用户名: 密码: 验证码:
汞在水旱轮作系统的释放特征及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于汞具有多种形态、易挥发和长距离传输等独特的物理性质,因而被公认为“全球性污染物”而引起人们的高度重视。特别是近年来发现,随着化石燃料燃烧、金属冶炼等人为过程向大气释放的汞逐渐增加,全球大气汞浓度逐年升高。大气环境中汞的存在形式主要有单质汞、二价汞及其化合物、甲基汞和颗粒态结合汞,其中元素汞(Hg~0)是主要形态,占总气汞含量的90%以上。元素汞在大气中停留时间约为0.5~2年,可进行长距离传输,参与全球的汞循环,造成全球范围内的汞污染。为此,近年来对汞污染问题的研究热点,已从对局部区域环境的污染与危害问题转向全球大气汞循环演化规律方面。而对这一问题认识的关键,首先必须正确地找出向大气释放汞的源头并正确测算其释放量。
     近年对火山排气作用、地热活动、森林火灾、土壤表面释放、自然水体的排放、植物表面蒸腾作用、城市地表等自然释汞过程作了一些研究,为从宏观尺度估算当今全球地表每年向大气释放汞的总量提供了借鉴。但从时间尺度与区域规模上看,还极其有限,从而造成目前对全球地表向大气释放汞总量的估算还存在很大误差和不确定性。因此,进一步开展具有代表性的地表自然体汞释放通量的研究,对正确估算全球自然释放源向大气的排汞量和认识全球大气汞循环演化规律具有重要意义。
     水旱轮作是亚洲各国普遍采用的稻田耕作制度,也是我国南方主要的耕作制之一。我国有水旱轮作稻田超过1400万hm~2,占稻田面积的30%~40%。水旱轮作系统由于水热条件及氧化还原条件的强烈变化,直接影响到土壤中汞的转化、迁移和积累。但对这一过程的系统研究相对缺乏,为此,本项研究以我国最具特色的周期性干湿交替环境——水旱轮作稻田为研究对象,开展干湿交替环境条件下土壤汞的释放通量及其迁移形态的研究,对正确认识区域及全球大气汞的来源及强度无疑具有重要意义。
     本研究采用野外实地监测、采样分析及模拟试验的方法进行。实地监测及采样地点位于重庆北碚西南大学国家紫色土肥力与肥料效益监测试验基地的水早轮作试验地。试验地土壤为侏罗纪沙溪庙组紫色泥、页岩发育而成的紫色土(普通紫色常湿雏形土,Purpli-Udic Cambosols),试验区面积共1200m~2,共设12个不同施肥组合的稻-麦轮作小区处理(其中1个为稻-油轮作)和1个长期休闲处理。自2005年4月至2006年12月,按水稻生长期、休闲期和油/麦生长期划分监测周期,现场测定汞释放通量,每月监测次数不少于3次,每次连续测定0.5~8h不等,同时测定光照强度、气温、大气湿度、土温和水温等参数。每月进行一次采样分析(包括土样、水样),分析项目包括土壤基本性质(有机质、机械组成、pH、COD)、汞含量、汞形态、土壤微生物类群等指标。土/水-气界面汞交换通量采用动力通量箱与Lumex~(?) RA-915~+测汞仪联用技术监测,土壤汞形态参照Tessier(1979)的方法测定。同时,参照水旱轮作土壤干湿交替的环境条件进行室内模拟试验,以进一步研究其动态变化特征。通过数据分析整理,确定稻田土壤在干湿交替环境下向大气释放汞的通量。并研究不同施肥状况、不同季节、轮作的不同时期及其作物(油菜、小麦/水稻)条件下环境界面(水/土-气)汞的释放通量变化特征,研究了气象因子、土壤性质以及微生物类群对汞释放通量的影响,在此基础上对重庆市水-旱轮作农田汞的自然源释放进行初步量化。研究结果如下:
     水旱轮作稻田土壤汞含量及汞的形态分布均随轮作期水旱交替过程而呈现周期性变化,表现为旱地土壤总汞含量高于水田土壤,汞形态以王水溶态为主,活性较低;水田土壤以可溶态汞为主,活性较高。这一变化过程的根本原因是由水早轮作方式导致的农田土壤氧化还原条件的周期性变化,汞的形态及活性的变化,必然影响到其在体系内的循环与转化过程。模拟试验显示,土壤汞含量越高,上覆水的汞浓度越大。淹水期间上覆水的汞浓度有两个较高点,第一个峰值出现在第3天,第二个峰值出现在第12天左右。土壤经过淹水—落干交替过程后,部分汞被散发到大气中,这部分汞主要是酸溶态和碱溶态汞经生物或非生物还原过程,以Hg~0的形式释放。淹水期间上覆水DGM和Hg~(2+)含量的变化趋势相反,说明它们之间在一定条件下可以相互转化。模拟试验中对汞通量的监测表明,二价汞(Hg~(2+))比其它价态的汞更容易在土壤-水体-大气界面中转化和交换。
     试验区汞释放通量数据高于世界背景区域1个数量级,表明水旱轮作系统也是大气汞的一个重要的自然释放源。在水旱轮作期内,水稻生长期稻田水.气界面汞交换通量最大(82.94±73.3ng m~(-2) h~(-1)),休闲期土-气界面汞交换通量次之(24.0±17.1ngm~(-2)h~(-1)),油/麦生长期土-气界面汞交换通量最小(11.04±3.5ng m~(-2) h~(-1))。年平均汞通量为39.34±53.2ng m~(-2) h~(-1)。
     紫色土农田水/土-气界面间的汞通量表现出明显的日变化、期间变化和季节性变化。不同轮作期不同界面间的汞挥发通量存在较大差异,其大小顺序为,暖季稻田>暖季空地>暖季油麦田>冷季油麦田。白天水/土-气界面汞通量都呈现早晚低,午间高的趋势,沉降多出现在傍晚和早晨。水旱轮作稻田基质总汞含量与其释放量之间存在正相关关系(水体,r=0.463~*,p<0.05;土壤,r=0.322~*,p<0.05)。土壤有机质含量与汞通量之间存在极显著的负相关关系(r=-0.688~(**),p<0.01)。气象因子对界面汞交换的影响极其显著,水-旱轮作期间旱地土壤和稻田水体表面的汞挥发通量与太阳辐射量表现出相同的变化趋势,两者之间呈极显著的正相关(r=0.730~(**),p<0.01)。旱地土壤表面(2~5cm)温度、水体表层温度与汞通量呈极显著(r=0.514~(**),p<0.01)和显著(r=0.171~*,p<0.05)正相关。经Arrhenius方程计算得出,农田早地土壤产生气态单质汞的化学反应活化能为21.5kcal mol~(-1)(19.5~33.4℃),水田土壤为27.7 kcal mol~(-1)(4.5~34.3℃)。其化学反应活化能高于单质汞的蒸发焓,说明汞在水/土表面释放不是单质汞的直接蒸发。相对于土-气界面来说水-气界面汞交换更为复杂,水面汞释放应该看作是水体和大气亚表层发生的各种物理化学反应由此产生的拮抗或协同作用下的最终结果。空气相对湿度在水稻生长期与汞通量的关系不明显,而在油/麦生长期和休闲期,相对湿度与汞通量存在极显著的负相关关系(r=-0.748~(**),-0.730~(**),p<0.01)。土壤湿度与汞通量在一定程度上有一致的变化趋势,但在监测期内对水旱轮作条件下紫色土汞的释放影响甚微。
     耕作方式对汞释放的影响也较显著。不同试验小区的汞通量受施肥条件和地表覆盖物的影响很大,施肥状况影响作物生长量和作物密度,也影响到土壤性质、性状和土壤中汞形态及其相互转化,从而影响汞的固定和释放。但施肥条件对水体汞挥发的影响并不明显。
     在水稻生长期,稻田土壤中的厌氧细菌群落数量与汞释放通量呈相反趋势(r=-0.580~*,p<0.05),其中硫酸盐还原菌(SRB)和厌氧纤维素分解菌(ACDB)与汞通量有显著负相关关系(r=-0.630~*,-0.558~*,p<0.05),是影响汞形态转化和释放的主要类群。而在休闲期及油/麦生长期,微生物群落数与汞通量之间不存在明显的相关性。这说明旱地土壤汞的释放,主要由其他环境因素(如气象因子)决定,而在厌氧环境下,细菌对水田土壤汞的释放起着重要作用。
     基于通量箱法实地测得的数据,并结合重庆市的气候特点,对该地区水旱轮作农田汞释放量进行初步估算,重庆市每年从水-旱轮作农田释放到大气中的总汞量为565kg。
As a global pollutant, mercury is receiving intensive scrutiny due to its special physical characteristics. It occurs in various physical and chemical forms, likely volatilization and long range transportation in the environment. In recent years, the concentration of mercury is increasing in the atmosphere due to the elevated emission of anthropogenic activities, such as combustion of fossil fuels, roasting and smelting of ores etc. Most of atmospheric Hg in ambient air, above 90%, is made up of elemental mercury (Hg~0), while the remainders are divalent Hg compounds, either in the gaseous phase or bound to particles, and methylmercury. The Hg~0 (g) has a relatively long residence time of 0.5~2 years in the atmosphere, and which can transportation for a long distance along the global atmosphere cycling and to pose a global pollution. Researches of mercury pollution associated with human health risk had been considerable concerned in past years. In recent years, the hotspot issues of mercury pollution were mostly turned to the aspect of understanding the laws of mercury cycling and transformation in the atmosphere on global scale. So, it is important to discern the resources of mercury emission and measure or estimate the amounts correctly of mercury exchange.
     The atmospheric loading of mercury is come from natural and anthropogenic sources. Emission inventories indicate that the contribution of mercury emission from natural sources is about 50% within the total amount of emission from global surface. Many researches involve to mercury emission from environmental surface in recent years, which include evasion from active volcano, earth heat-radiating, forest-fire, soil/water surface, transpiration from foliage of vegetation and urban surface etc, have provided lots of references to assessment of annual inventories of atmospheric mercury budget on global scale. However, there are some drawbacks with error and uncertainty in these estimations due to the restriction of limited spatial-temporal scale. Average inventories of mercury emission from natural sources has been estimated ranges between 2500 and 19325 t yr~(-1), and the contribution from anthropogenic sources ranges between 910 and 110001 yr~(-1). Researches on biogeochemical cycle of mercury in recent years were mostly focused on assessment of mercury release flux on environment surface, and an average rate of Hg evasion, 1.5 ng m~(-2)h~(-1), was taken to be the normal standard rate. Nevertheless, the field studies lately exhibited that the foregoing rate would lead to lower estimate the contribution from natural sources of mercury emission. Therefore, it is important to distinguish and determine the characteristics of various natural surfaces, and that is for the purpose of improvement estimation of mercury budget exactly and fully understanding global biogeochemical cycling of mercury.
     At present, for study mercury emission from natural sources, dynamic flux chamber (DFC) technique has been adopted widely, which was first used by Schroeder et al. (1989) and Xiao et al. (1991) for measurement mercury exchange flux over different environmental interfaces (e.g. soil/water-air). Through the studies for last decade, people have realized preliminarily many important aspects of mercury exchange flux from various natural surfaces, but there are scarcely reports that involved with the mercury exchange characteristics in the interfaces of periodicity dry-wet alternating environment (e.g. water level fluctuating zone of reservoir, paddy-upland rotation farm land). Especially, there are lack of informations about the aspect of the seasonal varies characteristics of mercury release and climatic influencing factors in the special environment.
     Paddy-upland rotation is a farming tradition that wildly adopted by Asian countries and it also used as a main culture manner in south China. The area of paddy-upland rotation farmland covered above 1400 millions hm~2 in China and it consists of 30~40% of the rice-land resources. Paddy-upland rotation system has an intrinsic peculiar characteristic that the conditions of thermal energy and oxidation- deoxidization change heavily along the periodic varying of season, and this may lead to an evident influence in the course of mercury transformation, transport and accumulation in soil. Because of lack of systematic informations measured about this circumstance, the purpose of this paper is to study the characteristics of mercury release fluxes and its chemical forms transformation, in the paddy-upland (dry-wet) rotation system. This research would exhibit an important significance for improvement on farther understanding the regional or global mercury resource and its release intensity.
     Here, the study was conducted by both in simulating experiment, laboratory analysis and field investigation in situ. The field investigation site was located at National Purple Soil Fertility and Fertilizer Efficiency Monitored Base (E:106°24'33.3'' N:29°48'36.2"), which situated at Southwest University, Beibei District in Chongqing, China. The research area belongs to the purple hilly land with an elevation of 239 m. The subtropical earth monsoon climate is presented in there. According to statistics, the mean annual temperature is 18.4°C, annual precipitation is 1105.5 mm, and annual duration of sunshine is 1276.7 h. The tested soil was the gray brown purple soil (Purpli-Udic Cambosols), which is a neutral purple soil subtype and developed from the purple mud stone and shale of Saximiao Association of Jurassic Period. It is the most purple soil types, and it occupies about 40% of the area of purple soils and most of the grain base in Chongqing distribute in it. So it is the typical representative of purple soils. The research area covered 1200 m~2 and was ploted out to 13 divisions.
     Different chemical form of mercury has different transference activeness in soil, and it can dominate the release flux of theirs, ultimately. Wherefore, this study had analyzed the mercury existence forms and its variety in different farming seasons while in the flooding period (rice growth term), the intermission period and the upland period (wheat/rape growth term), respectively. Besides, the study had studied the characteristics of mercury exchange and distribution between the soil and water interface in rice growth period by means of simulating flooding experiment. The results revealed that, the mercury content and species distribution of paddy-upland rotation soil varying periodically along with the alternating change of farming period, namely dry-wet change by turn. Total mercury content in the upland soil is higher than that of flooding soil. Residual Hg is the predomination species in the upland soil, and it has a lower activity. Contrarily, soluble Hg is the predomination species in the flooding soil and it has a higher activity. The essential reason of this situation is caused by the periodic change of oxidation-deoxidization conditions in farmland. The results of simulating flooding experiment demonstrated that the mercury concentration of water column increased with the increasing content of soil Hg. Mercury concentration in water have two peak values after flooding, the first peak occurred earlier (3~(rd) d), the latter appeared relatively later (about 12~(th) d). After the wet-dry process, partly soil mercury evasion into the air presented as Hg~0, and which is mainly the production of acid-soluble and H_2O-soluble forms Hg deoxidized through biological or abiological transforming course. During flooding period, the concentration fluctuation trend between DGM and Hg~(2+) in water column is reverse, and it implies that they could transform to each other at suitable environmental condition. The data of mercury fluxes measured in the simulating flooding experiment course showed that, the divalent Hg is easier exchange, transformation and finally evaporation to atmosphere than other forms of mercury in the soil-water-air interface.
     Mercury fluxes measurement were performed by dynamic flux chamber (DFC) cope with the Lumex~? Multifunctional mercury analyzer RA-915~+during different farming season while in the flooding period (rice growth term), the intermission period and the upland period (wheat/rape growth term) respectively, at all plots in the investigating field. The characteristics of mercury flux in different farming seasons and covered crops were discussed. Simultaneously, mercury flux influencing factors such as meteorological, soil properties, fertilizer management and microbial communities were also discussed. Finally, an annual emission of mercury to the atmosphere from paddy-upland rotation farmland in Chongqing was estimated. The results indicated that, the average value of mercury fluxes in investigated area was higher than that of global background by 1 magnitude. Therefore, the results imply that the paddy-upland rotation system may be an importance resource which is a potentially contributor to the atmospheric mercury content. During whole dry-wet rotation farming seasons, the mean mercury exchange flux at water-air interface in rice land is the highest with the value of 82.9±73.3 ng m~(-2) h~(-1), next to the soil-air interface in intermission period with the value of 24.0±17.1 ng m~(-2) h~(-1), the mean flux of soil-air interface in wheat/rape growth period was the lowest with the value of 11.0±3.5 ng m~(-2) h~(-1). The annual average mercury flux in whole fanning seasons is 39.3±53.2 ng m~(-2) h~(-1).
     Mercury fluxes of water/soil-air interfaces from purple soil rotation farmland exhibit a significantly diurnal and seasonal variation. There was evidently difference of fluxes measured from different season and interface, the decreasing order is as follows warm season rice land (water/air), warm season intermission leisure land (soil/air), warm reason rice/wheat land (soil/air) and cold season rice/wheat land (soil/air). Mercury evasion exhibits a strong diurnal cycle variation, with the highest during midday, while lower in the morning and early evening. Mercury fluxes over air/surfaces had bi-directional exchange in the morning and early evening in cold season. Results of statistical analysis showed, there was positive correlation between mercury flux and total Hg content in paddy-upland rotation farmland (water: r=0.463~*, soil: r=0.322~*), on the contrary, there was significantly negative correlation between mercury flux and soil organic matter content (r=-0.688**). Climatic factors had effected evidently to mercury flux in the water/soil-air interfaces. Regression analysis of data measured over water/soil surface indicated that mercury flux appear to be most significantly positive relation to solar radiation (r=0.730~(**)) and soil/water temperature (soil: r= 0.514~(**); water: r = 0.171~*), and significantly negatively correlated with relative humidity over soil surface (r=-0.748~(**)), and weaker correlated with relative humidity over water surface and soil moistness. Analysis of data measured also suggested that exponential correlation of mercury flux with soil/water temperature in some plots (soil: R~2= 0.3047~(**); water: R~2=0.7044~(**)). Arrhenius equation could be applied to explain the link between the kinetics rate constant of this process and the soil/water temperature, so the activation energy (Ea) was then calculated to be 21.5 / 27.7 kcal mol~(-1) from the slope of best fit line. The values were higher than the mercury vaporization heat of 14.5 kcal mol~(-1), implying that the mercury emission from soil /water surface is not the vaporization of elemental mercury alone.
     Likewise, results of this research suggested that, farming manner, include crop category, coverage density and fertilizer management, would be an important influencing factor that can effect evidently to mercury flux from the soil/water surface. Especially, the fertilizer management can cause the changes of soil property, microbeial communities and mercury existence form and its transformation. Sequentially, it dominates the course of mercury accumulation and emission in soil.
     Moreover, data obtained from microorganism cultivation revealed that, a negatively correlation (r= -0.580~*) between the amount of anaerobic bacterial communities (cfu) in the flooding soil and mercury fluxes over water surface during the rice/rape growth term. Two categories of bacterial populations, sulfate-reducing bacteria (SRB) and anaerobic cellulose-decomposing bacteria (ACDB) , were the dominating populations for influencing mercury release flux during the flooding terms, the correlation coefficients were -0.630~*(SRB) and -0.558~* (ACDB), respectively. Nevertheless, the correlation between bacteria communities and mercury fluxes in upland was insignificant. This means that the mercury flux in upland was dominated by other environmental factors.
     Associating with climate characteristics of Chongqing, a preliminary estimation of regional mercury budget was carried out based on the fluxes data of the experimental plots which measured by dynamic flux chamber. The total mercury emission to the atmosphere from dry-wet rotation farm fields was annually about 565 kg in Chongqing.
引文
陈怀满.1996.土壤-植物系统中的重金属污染.北京,科学出版社
    陈怀满.1998.关于土壤环境容量研究的商榷.土壤学报.29(2):219-225
    陈乐恬,刘俊华,佟玉芹等.2000.北京地区大气中汞污染状况的初步调查.环境化学.19(4):357-361
    陈效,徐盈,张甲耀,等.2005.硫酸盐还原菌对汞的甲基化作用及其影响因子.水生生物学报.29(1):50-54
    陈中云,闵航等.2003.水稻田土的硫酸盐还原活性测定方法的研究.土壤通报.34(5):455-458
    崔瑞平,赵彬彬,满洪界.1987.某汞矿冶炼厂附近环境汞污染调查.环境科学.8(3):65-67
    戴前进,冯新斌,唐桂萍.2002.土壤汞的地球化学行为及其污染的防治对策.地质地球化学.30(4):75-79
    丁疆华,温琰茂,舒强.2001.土壤汞吸附和甲基化探讨.农业环境与发展.67(1):34-36
    丁振华,王文华,汤庆合,等.2005.上海老港垃圾填埋场中汞的释放规律研究.地球与环境.33(1):6-10
    杜式华,方声钟.1984.植物蒸腾作用、吸汞速率与温度的关系.环境科学.5(1):24-27
    方凤满,王起超,尹金虎.2003.城市地表汞含量及释放通量影响因素分析.生态环境.12(3):260-262
    方凤满,王起超.2001.大气汞的来源、形态及环境过程研究状况.环境导报.2:18-20.
    冯新斌,Sommar J.,Gardfeldt K.,Lindqvist O.2002.夏季自然水体与大气界面气态总汞的交换通量.中国科学(D辑).32:609-616
    冯新斌,陈业材,朱卫国.1996a.土壤中汞存在形式的研究.矿物学报.16(2):218-222
    冯新斌,陈业材,朱卫国.1996b.土壤挥发性汞释放通量的研究.环境科学.17(2):20-22,25
    冯新斌,汤顺林,李仲根,等.2004.生活垃圾填埋场是大气汞的重要来源.科学通报.49(23):2475-2479
    郝春玲,沈英娃.2006.我国水银体温计生产及用汞情况研究.环境科学研究.19(1):18-21
    何燧源,金云云,何方.1996.环境化学.上海:华东理工大学出版社.12(2):137-144
    侯亚敏,冯新斌,王少锋,仇广乐.2005.贵阳市及其郊区土壤-大气界面间汞交换通量的初步研究.土壤学报.42:52-58
    黄岁梁,万兆惠.1995.河流泥沙吸附—解吸重金属污染物试验研究现状(二).水利水电科技进展.15(2):27-31
    黄廷林.1995.水体沉积物中重金属释放动力学及试验研究.环境科学学报.15(4):440-446
    蒋靖坤,郝吉明,吴烨等.2005.中国燃煤汞排放清单的初步建立.环境科学.26(2):34-39
    李阜棣,喻子牛,何绍江.1996.农业微生物学实验技术.北京:中国农业出版社.28-37
    李宏伟,阎百兴,徐治国,等.2006.松花江水中总汞的时空分布研究.环境科学学报.26(5):840-845
    李华斌,王文华,彭安.2000.甲基汞的大气—水—土壤界面交换通量.环境科学.21(1):81-83
    李梅,侯彦林,皮广洁.2004.汞污染紫色土中微生物区系及生理类群.农业环境科学学报.23(4):668-673
    李平,冯新斌,仇广乐,等.2006.贵州省务川汞矿区土法炼汞过程中汞释放量的估算.环境科学.27(5):837-840
    李然,李嘉,赵文谦.1997.水环境中重金属污染研究概述.四川环境.16(1):18-22
    李永华,王五一,杨林生,等.2004.汞的环境生物地球化学研究进展.地理科学进展.23(6):33-40
    李仲根,冯新斌,汤顺林,等.2004.贵阳市生活垃圾卫生填埋场汞的地气交换特征初步研究.地球与环境.32(2):1-5
    李仲根,冯新斌,汤顺林,等.2006.封闭式城市生活垃圾填埋场向大气释放汞的途径.环境科学.27(1):19-23
    李仲根,冯新斌,王少锋,等.2005.封闭垃圾填埋场通过地表向大气释放汞的测定.生态环境.14(3):313-315
    廖自基.1992.微量元素的环境化学及生物效应,北京:中国环境科学出版社
    林秀武.1995.20年来第二松花江甲基汞污染危害渔民健康的研究进展.环境与健康杂志.12(5):238-240
    刘德绍,青长乐.2002.大气和土壤对蔬菜汞的贡献.应用生态学报.13(3):315-318
    刘德绍.1998.蔬菜对土壤汞和大气汞的吸收.西南农业大学博士学位论文.重庆
    刘俊华,王文华,彭安.1998.北京市二个主要工业区汞污染及其来源的初步研究.环境科学学报.28(3):331-336
    刘俊华,王文华,彭安.2000.土壤中汞生物有效性的研究.农业环境保护.19(4):216-220
    刘培桐.1993.环境学概论.北京:高等教育出版社
    刘全友,徐良才,庞淑薇.1984.南迦巴峰地区大气中汞的环境自然背景值.环境化学.3(6):62-65
    刘巽浩.1996.耕作学.北京:中国农业出版社.156-171
    罗志刚,游植遴.1996.红壤对汞的吸附特性研究.农业环境保护.15(5):228-230
    孟紫强.2000.环境毒理学.北京:中国环境科学出版社.2000.8
    莫争,王春霞,陈琴,等.2002.重金属Cu、Pb、Zn、Cr、Cd在土壤中的形态分布和转化.农业环境保护.2l(1):9-12
    牟树森,青长乐.1993.环境土壤学.北京:中国农业出版社
    牟树森,青长乐.1997.酸沉降地区作物对汞的累积及其影响因素的研究.重庆环境科学.19(1):1-5
    牟树森,唐书源.1992.酸沉降地区土壤—蔬菜系统中汞污染问题.农业环境保护,11(2):57-60
    庞叔薇,邱光葵,孙景芳.1995.连续化学浸提法测定底泥中不同形态汞的探讨.环境科学学报.15(2):148-155
    钱建平,张力,刘辉利,等.2000.桂林市及近郊土壤汞的分布和污染研究.地球化学.29(1):94-99
    孙向彤,何锦林,谭红.2001.红枫湖水面挥发性汞释放通量的测定.湖泊科学.13(1):89-92
    谭红,何锦林,花金兰,等.1999.汞矿区大气汞的流通量与汞干湿沉降研究.环境化学.18(1):34-38
    谭红,何锦林,梁建,等.2000.中国贵州大气汞的沉降.贵州科学.18:34-32
    汤顺林,冯新斌等.2004.城市生活垃圾填埋场释放汞的形态初步研究.地球与环境.32(2):6-11
    唐永鉴,刘育民.1987.环境学导论.北京:高等教育出版社
    王定勇,李孝华,吴成.1996.重庆大气汞初步调查.重庆环境科学.18(4):59-61
    王定勇,石孝洪,杨学春.1998.大气汞在土壤中转化及其与土壤汞富集的相关性.重庆环境科学. 20(5):22-25
    王定勇.2001.汞在酸沉降地区陆地生态系统中的分布与行为.西南农业大学博士学位论文,重庆
    王夔.1989.生物无机化学.北京:清华大学出版社.217-218
    王起超,方凤满,李志博.2005.长春市汞界面交换通量的研究.中国环境科学.25(4):475-479
    王起超,沈文国,麻状伟.1999.中国燃煤汞排放量估算.中国环境科学.19(4):318-321.
    王庆敏,冯国洲,曹洪法.1982.汞的形态与水稻吸收关系的研究.环境科学.3(5):23-26,5
    王少锋,冯新斌,仇广乐,等.2004a,贵州红枫湖地区冷暖两季土壤/大气界面间汞交换通量的对比.环境科学,25(1):123-127.
    王少锋,冯新斌,仇广乐,等.2004b.贵州滥木厂汞矿区土壤汞的释放通量及影响因素研究.地球化学.33(4):405-413
    王少锋,冯新斌,仇广乐,等.2006a.大气汞的自然来源研究进展.地球与环境,34:1-11
    王少锋,冯新斌,仇广乐,等.2006b.万山汞矿区地表与大气界面间汞交换通量研究.环境科学.27(8):1487-1494
    王新,周启星.2002.土壤汞污染及修复技术研究.生态学杂志,21(3):43-46
    魏俊峰,吴大清,彭金莲,等.2003.污染沉积物中重金属的释放及其动力学.生态环境.12(2):127-130
    喜田村正次,近藤雅臣,泷泽行雄等.1977.汞(侯召堂译,1988).北京:原子能出版社
    夏立江,王定勇等.2003.环境化学.北京:中国环境科学出版社
    萧蕴英,李青,张瑞娟,等.1997.污灌对农作物含汞量的影响.甘肃环境研究与监测.10(4):18-20
    徐琪.1989.水稻土的研究进展.土壤.21(3):192-195
    许嘉琳,杨居荣.1995.陆地生态系统中的重金属.北京:中国环境科学出版社
    许旭萍,沈雪贤,陈宏靖.2006.球衣菌吸附重金属Hg的理化条件及其机理研究.环境科学学报.26(3):453-458
    阳菊华,詹丽钦,陈凌等.2006.高耐汞菌株的筛选及其生物学特性研究.海峡预防医学杂志.12(1):5-7
    杨国治,夏家琪,戎捷.1979.土壤中汞的固定与释放的初步研究.土壤学报.16(1):38-47
    姚爱军,青长乐,牟树森.1999.腐殖酸对矿物结合汞活性的影响:Ⅰ.腐殖酸对矿物结合汞挥发活性的影响.土壤学报.36(4):477-483
    姚爱军,青长乐,牟树森.2000.腐殖酸对矿物结合汞植物活性的影响.中国环境科学.20(3):215-219
    姚爱军,青长乐,牟树森.2004.腐殖酸对矿物结合汞环境迁移性的影响及其机制研究.生态学报.24(2):274-277
    姚爱军,青长乐,牟树森.2006.腐殖酸对汞的络合稳定特性及其环境学意义.中国生态农业学报.14(3):138-140
    余贵芬.1999.腐殖酸结合汞在土壤中的分布及植物有效性.西南农业大学博士学位论文.重庆
    余贵芬.青长乐等.2001.汞在腐殖酸上的吸附与解吸特征.环境科学学报.21(50):601-606
    余海洋,廖梦霞,邓天龙.2006.水环境中痕量、超痕量元素汞的形态分析技术进展.世界科技研究与发展.28(4):52-56
    袁兰,钟崇林.1996.一甲基汞在土—水气体系中迁移及转化规律的研究.农业环境保护.15(2):58-61
    曾昭华,曾雪萍.1999.中国癌症与土壤环境中汞元素的关系.江苏环境科技.2:8-10
    翟平阳.1996.甲基汞在水生生物体内富集倍数的研究.水资源保护.3:1-9
    张成,何磊,王定勇,等.2005.重庆几种地表类型土/气界面汞交换通量.环境科学学报.25(8):1085-1090
    张甲绅,曹军,淘澍.2003,土壤水溶性有机物的紫外光谱特征及地域分异.土壤学报.40:118-122
    张金洋.2005.三峡水库消落区土壤汞释放特征研究.西南农业大学硕士毕业论文.重庆
    张书海,沈跃文.2000.污灌区重金属污染对土壤的危害.环境监测管理与技术.12(2):22-24
    张学询,王连平,宋胜焕.1988.天津污灌区土壤、作物重金属污染状况的研究.中国环境科学.8(2):20-26
    张友梅,王振忠,邢协加.1996.土壤污染对蚯蚓的影响.湖南师范大学自然科学学报.19(3):84-90
    赵南京,刘文清,刘建国,等.2005.不同水体中溶解性有机物的荧光光谱特性研究.光谱学与光谱分析,25:1077-1079
    周玳,龙满金.1983.汞在土壤中的吸附与释放的初步研究.环境化学.4(2):30-33
    朱寿珩,赵义芳,刘平,白瑛.1987.土壤中汞形态研究.北京农业大学学报.13(1):59-64
    朱小翠,青长乐,皮广洁.1996.土壤汞形态及其影响因素研究.土壤学报.33(1):94-100
    Allard B. and Arsenie I., 1991. Abiotic reduction of mercury by humic substances in aquatic systems-an important process for the mercury cycle. Water, Air and Soil Pollution. 47: 457-464
    Allschlager D., Kock H.H., Schroeder W.H. et al, 2000. Mechanism and significance of mercury volatilization from contaminated floodplains of the German river Elbe. Atmospheric Environment. 34: 3745-3755
    Ames M., Gullu G, Olmez I., 1998. Atmospheric Mercury in the Vapor Phase and in Fine and Coarse Particulate Matter at Perch River, New York. Atmospheric Environment. 328: 65-872
    Amyot M., Gillis G.A., Morel F.M.M., et al, 1997. Production and loss of dissolved gaseous mercury in coastal seawater. Environment Science and Technoledge. 31: 3600-3611
    Amyot M., Mierle G., Lean D., et al, 1997. Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes. Geochim Cosmochim Acta. 61: 975-987
    Amyot M., Southworth G., Lindberg S.E., et al, 2004. Evolution of dissolved gaseous mercury in large lake enclosures amended with ~(200)HgCl_2. Atmospheric Environment. 38: 4279-4289
    Anderson A., 1979. Mercury in Soils. In: The Biogeochemistry of Mercury in the Environment. Amsterdam: Elsevier. 79-112
    Antoniadis V., Alloway B.J., 2002. The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environmental Pollution. 117:515-521
    Baeyens W., Leermakers M, et al, 1991. Modelization of the mercury fluxes at the air-sea interface. Water, Air and Soil Pollution. 56(6): 731-744
    Barudi W. and Bielig H.J., 1980. Gehalt an Schwermetallen (Arsen, Blei Cadmium, Quecksilber) in oberirdish wachsenaen Gemüse und Obstarten, Z. Lebensm. Unters. Forsh.170: 254
    Bennett M., Edner H., et al, 2006. Joint application of Doppler Lidar and differential absorption lidar to estimate the atomic mercury flux from a chlor-alkali plant. Atmospheric Environment. 40: 664-673
    Bergan T., Rohde H., 2001. Oxidation of elemental mercury in the atmosphere: constraints imposed by global scale modeling. Journal of Atmospheric Chemistry. 40:191-212
    Bergan T.L., Gallardo L., Rodhe H., 1999. Mercury in the global troposphere: A three-dimensional model study. Atmospheric Environment. 33:1575-1585
    Beucher C., Wong Wah Chung P., Richard C., et al, 2002. Dissolved gaseous mercury formation under UV irradiation of unamended tropical waters from French Guyana. The Science of the Total Environment. 290: 131-138
    Billock O.R.J., Brehme K.A., Mapp G.R., 1998. Lagrangian modeling of Mercury air emission, transport and deposition: an analysis of model sensitivity to emissions uncertainty. The Science of the Total Environment. 213: 1-12
    Bishop K..H. et al., 1996. Catchment Influence on the Output of mercury and methyl-mercury from soils to surface waters. Abstract collection of Iner. Confer on mercury as a Global Pollutant. August 4-8, Congress Center Hamberg, German. 348
    Bjornberg K.A., Vahter M., Grawe K.P., et al, 2005. Methyl mercury exposure in Swedish women with high fish consumption. The Science of the Total Environment. 341 (1-3): 45-52
    Boney, A.D., 1971. Sub-lethal effects of mercury on marine algae. Mar. Pollut. Bull. 2: 69-71
    Bott T.L., Kaplan L.A., Kuserk F.T., 1984. Benthic biomass supported by stream water dissolved organic matter. Microbiologic Ecology. 10:335-344
    Boudala F.S., Folkins I., Beauchmap S., et al, 2000. Mercury flux measurements over air and water in Kejimkujik national park, Nova Scotia. Water, Soil and Air Pollution. 122:193-202
    Brosset C. and Lord E. 1995. Methylmercury in ambient air-Method of determination and some measurement results. Water Air and Soil Pollution. 82: 739-750
    Canli, M., Furness, R.W., 1995. Mercury and cadmium uptake from seawater and from food by the Norway lobster. Environmental Toxicologic Chemistry. 14: 819-828
    Carpi A. 1994. Mercury from combustion sources: a review of the chemical species emitted and their transport in the atmosphere. Water, Air and Soil Pollution. 98: 241-254.
    Carpi A. and Lindberg S.E. 1998. Application of a Teflon dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil. Atmospheric Environment. 32:873-882
    Carpi A., Lindberg S.E., 1997. Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge. Environmental Science and Technology. 31: 2085-2091
    Chan H.M., Scheuhammer A. M., Ferran A. et al., 2003. Impacts of Mercury on Freshwater Fish-Eating Wildlife and Humans. Human and Ecological Risk Assessment. 9(4): 867-883
    Choong Jeon, Kwang Ha Park, 2005. Adsorption and desorption characteristics of mercury (Ⅱ) ions using aminated chitosan bead. Water Research. 39: 3938-3944
    Chris S. Eckley, Holger Hintelmann, 2006. Determination of mercury methylation potentials in the water column of lakes across Canada. The Science of the Total Environment. 368: 111-125
    Christopher Dill, Todd Kuiken, Hong Zhang, et al., 2006. Diurnal variation of dissolved gaseous mercury (DGM) levels in a southern reservoir lake (Tennessee, USA) in relation to solar radiation. The Science of the Total Environment. 357: 176-193
    Clarkson T.W., 1994. The toxicity of mercury and its compounds. Carl J. Watras and John W. Huckabee. Mercury Pollution-Integration and Synthesis. 1994, CRC Press, Inc.631-641
    Coelho J.P., Pereira M.E., Duarte A., et al., 2005. Macroalgae response to a mercury contamination gradient in a temperate coastal lagoon (Ria de Aveiro, Portugal). Estuarine, Coastal and Shelf Science. 65:492-500
    Cohen M., Artz R., Draxler R. et al., 2004. Modeling the atmospheric transport and deposition of mercury to the Great Lakes. Environmental Research. 95(3): 247-265
    Coolbaugh M.F., Gustin M. S., Rytuba J. J., 2002. Annum emissions of mercury to the atmosphere from natural sources in Nevada and California. Environmental Geology. 42(4): 338-349
    Coquery M., Cossa D., Martin U.M., 1995. The distribution of dissolved and paniculate Mercury in three Siberian Estuaries and adjacent Arctic Coastal Waters. Water, Air and Soil Pollution. 80: 653-664
    Costa M., Liss P. S., 1999. Photoreduction of mercury in sea water and its possible implications for Hg~0 air-sea fluxes. Marine Chemistry. 68: 87-95
    Costa M., Liss P. S., 2000. Photoreduction and evolution of mercury from seawater. The Science of the Total Environment. 261:125-135
    Counter S.A. and Buchanan L.H. 2004. Mercury exposure in children: a review. Toxicology and Applied Pharmacology. 198(2): 209-230
    Daniel Jaffea, Eric Prestbob, Phil Swartzendruber, et al., 2005. Export of atmospheric mercury from Asia. Atmospheric Environment. 39: 3029-3038
    Daniel Obrist, Franz Conen, Roland Vogt, et al., 2006. Estimation of Hg~0 exchange between ecosystems and the atmosphere using ~(222)Rn and Hg~0 concentration changes in the stable nocturnal boundary layer. Atmospheric Environment. 40: 856-866
    Daniel Obrist, Mae S. Gustin, John A., et al., 2005. Measurements of gaseous elemental mercury fluxes over intact tallgrass prairie monoliths during one full year. Atmospheric Environment. 39: 957-965
    Dastoor A.P. and Larocque Y. 2004. Global circulation of atmospheric mercury: a modeling study. Atmospheric Environment. 38(1): 147-161
    David G Streets, Jiming Hao, Ye Wu, et al., 2005. Anthropogenic mercury emissions in China. Atmospheric Environment. 39: 7789-7806
    David M.P. and Tamsin A.M. 2003. The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment. 37(36): 5115-5124
    De A.K., Sen A.K., Modak D.P, et al., 1985. Studies of toxic effects of Mercury Ⅱ on Pistia stratiotes. Water Air and Soil Pollution. 24:351-360
    Dean W. Boening, 2000. Ecological effects, transport, and fate of mercury: a general review. Chemosphere. 40: 1335-1351
    Downs S.G., Macleod C.L., Lester J.N. 1998. Mercury in precipitation and its relation to bioaccumulation in fish: a literature review. Water, Air and Soil pollution. 108(1-2): 149-187
    Driscoll C.T, Blette V., Yan C, Schoeld C.L., et al., 1995. The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes. Water Air and Soil Pollution. 80:499-508
    Du S.H. and Fang S.C., 1983. Catalase activity of C3 and C4 species and its relationship to mercury vapor uptake. Environ. Exp. Bot. 23: 347
    Engle M. A., Gustin M. S., Zhang H. 2001. Quantifying natural source mercury emission from the Ivanhoe Mining District, north-central Nevada, USA. Atmospheric Environment. 35(23): 3987-3997
    Eric K. Miller, Alan Vanarsdale, Gerald J. Keeler, et al., 2005. Estimation and Mapping of Wet and Dry Mercury Deposition Across Northeastern North America. Ecotoxicology. 14: 53-70
    Ericksen J. A. and Gustin M S. 2004. Foliar exchange of mercury as a function of soil and air mercury concentrations. The Science of the Total Environment. 324(1-3): 271-279
    Fang Fengman, Wang Qichao, Li Junfeng, 2001. Atmospheric particulate mercury concentration and its dry deposition flux in Changchun City, China. The Science of the Total Environment. 281: 229-236
    FAO/WHO. 1999. Joint FAO/WHO expert committee on food additives (JECFA). fifty-thied meeting, Rome, 1-10 June
    Feng X.B., Chen Y. C., Zhu W. G., 1997. Vertical fluxes of volatile mercury over soil surfaces in Guizhou Province. China. Journal of Environmental Science. 9(2): 245-254
    Feng X.B., Li G.H., Qiu G.L., 2006. A preliminary study on mercury contamination to the environment from artisanal zinc smelting using indigenous methods in Hezhang County, Guizhou, China: Part 2. Mercury contaminations to soil and crop. The Science of the Total Environment. 368: 47-55
    Feng X.B., Yan haiyu, et al., 2004. Seasonal variation of gaseous mercury exchange rate between air and water surface over Baihua reservoir, Guizhou, China. Atmospheric Environment. 38:4721-4732
    Ferrara R., Maserti B.E., Edner H. et al., 1992. Mercury emissions into the atmosphere from a chlor-alkali complex measured with the lidar technique. Atmospheric Environment A26:1253-1258
    Ferrara R., Mazzolai B., 1998. A dynamic flux chamber to measure mercury emission from aquatic systems. The Science of the Total Environment. 215: 51-57
    Ferrara R., Mazzolai B., Lanzillotta E., et al., 2000a. Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin. The Science of the Total Environment. 259:115-121
    Ferrara R., Mazzolai B., Lanzillotta E., et al., 2000b. Temporal trends in gaseous mercury evasion from the Mediterranean Sea waters. The Science of the Total Environment. 259:183-190
    Ferrari Christophe P., Pierre Alexis Gauchard, Katrine Aspmo, et al., 2005. Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Alesund, Svalbard. Atmospheric Environment. 39: 7633-7645
    Fitzgerald W.F., 1995. Is mercury increasing in the atmosphere? The need for an atmosphere mercury network (AMNET). Water Air and Soil Pollution. 80: 245-254
    Fitzgerald W.F., Engstrom D.R., Manson R. 1998. The case for atmospheric mercury contamination in remote areas. Environmental Science and Technology. 32(1): 1-7
    Fitzgerald W.F., Mason R.P., Vandal G.M. 1991. Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions. Water, Air and Soil Pollution. 55: 745-767
    Fitzgerald, W.F, 1986. Cycling of mercury between the atmosphere and oceans. Nato Advanced Institute Series. C185, 363-408
    Friedli H., Radke L. F., Lu J. Y., et al., 2003. Mercury emission from burning of biomass from the temperate North American forests: laboratory and airborne measurement. Atmospheric Environment. 37: 253-267
    Gabriella Magarelli, Anne Hélène Fostier, 2005. Influence of deforestation on the mercury air/soil exchange in the Negro River Basin, Amazon. Atmospheric Environment. 39: 7518-7528
    Gádfeldt K., Feng X., Sommar J., et al., 2001. Total gaseous mercury exchange between air and water at river and sea surfaces in Swedish coastal regions. Atmospheric Environment. 35: 3027-3038
    Gagnon, C., Fisher, N.S., 1997. Bioavailability of sediment bound methyl and inorganic mercury to a marine bivalve. Environmental Science and Technology. 31: 993-998
    Galperin M., Sofiev M., Erdman L.K., et al, 1994. Model evaluation of airborne trace metal transport and deposition, Short model experiments. Atmospheric Environment. 17: 1457-1473
    Garcia E., Poulain A. J., Amyot M., et al., 2005a. Diel variations in photoinduced oxidation of Hg~0 in freshwater. Chemosphere. 59: 977-981
    Garcia Edenise, Marc Amyot, Parisa A. Ariya, 2005b. Relationship between DOC photochemistry and mercury redox transformations in temperate lakes and wetlands. Geochimica et Cosmochimica Acta. 69(8): 1917-1924
    Gbor P.K., Wen D.Y., Meng F. et al., 2006. Improved model for mercury emission, transport and deposition. Atmospheric Environment. 40: 973-983
    Gillis A. and Miller D.R. 2000. Some local environmental effects on mercury emission and absorption at a soil surface. The Science of Total Environment. 260: 191-200
    Gilmar Silvério da Silva, Wilson F. Jardim, Pedro Sérgio Fadini, 2006. Elemental gaseous mercury flux at the water/air interface over the Negro River basin, Amazon, Brazil. The Science of the Total Environment. 368:189-198
    Glass G.E., Sorsen J.A., Schmidt K.W., et al., 1991. Mercury deposition and sources for the Upper Great Lakes Region. Water Air and Soil Pollution. 56: 235-249
    Gochfeld M. 2003. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicology and Environmental Safety. 56(1): 174-179
    Godbold D.L., 1991. Mercury-induced root damage in spruce seedlings. Water Air and Soil Pollution. 56: 823-831
    Godbold D.L., Huttermann A. 1986. The uptake and toxicity of mercury and lead to spruce seedlings. Water Air and Soil Pollution. 31: 509-515
    Grasso D., Chin Y. P., Weber W.J.J. 1990. Structural and behavioral characteristics of a commercial humic acid and natural dissolved aquatic organic matter. Chemosphere. 21:1181-1198
    Greger Maria, Yaodong Wang, Clara Neuschütz. 2005. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environmental Pollution. 134:201-208
    Grieb, T.M., Driscoll, C.T., Gloss, S. P. et al., 1990. Factors affecting mercury accumulation in fish in the upper Michigan peninsula. Environment Contaminate Toxicology. 9: 919-930
    Guisquiani P. L., Concezzi L., Businelli M, et al., 1998. Fate of pig sludge liquid fraction in calcareous soil: agricultural and environmental implications. Journal of Environmental Quality. 27:364-371.
    Gustin M. S. and Stamenkovic J., 2005. Effect of watering and soil moisture on mercury emissions from soils. Biogeochemistry. 76: 215-232
    Gustin M. S., Biester H., Kim C. S. 2002. Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmospheric Environment. 36: 3241-3254
    Gustin M. S., Lindberg S.E., Marsik F., et al., 1999. The Nevada STORMS project: measurement of mercury emissions from naturally enriched landscapes. Journal of Geophysical Research. 104(17): 21831-21844
    Gustin, M.S., Lindberg, S.E. et al., 2000. Assessing the contribution of natural sources to regional atmospheric mercury budgets. The Science of the Total Environment. 259:61-71
    Guzzi G. and Pigatto P.D. 2005. More on methyl mercury. Toxicology and Applied Pharmacology. 206(1): 94
    Hall B.D. 1995. The gas phase oxidation of elemental mercury by ozone. Water Air and Soil Pollution. 80:1069-1077
    Hall B.D., Manolopoulos H., Hurley J.P. et al., 2005. Methyl and total mercury in precipitation in the Great Lakes region. Atmospheric Environment. 39(39): 7557-7569
    Hanisch C. 1998. Where is Hg deposition coming from? Environment Science and Technology. 32:176A-179A
    Hanson P.J., Lindberg S.E., Tabberer T.A., et al., 1995. Foliar exchange of mercury vapor: evidence for a compensation point. Water, Air, and Soil Pollution. 80:373-382
    Hedgecock I.M., Trunfio G.A., Pirrone N., et al., 2005. Mercury chemistry in the MBL: Mediterranean case and sensitivity studies using the AMCOTS (Atmospheric Mercury Chemistry over the Sea) model. Atmospheric Environment. 39: 7217-7230
    Heyer M., Burke J., Keler G., 1995. Atmospheric sources, transport and deposition of mercury in Michigan: Two years of event precipitation. Water, Air and Soil Pollution. 80:199-208
    Hogg T.J., Stewart J.W., Bettany J.R., 1978. Influence of chemical form of mercury on its adsorption and ability to leach through soils. Journal of Environmental Quality. 7:440
    Honda K., Fujise Y., Tatsukawa R., et al., 1986. Age-related accumulation of heavy metals in bone of the striped dolphin. Marine Environment Research 20:143-160
    Hope B.K. 2006. An assessment of anthropogenic source impacts on mercury cycling in the Willamette Basin, Oregon, USA. The Science of the Total Environment. 356(1-3): 165-191.
    Hultberg H., Iverfeldt A and Lee Y-H. 1994. Methylmercury input/output and accumulation in forested catchments and critical loads for lakes in southwestern Sweden. In: Mercury Pollution: Integration and Synthesis. Lewis Publishers, Boca Raton. 313-322
    Hung G.A. and Chmura, G.L. 2006. Mercury accumulation in surface sediments of salt marshes of the Bay of Fundy. Environmental Pollution. 142:418-431
    Inoue K. and Aomine S., 1969. Retention of mercury by soil. Ⅲ. Adsorption of mercury in dilute phenylmercuric acetate solutions. Soil Science, Plant Nutrition. 15:86
    Ireland M. P. 1998. Heavy metal binding properties of earthworm chloragosomes. Acta Biol. Acad. Sci. Hung. 29: 385-394
    Iverfeldt A. 1991a. Occurrence and turnover of atmospheric mercury over the Nordic countries. Water Air and Soil Pollution. 56:251-265
    Iverfeldt A. 1991b. Mercury in forest canopy throughfall water and its relation to atmospheric deposition. Water Air and Soil Pollution. 56:553-564
    Jack G. Calvert, Lindberg S.E. 2005. Mechanisms of mercury removal by O3 and OH in the atmosphere. Atmospheric Environment. 39: 3355-3367
    Jane M. Hightower, Ann O'Hare, German T., Hernandez. 2006. Blood Mercury Reporting in NHANES: Identifying Asian, Pacific Islander, Native American, and Multiracial Groups. Environmental Health Perspect. 114:173-175
    Jenne E.A. and Avotin P., 1975. The time stability of dissolved mercury in water samples. Ⅰ. Literature review. Journal of Environmental Quality. 4:427-430
    Jensen S. and Jernelov A. 1969. Biological methylation of mercury in aquatic organisms. Nature, 223:753-755
    Julia L. Barringer, Zoltan, S., Leon J. et al., 2005. Mercury concentrations in water from an unconfined aquifer system, New Jersey coastal plain. The Science of the Total Environment. 346:169-183
    Kaiser K., Zech W., 1998. Rate of dissolved organic matter release and sorption in forest soils. Soil Science. 163:714-725
    Katarina Gardfeldt, Jonas Sommar, Romano Ferrara, et al., 2003. Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea. Atmospheric Environment. 37(1): 73-84
    Keeler G., Glinsorn G., Pirrone N. 1995. Particulate mercury in the atmosphere: its significance, transport, transformation and sources. Water, Air and Soil Pollution. 80: 159-168
    Kim K.H., Kim M.Y. 2002. Mercury Emissions as landfill gas from a large-scale abandoned landfill site in Seoul. Atmosphere Environment. 36: 4919~4928
    Kim K.H., Lindberg S.E. 1995b. Micrometeorological measurements of mercury vapor fluxes over background forest soils in eastern Tennessee. Atmospheric Environment. 29 (2):267-282
    Kim K.H., Lindberg S.E., 1995a. Design and initial tests of a dynamic enclosure chamber for measurements of vapor phase mercury fluxes over soils. Water, Air and Soil Pollution. 80: 1059-1068
    Kinniburgh D.G., Jackson M.L., Syers J.K., 1976. Adsorption of Alkaline earth, transition and heavy metals cations by hydrous oxide gels of Iron and Aluminum. Soil Science. 40: 796-799
    Kotnik J., Horvat M., Fajon V., et al, 2002. Mercury in small freshwater lakes: a case study: Lake Velenje, Slovenia. Water and Soil Pollution. 134(1-4): 319-339
    Lacerda L.C. 1997. Global mercury emissions from gold and silver mining. Water Air and Soil Pollution. 97: 209-221
    Lamborg C.H. Fitzgerald W.E, Vandal G.M. et al. 1995. Atmospheric mercury in northern Wisconsin: sources and species. Water, Air and Soil Pollution. 80:198-206
    Lamborg C.H., Fitzgerald W.E, O'Donell J., et al., 2002. A non-steady state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim. Cosmochim. Acta. 66: (7) 1105-1118
    Landa E.R. 1978. Soil water content and temperature as factors in the volatile loss of applied mercury (Ⅱ) from soils. Soil Science. 126(1): 44-48
    Lantzy R. J., Mackenzie F. T. 1979. Atmospheric trace metals. Global cycles and assessment of man's impact. Geochim Cosmochim. Acta. 43:500-525
    Lanzillotta E., Frrara R., 2001. Daily trend of dissolved gaseous mercury concentration in coastal seawater of the Mediterranean basin. Chemosphere. 45:935-935
    Lee Y.H. and Iverfeldt (?). 1991. Measurement of methylmercury and mercury in run-off, lake and rain waters. Water Air and Soil Pollution. 56:309-321
    Leinonen K., 1989. Influence of soil preparation on the levels aluminum, manganese, iron, copper, zinc, cadmium and mercury in Vaccinium myrtillus. Chemosphere. 18:1581
    Lin C. J., Lindberg S. E., Ho Thomas C., Carey Jang, 2005. Development of a processor in BEIS3 for estimating vegetative mercury emission in the continental United States. Atmospheric Environment. 39:7529-7540
    Lin C. J., Pehkonen S.O., 1997. Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol. Atmospheric Environment 31:4125-4137
    Lindberg S. E., Dong Weijin, Jeff Chanton, 2005. A mechanism for bimodal emission of gaseous mercuryfrom aquatic macrophytes. Atmospheric Environment. 39:1289-1301
    Lindberg S., Jackson D., Huckabee J., et al., 1979. Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine. Joumal of Environmental Quality. 8:572-578
    Lindberg S.E. 1996. Forests and the global biogeochemical cycle of mercury: the importance of understanding air/vegetation exchange processes. In: Baeyens, W, Ebinghaus R, Vasiliev, O. (Eds.), Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances. NATO-ASI Series, Kluwer Academic Publishers, Dordrecht. The Netherlands. 21:359-380
    Lindberg S.E. and Stratton W. J. 1998, Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air. Environmental Science and Technology. 32:49-57
    Lindberg S.E. and Zhang H. 2000. Air or water exchange of mercury in the Everglades Ⅱ: measuring and modeling evasion of mercury from surface waters in the Everglades Nutrient Removal Project. The Science of the Total Environment. 259:135-143
    Lindberg S.E., Hanson P.J., Meyers T.P., et al., 1998. Air/surface exchange of mercury vapor over forests: the need for a reassessment of continental biogenie emissions. Atmospheric Environment 32:895-908
    Lindberg S.E., Kim Y., Meyers T., Owens J., 1995. A micrometeorological gradient approach for quantifying air-surface exchange of mercury vapor: tests over contaminated soils. Environmental Science and Technology. 29:126-135
    Lindberg S.E., Meyers T.P., Taylor Jr., et al, 1992. Atmosphere-surface exchange of mercury in a forest: results of modeling and gradient approaches. Journal of Geophysical Research 97: 2519-2528
    Lindberg S.E., Price J.L., 1999. Airborne emissions of mercury from municipal landfill operations: a short-term measurement study in Florida. Journal of Air and Waste Management Association. 49:520-532
    Lindberg S.E., Southworth G., Prestbo E.M. et al., 2005. Gaseous methyl-and inorganic mercury in landfill gas from landfills in Florida, Minnesota, Delaware, and California. Atmospheric Environment. 39(2): 249-258
    Lindqvist O., Block M., Tjalve H., 1995. Distribution and excretion of Cd, mercury, methylmercury and Zn in the predatory beetle Pterostichus Niger. Environmental Toxicologic Chemistry. 14: 1195-1201
    Lindqvist O., Johansson K., Aastrup M. et al., 1991. Mercury in the Swedish environment. Water Air and Soil Pollution. 55:1-261
    Lindqvist O., Rodhe H., 1985. Atmospheric mercury-a review. Tellus. 37B:136-159
    Liu Ruhai, Wang Qichao, Wang Yan, et al., 2003. Distribution of mercury in typical wetland plants in the Sanjiang plain. Chinese geographical science. 13(3): 242-246
    Lodenius M. 1990. Sorption of mercury in soil. In: Encyclopedia of Environmental Control Technology 4: Hazardous Waste Containment and Treatment, Cheremisinoff, P., Ed. Houston: Gulf publishers. 339
    Lodenius M., Tulisalo E., Gargari A.S. 2003. Exchange of mercury between atmosphere and vegetation under contaminated conditions. The Science of the Total Environment. 304(1-3): 169-174
    Loux N. T. 1998. An assessment of mercury-species-dependent binding with natural organic carbon. Chem. Spec. Bioavail. 10: 127-136
    Magarelli G. and Fostier A. H. 2005. Influence of deforestation on the mercury air/soil exchange in the Negro River Basin, Amazon. Atmospheric Environment. 39(39): 7518-7528
    Maliszewska W. 1985. The influence of various heavy metal compounds on the development and activity of soil microorganism. Environmental Pollution. 37(3): 195-215
    Mark A. Englea, Mae Sexauer Gustina, Steve E. Lindberg, 2005. The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates. Atmospheric Environment. 39: 7506-7517
    Mark E. Hines, Milena Horvat, Jadran Faganeli, et al., 2000. Mercury Biogeochemistry in the Idrija River, Slovenia, from above the Mine into the Gulf of Trieste. Environmental Research. 83:129-139
    Mason and Sullivan. 1999. The distribution and speciation of mercury in the South and equatorial Atlantic. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography. 46: 937-956
    Mason R.P, Fitzgerald W.F. and Morel M.M, 1994. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochmi. Cosmochim. Acta. 58:3191-3198
    Mason R.P., Morel F. M.M., Hemond H.F., 1995. The role of microorganisms in elemental mercury formation in natural waters. Water Air and Soil Pollution. 80: 775-787
    Mason R.P., Sheu G.R., 2002. Role of the ocean in the global mercury cycle. Global Biogeochemical cycles. 16:1093-1106
    McMurtry, M.J., Wales, D.L., Scheider, et al., 1989. Relationship of mercury concentrations in lake trout and smallmouth bass to the physical and chemical characteristics of Ontario lakes. Can. J. Fish.Aquat. Sci. 46:426-434
    Meili M. 1991. Fluxes, pool and turnover of mercury in Swedish forest lakes. Water, Air and Soil pollution. 56:719-727
    Min H. 1999. Microbial Research Techniques. Beijing: Science press.
    Min H., Chen M.C., Zhao Y.H., 1993. Anaerobic Microbiology. Hangzhou: Zhejiang University Press. 8-23
    Miskimmin B.M. 1991. Effect of natural levels of dissolved organic carbon (DOC) on methylmercury formation and sediment-water partitioning. Bull. Environ. Contam. Toxicol. 47:743-750
    Mitchell Berman and Richard Bartha, 1986. Control of the Methylation process in a mercury-polluted aquatic sediment. Environmental Pollution Series B, Chemical and Physical. 11:41-53
    Mukherjee A.B, Melanen M., Ekqvistb M., Verta M. 2000. Assessment of atmospheric mercury missions in Finland. The Science of the Total Environment. 259:73-83
    Munthe J. 1992. Queous oxidation of elemental Hg by O_3. Atmospheric Environment. 26A: 1461-1468
    Munthe J. 1994. The atmospheric chemistry of mercury: kinetic studies of redox reactions. In: Mercury Pollution: Integration and Synthesis. Lewis Publishers, Boca Raton. 273-280
    Munthe J. and Mcelroy W.J., 1992. Some aqueous reactions of potential importance in the atmospheric chemistry of mercury. Atmospheric Environment. 26A:553-557
    Munthe J., Hultberg H. and Iverfeldt A., 1995b. Mechanisms of deposition of and methylmercury to coniferous forests. Water Air and Soil Pollution. 80:363-371.
    Munthe J., Hultberg H., Lee Y.H., Parkman H. et al., 1995a. Trends of mercury and methylmercury in deposition, run-off water and sediments in relation to experimental manipulations and acidification. Water Air and Soil Pollution. 85:743-748.
    Munthe J., Xiao Z.E, Lindqvist O., 1991. The aqueous reduction of divalent mercury by sulfite. Water, Air and Soil Pollution. 56:621-630
    Murray M. and Holmes S. A. 2004. Assessment of mercury emissions inventories for the Great Lakes states. Environmental Research. 95(3): 282~297
    Nazafarin Lahoutifard, Melissa Sparling, David Lean, 2005. Total and methyl mercury patterns in Arctic snow during springtime at Resolute, Nunavut, Canada. Atmospheric Environment. 39:7597-7606
    Neal A. Hines, Patrick L. Brezonik, 2004. Mercury dynamics in a small Northern Minnesota lake: water to air exchange and photoreactions of mercury. Marine Chemistry. 90:137-149
    Nenning T.A. 1992. Increase rates of atmospheric mercury: deposition in Mid-continental North America. Science. 257:7-16
    Nguyen H.L., Leermakers M., Kurunczi S., et al., 2005. Mercury distribution and speciation in Lake Balaton, Hungary. The Science of the Total Environment. 340:231-246
    Nild H., Maker P.D., Sabage C.M. et al., 1983. A long path fourier transform study of kinetics and mechanisms for the HO radical initiated oxidation of dimethyl mercury. Journal of Physics and Chemistry. 87:4978-4981
    Nriagu J.O. and Becker C. 2003. Volcanic emissions of mercury to the atmosphere: global and regional inventories. The Science of the Total Environment. 304(1-3): 3-12
    Nriagu J.O., 1989. A global assessment of natural sources of atmospheric trace metals. Nature 338:47-49
    Nriagu J.O., 1994. Mercury pollution from the past mining of gold and silver in the Americas. The Science of Total Environment. 149:167-181.
    Nriagu, J. and Pacyna, J. 1988. Quantitative assessment of worldwide contamination of air water and soil by trace metals. Nature. 333:134-139
    O'Driscoll N.J., Siciliano S.D., Peak D., et al., 2006. The influence of forestry activity on the structure of dissolved organic matter in lakes: Implications for mercury photoreactions. The Science of the Total Environment. 366: 880-893
    Oleg Travnikov. 2005. Contribution of the intercontinental atmospheric transport to mercury pollution in the Northern Hemisphere. Atmospheric Environment. 39: 7541-7548
    Pacyna E. G., Pacynaa J. M., Pirrone N. 2001. European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmospheric Environment. 35: 2987-2996
    Pacyna E.G. and Pacyna J.M. 2002. Global Emission of Mercury from Anthropogenic Sources in 1995. Water, Air, and Soil Pollution. 137: 149-165
    Pacyna J. M., Scholtz T., Pirrone N. 1999. Global emissions of anthropogenic mercury to the atmosphere. Barbosa J P, Melanmed R, Villas Boas R. Abstract of the 5th International Conference on Mercury as a Global Pollutant, 23-27 May, 1999. Rio de Janeiro: CETEM-Center for Mineral Technology, 126
    Pandit G. G., Jha S.K., Tripathi R.M. et al., 1997. Intake of methyl mercury by the population of Mumbai, India. The Science of the Total Environment. 205(2): 267-270
    Patricia Miretzky, Marcia Cristina Bisinoti, Wilson F. Jardim, 2005. Sorption of mercury (Ⅱ) in Amazon soils from column studies. Chemosphere. 60:1583-1589
    Paul C. Pickhardt, Carol L. Folt, Celia Y. Chen, et al., 2005. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web. The Science of the Total Environment. 339: 89-101
    Pehkonen S.O., Lin C. J., 1998. Aqueous photochemistry of divalent mercury with organic acids. Journal of AWMA.48: 144-150
    Petersen G., Iverfeldt A. and Munthe J., 1995. Atmospheric mercury species over central and northern Europe. Model calculations and comparison with observations from the Nordic air and precipitation network for 1987 and 1988. Atmospheric Environment. 29:47-67
    Petri Porvari, Matti Verta, 2003. Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland. Environmental Pollution. 123: 181-91
    Philip K. Gbor, Deyong Wen, Fan Meng, et al., 2006. Improved model for mercury emission, transport and deposition. Atmospheric Environment. 40: 973-983
    Pierre Alexis G., Christophe P. Ferrari, Aurélien D., et al., 2005. Atmospheric particle evolution during a nighttime atmospheric mercury depletion event in sub-Arctic at Kuujjuarapik/Whapmagoostui, Québec, Canada. The Science of the Total Environment. 336: 215-224
    Pirrone N., Costa P., Pacyna J.M., Ferarra R., 2001. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region. Atmospheric Environment 35:2997-3006
    Pirrone N., Keeler G. J., Nriagu J. O., 1996. Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment. 30 (17): 2981-2997
    Poissant L., Casimir A., 1998. Water/air and soil/air exchange rate of total gaseous mercury measured at background sites. Atmospheric Environment. 32: 883-893
    Poissant L., Martin Pilote, Conrad Beauvais, et al. 2005. A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hgp) in southern Quebec, Canada. Atmospheric Environment. 39: 1275-1287
    Qing C. L. and Mou S. S., 1993. Preventing Hg transference from soil to terrestrial food chain. Pedosphere. 3(1):67-73
    Qing C.L., Mou S.S., Guo T.Y., et al. 1998. Chemical forms of mercury in soils and their influencing factors. Pedosphere. 8(2): 175-180
    Qiu GL., Feng X.B., Wang S.F. et al., 2005. Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Applied Geochemistry. 20: 627-638
    Qiu G.L., Feng X.B., Wang S.F. et al., 2006. Mercury contaminations from historic mining to water, soil and vegetation in Lanmuchang, Guizhou, southwestern China. The Science of the Total Environment. 368: 56-68
    Rand G. 1995. Fundamentals of Aquatic Toxicology, Taylor & Francis, Washington, DC. http://www.epa.gov/otaq/m6.htm
    Rasmussen P.E., 1994. Current methods of estimating atmospheric mercury fluxes in remote areas. Environmental Science and Technology. 28: 2233-2241
    Ravichandran M. 2004. Interactions between mercury and dissolved organic matter-a review. Chemosphere. 55(3): 319-331
    Rea A.W., Lindberg S.E., Scherbatskoy T. 2002. Mercury accumulation in foliage over time in two northern mixed-Hardwood Forests. Water, Air, and Soil Pollution. 133:49-67
    Richardson D. 1981. The Biology of mosses. Black well Scientific Publication, Oxford. 1-220
    Richmen L.A. 1988. Facts and fallacies concerning uptake by fish in acid stressed lakes (review article). Water Air and Soil Pollution. 37:465-473
    Robert B. Ambrose, Jr. Ioannis X. Tsiros, Tim A. Wool, 2005. Modeling Mercury Fluxes and Concentrations in a Georgia Watershed Receiving Atmospheric Deposition Load from Direct and Indirect Sources. Air & Waste Management Association. 55: 547-558
    Rogers R.D. and Mcfarlane J.C., 1979. Impact factors of mercury volatile from soils. Journal of Environmental Quality. 8: 255-260
    Rosa D.A., Sepulveda T.V., Solórzano G et al. 2004. Survey of atmospheric total gaseous mercury in Mexico. Atmospheric Environment. 38(29): 4839-4846
    Rosa D.A., Velasco A., Rosas A., et al., 2006. Total gaseous mercury and volatile organic compounds measurements at five municipal solid waste disposal sites surrounding the Mexico City Metropolitan Area. Atmospheric Environment. 40(12): 2079-2088
    Rothschild R. F. and Duffy L.K. 2005. Mercury concentrations in muscle, brain and bone of Western Alaskan waterfowl. The Science of the Total Environment. 349(1-3): 277-283
    Sakata M. and Marumoto K., 2005. Wet and dry deposition fluxes of mercury in Japan. Atmospheric Environment. 39(17): 3139-3146
    Sakata M., Marumoto K., et al., 2006. Regional variations in wet and dry deposition fluxes of trace elements in Japan. Atmospheric Environment. 40: 521-531
    Schafera J., Blanc G., Audry S. et al., 2006. Mercury in the Lot-Garonne River system (France): Sources, fluxes and anthropogenic component. Applied Geochemistry. 21: 515-527
    Schoenau J. J. and Bettany J. R., 1987. Organic matter leaching as a component of carbon, nitrogen, phosphorus and sulfur cycles in a forest, grassland and gleyed soils. Soil Science Society of America, Journal. 51:646-651
    Scholtz M. T., Heyst B. J., Schroeder W. H., et al., 2003. Modelling of mercury emissions from background soils. The Science of the Total Environment. 304: 185-207
    Schroeder W. H, Munthe J., Lindqvist O. 1989. Cycling of mercury between water, air and soil compartments of the environment. Water Air and Soil Pollution. 48: 337-347
    Schroeder W.H. and Munthe J. 1998. Atmospheric mercury-An overview. Atmospheric Environment. 32(5): 809-822
    Schroeder W.H., Yarwood G. and Niki H., 1991. Transformation processes involving mercury species in the atmosphere-results from a literature survey. Water Air and Soil Pollution. 56:653-666
    Schuster E., 1991. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes-A review of the literature. Water Air and Soil Pollution. 56:667-680
    SCOPE CHINA汞工作组,1996.SCOPE CHINA汞污染专题学术讨论会《纪要》.环境化学.15(1):90-91
    Seigneur C, Lohman K., Krish V., et al. 2003. Contributions of global and regional sources to mercury deposition in New York State. Environmental Pollution. 123(3): 365-373
    Sérgio A. Coelho-Souza, Jean R.D. Guimaraes, et al., 2006. Mercury methylation and bacterial activity associated to tropical phytoplankton. The Science of the Total Environment. 364: 188-199
    Shanley J. B., Schuster P. F., Reddy M. M., et al., 2002. Mercury on the move during snowmelt in Vermont. EOS. 83(5): 45-48
    Shawn P. Chadwick, Chris L. Babiarz, et al., 2006. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury. The Science of the Total Environment. 368: 177-188
    Sheppard D.S. 1991. Mercury content of Antarctic Iceland-snow: further results. Atmospheric Environment. 25, 16578-16000
    Shon Z.H., Kim K.H., et al., 2005. Modeling study of reactive gaseous mercuryin the urban air. Atmospheric Environment. 39: 749-761
    Siegel S.M. and Siegel B.Z. 1984. First estimate of annual mercury flux at the Kilauea main vent. Nature. 309:146-147
    Siegel S.M., Puerner N. and Speitel T., 1974. Release of volatile mercury from vascular plants, Physiol. Plant. 32:174
    Siegel S.M., Siegel B.Z., 1988. Temperature determinations of plant-soil-air mercury relationship. Water, Air and Soil Pollution. 40:443-448
    Siegel S.M., Siegel B.Z., Barghigiani C, et al., 1987. A contribution to the environmental biology of mercury accumulation in plants. Water Air and Soil Pollution. 33:65-72
    Skogerboe R. K., Wilson S. A. 1981. Reduction of ionic species by fulvic acid. Anal. Chem. 53: 228-232
    Slemr F. and Langer E. 1992. Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean. Nature. 355:434-437
    Slemr F., Schuster G. and Seiler W. 1985. Distribution speciation and budget of atmospheric mercury. Journal of Atmospheric Chemistry. 3:407-434
    Sohyun Park, Mary Ann Johnson, 2006. Awareness of Fish Advisories and Mercury Exposure in Women of Childbearing Age. Nutrition Reviews. (Ⅰ) 250-256
    Sommar J., 2001. The atmospheric chemistry of mercury-kinetics, mechanisms and speciation. Ph. D. dissertation, Department of Chemistry, Goteborg University, Sweden
    Sommar J., Hallquist M., Ljungstro M.E., Lindqvist O., 1997. On the gaseous reaction between volatile mercury species and the nitrate radical. Journal of Atmospheric Chemistry. 27: 233-247
    Sorensen J.A., Glass G.E., Schmidt K.W., 1994. Regional patterns of wet mercury deposition. Environmental Science and Technology. 28:2025-2032
    Stefano Covelli, Raffaella Piani, Joze Kotnikm, et al., 2006. Behaviour of Hg species in a microtidal deltaic system: The Isonzo River mouth (northern Adriatic Sea). The Science of the Total Environment. 368: 210-223
    Streets D.G., Hao J.M., Wu Y. et al. 2005. Anthropogenic mercury emissions in China. Atmospheric Environment. 39(40): 7789-7806
    Su Y.H., Zhu Y.G., Du X. 2005. Co-uptake of atrazine and mercury by rice seedlings from water. Pesticide Biochemistry and Physiology. 82: 226-232
    Swain E.B., Engstrom D.R., Brigham M.E., et al., 1992. Increasing rates of atmospheric Hg deposition in mid-continental North America. Science. 257:784-787
    Tamura R., Fukuzaki N., Hirno Y. et al., 1985. Evaluation of mercury contamination using plant leaves and humus as indicators. Chemoshpere. 14(11/12):1687-1693
    Teigen S.W., Skaare J.U., Bjorge A., et al., 1993. Mercury and selenium in harbor porpoise in Norwegian waters. Environmental Toxicologic Chemistry. 12: 1251-1259
    Temmerman L. de, Vandeputte R. and Guns M., 1986. Biological monitoring and accumulation of airborne mercury in vegetables. Environmental Pollution (Series A). 41:135-151
    Tessier A., Campbell W.G. and Baisson M, 1979. Sequential extraction procedures for the speciation of particulate trace metals. Analytical Chemistry. 51(7): 844-850
    Timsina J. and Connor D. J. 2001. Productivity and management of rice-wheat cropping systems: issues and challenges. Field Crops Res., 69:93-132
    Torunn Berg, Eirik Fjeld, Eiliv Steinnes, 2006. Atmospheric mercury in Norway: Contributions from different sources. The Science of the Total Environment. 368: 3-9
    Tyler G. 1990. Bryophytes and heavy metals: a literature review. Bot J L inn Soc. 104(2): 231-253
    UNEP, 2002. Report of the global mercury assessment working group on the work of its first meeting, Geneva, Switzerland, 9-13 September.
    USEPA. 1997. Office of Air Quality Planning and Standards and Office of Research and Development, Mercury Study Report to Congress. Fate and Transport of Mercury in the Environment, EPA-452/R-97-005, Vol.Ⅲ
    Valbona Celo, David R.S. Lean, Susannah L. Scott. 2006. Abiotic methylation of mercury in the aquatic environment. The Science of the Total Environment. 368:126-137
    Vandal G. M., Mason R. P., Fitzgerald W. F. 1991. Cycling of volatile mercury in temperate lakes. Water, Air and Soil Pollution. 56(6): 791-803
    Varekamp J. C,, Buseck P. R., 1986. Global mercury flux from volcanic and geothermal sources. Applied Geochemistry. 1: 65-73
    Vasiliev O.F., Obolenskiy A.A., Yagolnitser M.A., 1998. Mercury as a pollutant in Siberia: sources, fluxes and aregional budget. The Science of the Total Environment. 213:73-84
    Wallschlager D., Desai M. V., Wilken R. D.. 1996. The role of humic substances in the aqueous mobilization of mercury from contaminated floodplain soils. Water, Air and Soil Pollution. 90: 507-520
    Wallschlager D., Kock H.H. Mechanism and significance of mercury volatilization from contaminated flood pains of the German river Elbe. Atmospheric Environment. 2000, 343:745-3755
    Wallschlager D., Turner R. R., London J., et al., 1999. Factors affecting the measurement of mercury emissions from soils with flux chambers. Journal of Geophysical Research. 104(17): 21859-21871
    Wang D.Y., He L., Shi X.J., et al., 2006a. Release flux of mercury from different environmental surfaces in Chongqing, China. Chemosphere. 64:1845-1854
    Wang D.Y., He L., Wei S.Q., et al., 2006b. Estimation of mercury emission from different sources to atmosphere in Chongqing, China. The Science of the Total Environment. 366: 722-728
    Wang D.Y., Qing C.L., Guo T.Y., et al., 1997. Effect of humic acid on transport and transportation of mercury in soil-plant system. Water, Air and Soil pollution. 95:35-43
    Wang D.Y., Shi X.J., Wei S.Q., 2003. Accumulation and transformation of atmospheric mercury in soil. The Science of the Environment. 304:209-214
    Wang Lianzheng and Guo Yixian. 1994. Rice-wheat systems and their development in China. In: Sustainability of Rice-wheat Production Systems in Asia. Paroda, R. S. Woodhead, T., Singh, R. B, eds. Bangkok: FAO, 160-171
    Wang S.F., Feng X.B., 2005. Mercury emission to atmosphere from Lanmuchang Hg-T1 mining area, Southwestern Guizhou, China. Atmospheric Environment. 39:7459-7473
    Wang Z.W., Zhang X.S., et al., 2006. Mercury concentrations in size-fractionated airborne particles at urban and suburban sites in Beijing, China. Atmospheric Environment. 40:2194-2201
    Wangberg Ingvar, Stefan Schmolke, Peter Schager, et al., 2001. Estimates of air-sea exchange of mercury in the Baltic Sea. Atmospheric Environment. 35:5477-5484
    Weber J.H. 1993. Review of possible paths for abiotic methylation of mercury (Ⅱ) in the aquatic environment. Chemosphere. 26: 2063-2077
    Wei S.Q., Sommar J., Lindqvist O., Xiao Z.F., 1997. Effect of mercury deposition on mercury content and distribution in rye grass. Pedosphere. 7(2): 155-164
    WHO. 1989. Mercury-Environmental Aspects. WHO, Geneva, Switzerland. http://www.epa.gov/otaq/m6.htm
    WHO. 1990. Environment health criteria 101 methylmercury, World Health Organization, Generva. http://www.epa.gov/otaq/m10.htm
    Wigfield D.C., Perkins S.L. 1985. Oxidation of elemental mercury by hydroper oxides in aqueous solutions. Canadian Journal of Chemistry. 63:275-278
    William S. 1992. Volatilization of Mercury from Lake Surfaces. The Science of the Total Environment. 125:47-66
    Xiao Z. F., Munthe J., Stromberg D., et al., 1994. Photochemical behavior of inorganic Hg compounds in aqueous solution. In: Watras C J, Huckabee J W (Eds.), Mercury as a Global Pollutant Integration and Synthesis, Lewis Publishers. 581-592
    Xiao Z. F., Stromberg D., Lindqvist O. 1995. Influence of humic substances on the photolysis of divalent mercury in aqueous solution. Water, Air, and Soil Pollution. 80:789-798
    Xiao, Z.F., Munthe J., Schroeder W.H., Lindqvist O., 1991. Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden. Tellus. 43B: 267-279
    Xiaoxi Song, Bill Van Heyst, 2005. Volatilization of mercury from soils in response to simulated precipitation. Atmospheric Environment. 39: 7494-7505
    Yadav R.L., Dwivedi B.S. and Pandey P.K., 2000. Rice-wheat cropping systems: assessment of sustainability under green manuring and chemical fertilizer inputs. Field Crops Res. 65:15-30
    Yamamoto, 1996. Stimulation of elemental mercury oxidation in the presence of chloride ion in aquatic environments. Chemosphere. 32:1217-1224
    Yin Y.J. 1996. Adsorption of Mercury (Ⅱ) by Soil: Effects of pH, Chloride, and Organic Matter. Journal of Environmental Quality. 25(6): 837-844
    Yudovich Y.E. and Ketris M.P. 2005. Mercury in coal: a review Part 2. Coal use and environmental problems. International Journal of Coal Geology. 62(3): 135-165
    Zhang H, Lindberg S E, Barnett M O, et al. 2002. Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils. Part 1: simulation of gaseous mercury emissions from soils using a two-resistance exchange interface model. Atmospheric Environment. 36:835-846
    Zhang H. Lindberg S.E., Marsik F.J. 2001. Mercury air/surface exchange kinetics of background soils of the Tahquamenon River in the Michigen upper peninsula. Water, Air and Soil Pollution. 126:151-169
    Zhang H., Lindberg S. E., 1999. Processes influencing the emission of mercury from soils: A conceptual model. Journal of Geophysical Research. 104(17): 21889-21896
    Zhang H., Lindberg S. E., 2000. Air/water exchange of mercury in the everglades Ⅰ: The behavior of dissolved gaseous mercury in the Everglades Nutrient Removal project. The Sciences of the Total Environment. 259:123-13
    Zhang H., Lindberg S. E., 2001. Sunlight and iron (Ⅲ)-induced photochemical production of dissolved gaseous mercury in fresh water. Environmental Science and Technology. 35:928-935
    Zhang H., Poissant L., Xu X.H., et al., 2005. Explorative and innovative dynamic flux bag method development and testing for mercury air-vegetation gas exchange fluxes. Atmospheric Environment. 39: 7481-7493
    Zillioux E.J., Porcella D.B., Benoit J.M., 1993. Mercury cycling and acts in freshwater wetland ecosystems. Environmental Toxicologic Chemistry. 12:2245-2263

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700