. 7th Symp. on Energy Metabolism, Vichy, France. 1976, pp. 299-302. Cho C. Y., Slinger S. J., and Bayley H. S. Bioenergetics of salmonid fishes: energy intake, expenditure and productivity. Comparative Biochemistry and Physiology, 1982, 73B(1): 25-41.
    Choat J. H. and Clements K. D. Vertebrate herbrivores in marine and terrestrial environments: a nutritional ecology perspective. Annu. Rev. Ecol. Syst. 1998, 29: 375-403.
    Christiansen D. C., and Klungsφyr L. Metabolic utilisation of nutrients and the effects of insulin in fish. A review. Comparative Biochemisstry and Physiology, 1987, 88B: 701-711.
    Christopher M. M. Hematologic complications of diabetes mellitus. Vet Clin N Am Small Anim Pract. 1995, 25: 625-638.
    Clarke A. Is there a universal temperature dependence of metabolism? Functional Ecology, 2004, 18: 252-256.
    Codiner S. and Egginton S. Effects of seasonal temperature acclimation on muscle metabolism in rainbow trout, Oncorhynchus mykiss. Fish Physiology and Biochemistry, 1997, 16: 333-343.
    Cordiner S. and Egginton S. Effects of dietary carbohydrates and temperatures on slow growing juvenile eels Anguilla anguilla. Environmental Biology of Fishes, 1987, 18(2): 149-154.
    Cousin J. C. B., Boudin-Laurencin F., Gabaudan J. Ontogeny of enzyme activities in fed and fasting turbout, Scophtalmus maximus L. Journal offish Biology, 1987, 30: 15-33.
    Cui Y, Hung S S O, and Zhu X. Effect of ration and body size on the energy budget of juvenile white sturgeon. Journal offish Biology, 1996, 49: 863-876.
    Cutt C. J., Metcalfe N. B., and Taylor A. C. Fish may fight rather than feed in a novel environment: metabolic rate and feeding motivation in juvenile Atlantic salmon. Journal of fish biology, 2002, 61: 1540-1548.
    De la Gandara F., Garcia-Gomez A., and Jover M. Effect of feeding frequency on the daily oxygen consumption rhythms in young Mediterranean yellowtails (Seriola dumerili). Aquaculture engineering, 2002, 26: 27-39.
    Deganil Gad and Levanon Dan. Effects of dietary carbohydrates and temperatures on slow growing juvenile eels Anguilla anguilla. Environmental Biology of Fishes,1987, 18(2): 149-154.
    Deng D. F., Refstie S., and Hung S. S. O. Glycemic and glycosuric responses in white sturgeon(Acipenser transmontanus) after oral administration of simple and complex carbohydrates. Aquaculture, 2001, 199:107-117.
    Deng D. F., Refstie S., Hemre G. I., Crocker C. E., Chen H. Y., Cech J. J. and Hung S. S. O. A new technique of feeding, repeated sampling of blood and continuous collection of urine in white sturgeon. Fish Physiology and Biochemistry, 2000, 22: 191-197.
    Dias Jorge, Rueda-Jasso Rebeca, Panserat Stephan, Conceicao Luis E C da, Gomes Emidio F, and Dinis Maria T. Effect of dietary carbohydrate-to-lipid ratios on growth, lipid deposition and metabolic hepatic enzymes in juvenile Senegalese sole (Solea senegalensis, Kaup). Aquaculture Research, 2004, 35:1122-1130.
    Du L. and Niu C. J. Effects of dietary protein level on bioenergetics of the giant freshwater prawn, Macrobrachium rosenbergii (De Man, 1879) (Decapoda, Natantia). Crustaceana, 2002, 75: 875-889.
    Du W.-G., Yan S.-J. and Ji X. Selected body temperature, thermal tolerance and thermal performance in adult blue-tailed skinks, Eumeces elegans. Journal of Thermal Biology, 2000. 25: 197-202.
    Efendic Suad, Wajngot Alexandre, and Vranic Mladen. Increased activity of the glucose cycle in the liver: early characteristic of type 2 diabetes. Pro. Natl. Acad. Sci. USA. 1985, 82: 2965-2969.
    Elliott, J. M. The effects of temperature and ration size on the growth and energetics of salmonids in captivity. Comparative Biochemistry and Physiology, 1982. 73B: 81-91.
    Enes P. Panserat S. et al. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrachus labrax) juveniles. Comparative Biochemistry and Physiology, 2006, 143A: 89-96.
    Enes P., Panserat S., Kaushik S., and Oliva-Teles A. Rapid metabolic adaptation in European sea bass (Dicentrarchus labrax) juveniles fed different carbohydrate sources after heat shock stress. Comparative Biochemistry and Physiology, 2006, 145A: 73-81.
    Erfanullah A. K. Jafri. Effect of dietary carbohydrate-to-lipid ratio on growth and body composition of walking catfish (Clarias batrachus). Aquaculture, 1998, 161: 159-168.
    Forbes E. B. and Swift R.W. Associative dynamic effect Of protein, carbohydrate and fat. Journal of Nutrition, 1944, 27: 453-468.
    Forsberg O. I. The impact of varying feeding regimes on oxygen consumption and excretion of carbon dioxide and nitrogen in post-smelt Atlantic salmon Salmo salar L. Aquaculture engineering, 1997, 28: 29-41.
    Fry F. E. J. The aquatic respiration of fish. In the Physiology of Fishes, Vol.1(Brown, M. E., ed), 1957, pp: 1-63. New York: Academic Press.
    Fry F. E. J. The Effect of Environmental Factors on the Physiology of Fish [M]. New York: Academic Press, 1971, 1-98.
    Fu S. J. and Xie X. J. Nutritional homeostasis in carnivorous southem catfish (Silurus meridionalis): is there a mechanism for increased energy expenditure during carbohydrate overfeeding?[J]. Comparative Biochemistry and Physiology, 2004, 139A: 359-363.
    Fu S. J., Xie X. J., and Cao Z. D. Effect of feeding level and feeding frequency on specific dynamic action in Silurus meridionalis. Journal of Fish Biology, 2005b, 67: 171-181.
    Fu S. J., Xie X. J., Cao Z. D. Effect of meal size on posprandial metabolic response in southern catfish (Silurus meridionalis). Comparative Biochemistry and Physiology, 2005a, 140A: 445-451.
    Fu Shi-Jian, Xie Xiao-Jun and Cao Zhen-Dong. Effect of dietary composition on specific dynamicaction in southern catfish Silurus meridionalis Chen. Aquaculture Research, 2005c, 36: 1384-1390
    Furichi M. and Yone Y. Changes of blood sugar and plasma insulin levels of fishes in glucose tests. Bull Jap Soc ofFish, 1981, 47: 761-764.
    Furuichi M. and Yone Y. Changes in activities of hepatic enzymes related to carbohydrate metabolism of fishes in glucose and insulin-glucose tolerance tests. Bull.Jap.Soc.Sci.Fish., 1982, 48: 463-466.
    Gaye-Siessegger J., Focken V., and Becker K. Effects of dietary protein/carbohydrate ratio on activities of hepatic enzymes involved in the amino acid metabolism of Nile tilapia, Oreochromis niloticus(L.). Fish Physiology and Biochemistry, 2006, 32: 275-282.
    Gaylord T. G., Mackenzie D. S., and Gatlin D. M. Growth performance, body composition and plasma thyroid hormone status of channel catfish (Ietalurus punctatus) in response to short-term feed deprivation and refeeding. Fish Physiology and Biochemistry, 2001, 24:73-79.
    Gelineau A., Bolliet V., Corraze G., Boujard T. The combined effects of feeding time and dietary fat levels on feed intake, growth and body composition in rainbow trout. Aquat. Living Resour. 2002, 15: 225-230.
    Gillooly J. F., Allen A. P., Savage V. M., Charnov E. L., West G. B., and Brown J. H. Response to Clarke and Fraser: effects of temperature on metabolic rate. Functional Ecology, 2006, 20: 400-404.
    Gillooly James F., Brown James H., West Geoffrey B., Savage Van M., Charnov Eric L. Effects of size and temperature on metabolic rate. Science, 2001, 293:2248-2251.
    Grayson Kristine L., Cook Leslie W., Todd M. Jason, Pierce D., Hopkins William A., Gatten Jr. Robert E., and Dorcas Michael E. Effects of prey type on specific dynamic action, growth, and mass conversion effieiencies in the horned frog, Ceratophrys cranwelli. Comparative Biochemistry and Physiology, 2005,141Part A:298-304.
    Guinea J. and Fernandez F. Effect of feeding frequency, feeding level and temperature on energy metabolism in Sparus aurata. Aquaculture, 1997, 148:125-142.
    Guinea J. and Fernandez, F. The effect of SDA, temperature and daily rhythm on the energy metabolism ofthe mullet Mugil saliens. Aquaculture, 1991,97: 353-364.
    Gutierrez J. and Plisetskaya E. M. Insulin binding to liver plasma membranes in salmonids with modified plasma insulin levels. Can. J. Zool 1991, 146:35-.
    Gutierrez J., Asgard T., Fabbri E., and Plisetskaya E. M. Insulin-receptor binding in skeletal muscle of trout. Fish Physiology and Biochemistry, 1991,9:351-360.
    Harper H. A. Review Of physiological chemistry. 13th ed. Lange Medical Publications, Los Altos, Calif. 1971, 564 p.
    Hatlen Bjarne, Grisdale-Helland Barbara, and Helland Stale J. Growth, feed utilization and body composition in two size groups of Atlantic halibut (Hippoglossus hippoglossus) fed diets differing in protein and carbohydrate content. Aquaculture, 2005, 249: 401-408.
    Heinimaa Sirkka. Liver glycogen content of Atlantic salmon (Salmo salar L.) parr decreased despite the unchanging carbohydrate content of feed in the hatchery in winter. Aquaculture Research, 2003, 34: 1413-1415.
    Helland B. and Grisdale-Helland, S. J. Growth, feed utilization and body composition of juvenile Atlantic halibut (Hippoglossus hippoglossus) fed diets differing in the ratio between the macronutrients. Aquaculture, 1998, 166, 49-56.
    Hemre G. I. and Storebakken T. Tissue and organ distribution of 14C-activity in dextrin-adapted Atlantic salmon after oral administration of radiolabelled 14C_1-glucose. Aquaculture Nutrition, 2000, 6, 229-234.
    Hemre G. I. Studies on Carbohydrate Nutrition in Cod (Gadus morhua). Dr. scientiarum Thesis. 1992, Institute of Nutrition, University of Bergen, Norway.
    Hemre G. I., Lie φ., Lambertsen G., Sundby A. Dietary carbohydrate utilisation in cod (Gadus morhua). Hormonal response of insulin, glucagon and glucagon-like peptide to diet and starvation. Comparative Biochemistry and Physiology, 1990, 97 A: 41-44.
    Hemre G. I., Mommsen T. P., and Krogdahl A. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes [J]. Aquaculture Nutrition, 2002, 8: 175-194.
    Hemre G. L. and Kahrs F. C-glucose injection in Atlantic cod, Gadus morhua, metabolic response and excretion via the gill membrane. Aquaculture Nutrition, 1997, 3: 3-8.
    Hemre G.-I., Torrissen O., Krogdahl (?)., Lie φ. Glucose tolerance in Atlantic salmon, Salmo salarL., dependence on adaptation to dietary starch and water temperature. Aquaculure Nutrition, 1995, 1: 69-75.
    Hemre Gro-Ingunn and Hansen Tom. Utilisation of different dietary starch sources and tolerance to glucose loading in Atlantic salmon (Salmo salar), during parr-smolt transformation. Aquaculture, 1998, 161: 145-157.
    Hemre, G. I. and Krogdahl (?). The effect of handling and fish size on the secondary changes in carbohydrate metabolism in Atlantic salmon (Salmo salar). Aquaculture Nutrition, 1996, 2: 249-252.
    Herold M. A., Hung S. S. O., Fynn-Aikins K. Apparent Digestibility Coefficients of Carbohydrates for White Sturgeon. Prog Fish-Cult, 1995, 57: 137-140.
    Hillestad M., Johnsen F. and Asgard T. Protein to carbohydrate ratio in high-energy diets for Atlantic salmon (Sailmon salar L.). aquaculture Research, 2001, 32(7):517-524.
    Hilton J. W. and Atkinson J. L. Response of rainbow trout (Salmo gairdneri) to increased levels of available carbohydrate in practical trout diets. British Journal of Nutrition, 1982, 47(3): 597-607.
    Hilton J. W., Plisetskaya E. M., Leatherland J. F. Does oral 1, 5, 3'-triiodo-L-thyronine affect dietary glucose utilization and plasma insulin levels in rainbow trout (Salmo gairdneri) ?. Fish Physiology and Biochemistry, 1987, 4:113-120.
    Hochachka Peter W. and Somero George N. Biochemical adaptation. 2002, P50, Oxford University Press, Newyork.
    Houlihan D. F., Pedersen B. H., Steffensen J. F., and Brechin J. Protein synthesis, growth and energetics in larval herring (Clupea harengus) at different feeding regimes. Fish Physiology and Biochemistry, 1995, 14:195-208.
    Houpe K. L., Malo C., Oldman P. B., and Buddington R. K. Thermal modulation of channel catfish intestinal dimensions, BBM fluidity and glucose transport. Am. J. Physiol. 1996, 270: 1037-R1043.
    Huang Chen-Huei, Shyong Wen-Jium, and Lin Way-Yee. Dietary lipid supplementation affects the body fatty acid composition but not the growth of juvenile river chub, Zacco barbara (Regan). Aquaculture Research, 2001, 32: 1005-1010.
    Hung S. S. O. and Storebakken T. Carbohydrate utilization by rainbow trout is affected by feeding strategy. Journal of Nutrition, 1994, 124: 223-230.
    Hung S. S. O., Fynn-Aikins F. K., Lutes P. B. and Xu R. P. Ability of juvenile white sturgeon (Acipenser transmontanus) to utilize different carbohydrate sources. Journal of Nutrition, 1989, 119: 727-733.
    Hutchins C. G., Rawles S. D., and Gatlin Ⅲ D. M. Effects of dietary carbohydrate kind and level on growth,body composition and glycemic response of juvenile sunshine bass[J]. Aquaculture, 1998,161:187-199.
    Ing Mokoginta, Toshio Takeuchi, Ahmad Hadadi, and Jusadi Dedi. Different capabilities in utilizing dietary carbohydrate by fingerling and subadult giant gouramy Osphronemus gouramy. Fishries Science, 2004, 70: 996-1002.
    Jauncey K, 1993. Advances in freshwater fish nutritrion, In feeds Production Tomorrow Ⅱ. Bankok, Thailand.
    Jobling M. A study of some factors affecting rates of oxygen uptake of plaice, Pleuronectes platessa L. Journal ofFish Biology. 1982, 20: 501-516.
    Jobling M. and Davies P. S. Effects of feeding on metabolic rate , and the specific dynamic action in plaice, Pleuronectes platessa L. Journal ofFish Biology, 1980, 16, 629-638.
    Jobling M. Fish Bioenergetics. Fish and Fisherires Series, vol. 13. Chapman and Hall, London, 1994, pp: 213-230.
    Jobling M. Growth. In: Fish Energetics: New Perspectives (Tytler, P. & Calow, P. eds). 1985, PP: 213-230. Croom Helm. London.
    Jobling M. The influence of feeding on the metabolic rate of fishesL a short review. Journal ofFish Biology, 1981, 18: 385-400.
    Johannes Groβmann, J. Matthias Starck.Postprandial responses in the African rhombig egg eater (Dasypeltis scabra). Zoology, 2006, 109(4): 310-7.
    Johnston I. A., and Battram G. Feeding energetics and metabolism in dermersal fish species from Antarctic, temperate and tropical environments. Marine Biology, 1993, 115: 7-14.
    Katasanevakis S., Protopapas N., Milion H., Veeriopouls G. Effect of temperature on specific dynamic action in the marine biology, 2004,
    Katsanevakis S., Protopapas N., Miliou H., and Verriopoulos G. Effect of temperature on specific dynamic action in the common octopus, Octopus vulgaris (Cephalopoda). Marine Biology, 2004,
    Katz J., Wals P.A., and Rognastad R. Glucose phosphorylation, glucose-6-phosphatase and recycling in rat hepatocytes. J. Biol. Chem., 1978, 253 : 4530-4536.
    Kaushik S. J., Luquet P., Blanc D., anf Paba B. Studies on the nutrition of Siberian sturgeon (Acipenser baeri) I. Utilizition of digestible carbohydrates by sturgeon. Aquaculture, 1989, 76: 97-107.
    Keembiyehetty C. N. and Wilson R. P. Effect of water temperature on growth and nutrient utilization of sunshine bass(Morone chrysops♀×Morone saxatilis ♂)fed diets containing different energy/protein ratios. Aquaculture, 1998, 166: 151-162.
    Kelsch S. W. and Neill W. H. Temperature preference versus acclimation in fishes: selection for changing metabolic optima. Transactions of the American Fisheries Society, 1990, 119: 601-610.
    Keshavanath P., Manjappa K., and Gangadhara B. Evaluation of carbohydrate rich diets through common carp culture in manured tanks. Aquaculture Nutrition, 2002, 8 (3): 169-174.
    Keshavanath P., Manjappa K., and Gangadhara B. Evaluatuon of carbohydrate rich diets through common carp culture in manured tanks. Aquaculture Nutrition, 2002, 8: 169-174.
    Kieffer James D., Alsop Derek., and Wood Chris M. A respirometric analysis of fuel use during aerobic swimming at different temperatures in rainbow trout (Oncorhynchus mykiss). The Journal of Experimental Biology, 1998, 201: 3123-3133.
    Kim J. D. and Kaushik S. J. Contribution of digestible energy from carbohydrates and estimation of protein/energy requirements for growth of rainbow trout (Oncorhynchus mykiss). Aquaculture, 1992, 106:161-169.
    Kirchner S., Kaushik S., Panserat S. Effect of partial substitution of dietary protein by a single gluconeogenic dispensable amino acid on hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss) [J]. Comparative Biochemistry and Physiology Part, 2003, 134A:337-347.
    Kleiber M. Body size and metabolic rate. Physiol. Rev. 1947, 27:511-541.
    Kleiber M. The fire of life: an introduction to animal energetics [-M. New York: John Wiley and Sons,1961.
    Krogdahl A. and Sundby A. Characteristics of Pancreatic Function in Fish[M].Pierzynowski S G,Zabielski R,Biology of the Pancreas in Growing Animals, 1999, 437-458.
    Krogdahl (?)., Hemre G.-I., and Mommsen T. P. carbohydrate in fish nutrition: digestion and absorption in postlarval stages. Aquaculture Nutrition, 2005, 11: 103-122.
    Kuz'mina V. V., Golovanova I. L., and Izvekova G. I. Influence of Temperature. and Season On Some Characteristics of Intestinal Mucosa Carbohydrases in Six Freshwater Fishes. Comparative Biochemistry and Physiology, 1996, 113B (2): 255-260.
    Kuz'mina V., Golovanova V., Izvekova G. I. Influnce of Temperature and Season on Some Characteristics of Intestinal Carbohydrases in Six Freshwater Fishes. Comparative Biochemistry and Physiology, 1996, 113: 255-260.
    Lee S. M, Kim K. Duck, and Lall S. P. Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus). Aquaculture, 2003, 221: 427-438.
    Lee Sang-Min and Lee Jong Ha. Effect of dietary glucose, dextrin and starch on growth and body composition of juvenile starry flounder Platichthys stellatus. Fisheries Science, 2004, 70: 53-58.
    Legate N. J., Bonen A, and Moon T. W. "Glucose Tolerance and Peripheral Glucose Utilization in Rainbow Trout (Oncorhynchus mykiss), American Eel (Anguilla rostrata), and Black Bullhead Catfish (Ameiurus melas)." General and Comparative Endocrinology, 2001, 122: 48-59.
    Legate N. J., Bonen A., and Moon T. W. Glucose tolerance and peripheral glucose utilization in three fish species. General Comp. Endocrinol. 2001, (in press).
    Lermen C. L., Lappe R., Crestani M., Vieira V. P., Gioda C. R., Schetinger M. R. C., Baldisserotto B., Moraes G., Morsch V. M. Effect of different temperature regimes on metabolice and blood parameters of silver catfish Rhamdia quelen. Aquaculture, 2004, 239: 497-507.
    Likimani T. A. and Wilson R. P. Effect of diet on lipogenic enzyme activities in channel catfish hepatic and adipose tissue. Journal of Nutrition, 1982, 112: 112-117.
    Lin J. H, and Shiau S. Y. Hepatic enzyme adaptation to different dietary carbohydrates in juvenile tilapia (Oreochromix niloticu x. O.aureus)[J]. Fish Physiology and Biochemistry, 1995, 14: 165-170.
    Lin S. C., Liou C-H., Shiau S-Y. Renal threshold for urinary glucose excretion by tilapia in response to orally administered carbohydrates and injected glucose. Fish Physiology and Biochemistry, 2000, 3: 127-132.
    Love R. M. The Chemical Biology of Fishes, 1980, p943.London, Academic Press.
    Lovell, R.T., 1989. Nutrition and Feeding of Fish. Van Nostrand-Reinhold, New York, USA, 260 pp.
    Lygren Bjarte and Hemre Gro-Ingunn. Influence of dietary carbohydrate on antioxidant enzyme activeities in liver of Atlantic salmon (Salmo salar L.). Aquaculture International, 2001, 9: 421-427.
    Lyndon A. R., Houlihan D. F. and Hall S. J. The effect of short-term fasting and a single meal on protein synthesis and oxygen consumption in cod, Gadus morhua. Journal of Comparative Physiology, 1992, 162B:209-215.
    Machida Y. Study of specific dynamic action on some freshwater fishes. Rep. USA Mar. Biol. Inst., Kochi Univ. 1981, 3: 1-50.
    Matty A. J. and Lone K. P. The hormonal control of metabolism and feeding. In Fish Enegetics. New Perspectives (Tytler, P. & Calow, P., eds), 1985, pp.185-209. Beckenham, Kent: Croom Helm.
    Maule A. G.., Tripp R. A., and Kaatttari S. L., et al. Stress alters immune function and disease resistance in chinook salmon(Oncorhtnchus tshawytscha)[J]. J. Endocrinol, 1989, 120: 135-142.
    Mccarthy I. D. Repeatabolity of relative standard metabolic rate in juvenile Atlantic salmon and its relation to life history variation. Journal of Fish Biology. 2000, 57: 224-238.
    McCue M. D. Specific dynamic action: A century of investigation. Comparative Biochemistry and Physiology, 2006, 144A: 381-394.
    McCue M. D. Specific dynamic action: A century of investigation. Comparative Biochemistry and Physiology, 2006, 144 A: 381-394.
    McCue M. D., Bennett A. F., Hicks J. W. The effect of meal composition on specific dynamic action in Burmese pythons (Python molurus). Physiological and Biochemical Zoology, 2005, 78:182-192.
    Medale F, Kaushik S J. Energy utilization by farmed Siberian sturgeon(Acipenser baeri) from 3 age classes. In:Williot P (Ed), Acipenser. Cemagred, Bardeaux, 1991, pp. 13-23.
    Met6n I, Fernandez F, Baanante I V. Short- and long-term effects of refeeding on key enzyme activities in glycolysis-gluconeogenesis in the liver of gilthead seabream (Sparus aurata). Aquaculture, 2003, 225: 99-107.
    Meton I, Mediavilla D, Caseras A, et al. Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata) [J]. British Journal of Nutrition, 1999, 82: 223-232.
    Mohapatra M., Sahu N.P., and Chaudari A. Utilization of gelatinized carbohydrate in diets of Labeo rohita fry. Aquaculture Nutrition. 2003, 9:189-196.
    Mokoginata Ing, Takeuchi Toshio, Hadadi Ahmad, and Dedi Jusadi. Different capabilities in utilizing dietary carbohydrate by fingerling and subadult giant gouramy Osphronemus gouramy. Fisheries Science, 2004, 70: 996-1002.
    Mommsen T. P. and Plisetskaya E. M. Insulin in fishes and agnathans: history, structure and metabolic regulation. Rev. Aquat. Sci., 1991, 4: 225-259.
    Moon T. W. Glucose intolerance in teleost fish: fact or fiction [J]. Comparative Biochemistry and Physiology, 2001, 129B: 243-249.
    Morata P., Faus M. J., Perez-Palomo M. and Sanchez-Medina F. Effect of stress on liver and muscle glycogen phosphorylase in rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology, 1982b, 72B: 421-425.
    Morita K., Furuichi M., and Yone Y. Effect of carboxymethylcellulose supplemented to dextrin-con-taining diets on the growth and feed efficiency of red sea bream. Bull. Jpn. Sot. Sci. Fish., 1982, 48:1617-1620.
    Murai T, Akiyama T, Nose T. Effects of glucose chain length of various carbohydrate and frequency of feeding on their utilization by fingerling carp. Bull Jap Soc Sci Fish, 1983, 49(10):1607-1611.
    Murat J. C., Plisetskaya E.M., and Woo N. Y. S. Endocrine control of nutrition in cyclostomes and fish. Comparative Biochemistry and Physiology, 1981, 68A, 149
    Nakano K., Tagawa M., Takemura A., and Hirano T. Temporal changes in liver carbohydrate metabolism associated with seawater transfer in Oreochromis mossambicus. Comparative Biochemistry and Physiology, 1998, 119:721-728.
    Navarro I., Leibush B., Moon T. W., Plisetskaya, E. M., Banos N., Mendez E., et al. Insulin, insulin-like growth factor-Ⅰ (IGF-Ⅰ) and glucagon: the evolution of their receptors. Comparative Biochemistry and Physiology, 1999, 122 B: 137-153.
    Neill W. H. and Bryan J. D. Responses of fish to temperature and oxygen, and response integration through metabolic scope. In Aquaculture and Water Quality (Brune, D. E. & Tomasso, J. R., eds). 1991,.pp. 30-57. Baton Rouge: The World Aquaculture Society.
    Nelson J. A. Metabolism o three species of herbivorus loricariid catfishes: influence of size and diet. Journal offish Biology, 2002, 61:1586-1599.
    Newsholme E. A. and Crabtree B. Substrate cycles in metabolic regulation and in heat generation. Biochem. Soc. Symp. 1976, 41: 61-109.
    Novoa Maria del Sol, Capilla Encamacion, Rojas Pablo, Baro Joan, Gutierrez Joaquim, Navarro Isabel. Glucagon and insulin response to dietary carbohydrate in rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 2004,139: 48-54.
    Ottlenghi C., Puviani A. C., Baruffaldi A., and Brighenti L. 'In vivo' effects of insulin on carbohydrate metabolism of catfish (Ictalurus melas). Comparative Biochemistry and Physiology, 1982, 72A, 35.
    Ottolenghi C., Puviani A. C., Baruffaldi A. M., Brihgenthi L. In vivo effects of insulin on carbohidrate metabolism of catfish, Ictaulurus melas. Comparative Biochemistry and Physiology, 1982, 172A:35-41.
    Page G. I. et al., non-specific immunity parameters and the formation of advanced glycosylation end-products(AGE) in rainbow trout, Oncorhynchus mykiss (Walbaum), fed high levels of dietary carbohydrates. Aquaculture Research, 1999, 30: 287-297.
    Panserat S., Capilla E., Gutierrez J., et al. Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose [J]. Comparative Biochemistry and Physiology, Part B. 2001b, 128:275-283.
    Panserat S., Medale F., Blin C., et al. Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream, and common carp [J]. American Journal Physiology Regulatory Integrative Comparative Physiology, 2000a, 278:1164-1170.
    Panserat S., Medale F., Breque J., and Kaushik S. Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss). J. Nutr. Biochem., 2000b, 11: 22-29.
    Panserat S.,. Plagnes-Juan E., Breque J., and Kaushik S. Hepatic phosphoenolpyruvate carboxykinase gene expression is not repressed by dietary carbohydrates in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol., 2001c, 204: 359-365.
    Panserat S., Plagnes-Juan E., Kaushik S. Nutritional regulation and tissue specificity of gene expression for proteins involved in hepatic glucose metabolism in rainbow trout (Oncorhynchus Mykiss). The Journal of Experimental Biology, 2001a, 204: 2351-2360.
    Peck L. S. and Veal R. Feeding metabolism and growth in the Antarctic limpet Nacella concinna (Strebel 1908). Marine Biology, 2001, 138: 553-560.
    Peck L. S. Feeding, metabolism and metabolic scope in Antarctic marine ectotherms. In: Portner H. O., Playde RZEds. Cold Ocean Physiology. Society of Experimental Biology Seminar Series. Cambridge University Press, Cambridge, 1998. pp. 365-390.
    Peck Lloyd S. and Veal Rachel. Feeding, metabolism and growth in the Antartic limpet, Nacella concinna (Strebel 1908). Marine Biology, 2001, 138: 553-560.
    Peck M. A., Buckley L. J., and Bengtson D. A. Effects of temperature, body size and feeding on rates of metabolism in young-of-the-year haddock. Journal of Fish Biology, 2005, 66: 911-923.
    Peck M. A., Buckley L. J., and Bengtson D. A. The effects of body size and temperature on energy losses due to routine and feeding metabolism in early juvenile Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences, 2003b, 60: 929-937.
    Peck M. A., Buckley L. J., and Bengtson D. A. Effects of temperature, body size and feeding on rates of metabolism in young-of-the-year haddock. Journal of Fish Biology, 66(4): 911-923.
    Peck Myron A., Buckley Lawrence J., and Bengtson David A. Energy losses due to routine and feeding metabolism in young-of-the-year juvenile Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci., 2003, 60: 929-937.
    Peragon Juan, Barroso Juan B., Garcia-Salguero Leticia , Higuera Manuel de la, Lupianez JoseA. Carbohydrates affect protein-turnover rates, growth, and nucleic acid content in the white muscle of rainbow trout(Oncorhynchus mykiss). Aquaculture, 1999, 179: 425-437.
    Peres H., Goncalves P., and Oliva-Teles A. Glucose tolerance in gilthead seabream (Sparus aurata) and European seabss (Dicentrarchus labrax). Aquaculture, 1999, 179, 415-423.
    Peterson C. C., Nagy K. A., and Diamond J. M. Sustained metabolic scope. Proc. Natl. Acad. Sci. USA, 1990, 87: 2324-2328.
    Pieper and Pfeffer. Studies on the comparative efficiency of utilization of gross energy from some carbohydrate, proteins and fats by rainbow trout (Salmo gairdneri R.). Aquaculture. 1980, 20: 323-332. Pilkis S. J., and Granner D. K., Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu. Rev. Physiol. 1992, 54: 885-909.
    Planas Josep, Capilla Encamacion, and Gutierrez Joaquim. "Molecular identification of a glucose transporter from fish muscle." Federation of European Biochemical Societies, 2000, 481: 266-270.
    Powell M. K., Mansfield-Jones J., and Gatten R.E. Jr. Specific dynamic effect in the homed frog, Ceratophrys cranwelli. Copeia, 1999, 710-717.
    Priede I. G. Natural selection for energetic efficiency and relationship between activity level and mortality. Nature, 1977, 267: 610-612.
    Priede I. G.. Metabolic scope in fishes. In Fish Energetics New Perspectives (Tylor, P. & Calow, P., eds), 1985, pp. 33-64. London: Croom Helm.
    Rankin J. Cliff and Jensen Frank B. Fish Ecophysiology. 1993, 6-66. Chapman & Hall. London.
    Rao K P and Bullock T H. Q_(10) as a function of Size and habitat temperature in poikilotherms. Am Nat, 1954: 88:33-44.
    Rathore R. M., Kumar S., Chakrabarti R. Digestive enzyme patterns and evaluation of protease classes in Catla catla (Family: Cyprinidae) during early developmental stages. Comparative Biochemistry and Physiology, 2005, 142 B: 98-106.
    Rawles S. D. and Gatlin D. M. Carbohydrate utilization in striped bass (Morone saxatilis ) and sunshine bass (M. chrysops ♀×M. saxatilis ♂). Aquaculture, 1998, 161: 201-212.
    Reidy, S.P., Kerr, S.R., Nelson, J.A., 2000. Aerobic and anaerobic swimming performance of individual Atlantic cod. J. Exp. Biol. 203,347-357.
    Requena A., Femandez-Borras J. and Planas J. The effects of a temperature rise on oxygen consumption and energy budget in gilthead sea bream[J]. Aquaculture International, 1997, 5(5):415-426.
    Robertson R. F., Ei-Haj A. J., Clarke A., Peck L. S., and Taylor E. W. The effects of temperature on metabolic rate and protein synthesis following a meal in the isopod Glyptonotus antarcticus Eights(1852). Polar Biology, 2001a, 24: 677-686.
    Robertson R. F., E1-Haj A. J., Clarke A., and Taylor E. W. The effects of temperature on metabolic rate and protein synthesis following a meal in the isopod Glyptonotus antarcticus Eights (1852). Polar Biology, 2001b, 24: 677-686.
    Robertson R. F., Meagor J., and Taylor E. W. Specific dynamic action in the shore crab, Carcinus maenas (L.) in relation to acclimation temperature and to the onset of the emersion response. Physiol. Biochem. Zool. 2002, 75: 350-359.
    Robertson R. F., Meagor J., Taylor E. W. Specific dynamic action in the shore crab, Carcinus maenas (L.) in relation to acclimation temperature and to the onset of the emersion response. Physiol. Biochem. Zool. 2002, 75: 350-359.
    Rolo A. P. and Palmeira C. M. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol, 2006, 212(2): 167.
    Rolo P. Anabela and Palmeira M. Carlos. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology. 2006, 212: 167-178.
    Rosenlund G., Karlsen φ., Tveit K., Mangor-Jensen A., and Hemre G. I. Effect of feed composition and feeding frequency on growth, feed utilisation and nutrient retention in juvenile Atlantic cod, Gadus morhua, L. Aquaculture Nutrition, 2004, 10, 1-8.
    Saad C. R. B. Carbohydrate metabolism in channel catfish. PhD Thesis, 1989, Auburn University, Auburn, AL, USA.
    Sanden Monica, Frφyland Livar, Hemre Gro-Ingunn. Modulation of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and malic enzyme activity by glucose and alanine in Atlantic salmon, Salmo salar L. hepatocytes. Aquaculture, 2003, 221: 469-480.
    Saunders R. L. Respiration of the Atlantic cod. Journal of the Fisheries Research Board of Canada, 1963, 20: 373-386.
    Secor S. M, Faulkner A. C. Effects of meal size, meal type, body temperature, and body size on the specific dynamic action of the marine toad, Bufo marinus. Physiol Biochem Zool. 2002, 75: 557-571.
    Seifter S, Dayton S, Novic B, et al. The estimation of glycogen with the anthrone reagent [J]. Arch. Biochem. Biophysi, 1950, 50: 191-200.
    Shiau S. Y. and Lin S. F. Effect of supplemental dietary chromium and vanadium on the utilization of different carbohydrates in tilapia, Oreochromis niloticus x. O.aureus. Aquaculture, 1993, 110: 321-330.
    Shiau S. Y. Utilization of carbohydrates in warmwater fish-with particular reference to tilapia, Orechromis niloticus ×O.aureus. Aquaculture, 1999, 179: 425-437.
    Shiau S. Y. Utilization of carbohydrates in warmwater fish—with particular reference totilapia, Oreochromis niloticus ×O.aureus [J]. Aquaculture, 1997, 151: 79-96.
    Shiau S. Y., Pan B. S., Chen S., Yu H. L., and Sin S. L. Successful use of soybean meal with a methionine supplement to replace fish meal in diets fed to milk fish, Chanos chanos, J. World Aquacult. Soc. 1988, 19: 14-19.
    Shiau S. Y., Yu H. L., Hwa S., Chen S. Y., and Hsu S. I. The influence of carboxymethylcellulose on growth, digestion, gastric emptying time and body composition of tilapia. Aquaculture, 1988, 70: 345-354.
    Shiau S. Y. and Chen S. Y. Carbohydrate utilization by tilapia (Oreochromis niloticus x O.aureus) as influenced by different chromium sources. Journal of Nutrition, 1993, 123: 1747-1753.
    Shiau S.-Y. and Liang H.-S. Carbohydrate utilization and digestibility by tilapia, oreochromis niloticus x O.aureus, are affected by chromic oxide inclusion in the diet. Journal of Nutrition, 1995, 125, 976-982.
    Shikata T., Iwanaga S., and Shimeno S. Metabofic response to acclimation temperature in carp. Fish. Sci. 1995, 61: 512-516.
    Shikata T., Kheyyali D., Shimeno S. Regulation of carbohydrate metabolism in fish. 15. Effect of feeding rates on hepatopancreatic enzymes and body composition in common carp. Bulletin of the Japanese Society of Scientific Fisheries (NipponSuisan Gakkaishi), 1993, 59: 835-839.
    Shimeno S. and Shikata T. Effects of acclimation temperature and feeding rate on. carbohydrate-metabolizing enzyme activity and lipid content of common carp. Bull. Jap. Soc. Sci. Fish (Nippon. Suisan Gakkaishi.), 1993, 59: 661-666.
    Sirkka Heinimaa. Liver glyocogen content of Atlantic salmon (Salmo salaer L.) parr decreased despite the unchanging carbohydrate content of feed in the hatchery in winter. Aquaculture Research, 2003, 34: 1413-1415.
    Smith R. R., Rumsey G. L., and Scott M. L. Net energy maintenance requirement of salmonids as measured by direct calorimetry: Effect of body size and environmental temperature. Journal of Nutrition, 1978, 108: 1017-1024.
    Spannhof L., and Plantikow H. Studies on the Carbohydrate Digestion in Rainbow Trout. Aquaculture, 1983, 30: 95-108.
    Speakman J. R. The cost of living: field metabolic rates of small mammals. Adv. Ecol. Res. 2000, 30: 177-297.
    Starck J., Matthias, Moser Patrick, Werner Roland A., and Linke Petra. Pythons metabolize prey to fuel the response to feeding. Proc. R. Soc. Lond. 2004, 271 B, 903-908.
    Stephan G., Dreanno C., Guiollaume J. and Arzel J. Incidence of different amounts of proteins, lipids and carbohydrates in diets on the muscle lipid composition in the turbot (Scophthalmus maximus). Ichtyophysiol. Acta., 1996, 19: 11-30.
    Suarez M. D., Sanz A., Bazoco J., and Garcia-Gallego M. Metabolic effects of changes in the dietary protein: carbohydrate ratio in eel (Angilla anguilla) and trout (Oncorhynchus mykiss). Aquaculture International, 2002, 00: 1-14, .
    Sundby A., Eliassen K., Blom A. K., and Asgaard T. A. Plasma insulin, glucose, glucagon and GLP level in response to feeding, starvation and life long restricted feed ration in salmonids. Fish Physiology and Biochemistry, 1991, 9: 253-259.
    Sveier H, Wathne E, Lied E. Growth, feed and nutrient utilisation and gastrointestinal evacuation time in Atlantic salmon Salmo salar L. the effect of dietary fish meal particle size and protein concentration. Aquaculture, 1999, 180: 265-282.
    Tandler A. and Beamish F. W. H. Mechanical and biochemical components of apparent specific dynamic action in large mouth bass, Micropterm salmoides Lacedede. Journal ofFish Biology, 1979, 14(4): 343-350.
    Thor P. Relationship between specific dynamic action and protein deposition in calanoid copepods[J]. J Exp Mar Biol Ecol, 2000, 245: 171-182.
    Thor P., Cervetto G., Besiktepe S., Ribera-Maycas E., Tang K.W., and Dam H.G. Influence of two different green algal diets on specific dynamic aciton and incorporation of carbon into biochemical fractions in the copepod Acartia tonsa. J. Plankton Res. 2002, 24: 293-300.
    Toledo L. F., Abe A. S., Andrade D. V. Temperature and meal size effects on the postprandial metabolism and energetics in a boid snake. Physiol. Biochem. Zool. 2003, 76: 240-246.
    Toledo L. F., Abe A. S., Andrade D. V. Temperature and meal size effects on the postprandial metabolism and energetics in a boid snake. Physiol. Biochem. Zool. 2003, 76: 240-246.
    Tranulis M. A. and Christophern Borgar Borrebaek. Glucokinase in atlantic halibut(Hippoglossus hippoglossus) Brockmann Bodies. Comparative Biochemistry and Physiology, 1997, 116B(3): 367-370.
    Tranulis M. A., Dregni O., Christophersen B., Krogdahl (?)., and Borrebaek B. A glucokinase-like enzyme in the liver of Atlantic salmon (Salmo salar). Comparative Biochemistry and Physiology, 1996, 114B: 35-39.
    Tung P. H. and Shiau S Y. Effects of meal frequency on growth performance of hybrid tilapia Oreochromis niloticus×O, aureus, fed different carbohydrate diets. Aquaculture, 1991, 92:343-350.
    Tung P. S. and Shiau S. Y. Carbohydrate utilization versus body size in tilapia Oreochromis niloticus×O. aureus. Comparative Biochemistry and Physiology, 1993, 104:585-588.
    Vangen Bente and Hemre Gro-Ingunn. Dietay carbohydrate, iron and zinc interactions in Atlantic salmon (Salmo salar). Aquaculture, 2003, 219:597-611.
    Vielma J., Koskela J., Ruohone Kari., Jokinen I., Ketttmen J. Optimal diet composition for European whitefish (Coregonus lavaretus): carbohydrate stress and immune parameter response. Aquaculture, 2003, 225: 3-16.
    Waagbφ R., Glette J., Sandnes K.,et al. Influence of dietary carbohydrate on blood chemistry, immunity and disease resistance in Atlantic salmon, Salmo salar L. J. Fish Disease, 1994, 17: 245-258.
    Walton M. J. and Cowey C. B. Aspects of intermediary metabolism in salmonid fish. Comparative Biochemistry and Physiology, 1982, 73B: 59-79.
    Wang T., Zaar M., Arvedsen S., Vedel-Smith C., and Overgaard J. Effects of temperature on the metabolic response to feeding in Python molurus. Comparative Biochemistry and Physiology, 2003, 133A:519-527.
    Weber J.-M. and Zwingelstein G. Circulatory substrate fluxes and their regulation. In: Hochachka, P.W., Mommsen, T.P. Eds. Biochemistry and Molecular Biology of Fishes; Metabolic Biochemistry, 4. Elsevier, Amsterdam, 1995, pp.15-32.
    Weiner J. Metabolic constraints to mammalian energy budgets. Acta Theriol. 1989, 34, 3-35.
    West T. G., Arthur P. G., Suarez R. K., Doll C. J., Hochachka P. W. In vivo utilization of glucose by heart and locomotory muscles of exercising rainbow trout (Onchorhynchus mykiss). J. Exp. Bio. 1993, 177: 63-79.
    White T. R. C. The Inadequate Environment: Nitrogen and the Abundance of Animals. 1993. Berlin: Springer-Verlag
    Whiteley N. M., Robertson R. F., Meagor J., E1-Haj A. J. and Taylor E. W. Protein synthesis and specific dynamic action in crustaceans: effects of temperature. Comparative Biochemistry and Physiology. 2001, 128A: 595-606.
    Wiik A. Delineation of a standard procedure for indirect immunofluorescence detection of ANCA. Acta Pathol. Microbiol Immunol Scan, 1989, 97(suppl 6): 12-13.
    Wilson R. P. and Poe W. E. Apparent inability of channel catfish to utilize dietary mone-and disaccharides as energy sources. Journal of Nutrition, 1987, 117: 280-285.
    Wilson R. P. Utilization of dietary carbohydrate by fish [J]. Aquaculture, 1994, 124: 67-80.
    Wolff S. P., Jiang Z. Y., and Hunt J. V. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radical Biology and Medicine, 1991, 10, 339-352.
    Wright J. R., O'Hali Jr., W., Yang H., and Bonen A. GLUT-4 deficiency and absolute peripheral resistance to insulin in the teleost fish tilapia. Gen. Comp. Endocrinol. 1998a, 111: 20—27.
    Xie X. J. and Sun R. Y. Pattern of energy allocation in the southern catfish (Silurus meridionalis Chen). Journal offish Biology, 1993, 42: 197-207.
    Xie X. J., Long T. C., Zhang Y. G. and Cao Z. D. Reproductive Investiment in the Southern Catfish (Silurus meridionalis Chen), Journal of Fish Biology, 1998, 53: 259-271.
    Xie Xiaojun and Sun Ruyung. The Bioenergetics of the Southern Catfish (Silums Meridionalis Chen): 11 Resting Metabolic Rate as a Function of Body Weight and Temperature [J]. Physiological Zoology, 1990, 63 (6): 1181-1195.
    Xu J., Paul L., Xiao G., Trujillo C., Chang V., Blanco L., Hemandez F., Chung B., Makabi S., Ahmed S., Bassilian S., Saad M. and Kurland I. J. Determination of a glucose-dependent futile recycling rate constant from an intraperitoneal glucose tolerance test. Analyt. Biochem. 2003, 315: 238-246.
    Zaidan F., and Beaupre S. J. Effects of body mass, meal size, fast length, and temperature on specific dynamic action in the timber rattlesnake (Crotalus horridus). Physiol. Biochem. Zool. 2003, 76: 447-458.
    Zanotto, F.P., Gouveia, S.M., Simpson, S.J., Raubenheimer, D., Calder, P.C., 1997. Nutritional homeostasis in locusts: is there a mechanism for increased energy expenditure during carbohydrate overfeeding? J. Exp. Biol. 200, 2437-2448.
    Zierler Kenneth. Whole body glucose metabolism, the American Physiological Society. 1999, E409-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700