用户名: 密码: 验证码:
MIMO系统的统计型QoS保障技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今移动互联网蓬勃发展的时代,人们对无线通信系统的服务质量(QoS)提出了更高的要求。如何利用日益紧张的频谱资源来保障不断增长的多媒体业务,成为了无线通信领域的研究热点。多输入多输出(MIMO)技术通过在收发两端配置多根天线获得了额外的空间自由度增益,能够在不增加带宽和发射功率的条件下,极大的提升通信系统的信道容量和可靠性,该技术也成为第四代移动通信(4G)的主要物理层传输技术之一。然而,由于无线信道的随机时变特性,在无线通信系统中为多媒体业务提供确定型QoS保障(Deterministic QoS Guarantees)是难以实现的,因此本文基于有效容量理论研究了MIMO系统中的统计型QoS保障(StatisticalQoS Guarantees)技术。论文的主要贡献概括为以下几个方面:
     1.针对存在信道相关性的MISO系统,分别在Nakagami-m衰落和Rician衰落下推导得出了系统有效容量的闭合表达式。通过蒙特卡罗仿真验证了理论分析的结论,并分析了收发天线配置、空间相关程度、QoS需求以及信道衰落强度对有效容量的影响。
     2.针对采用MRT/MRC传输方案的MIMO系统,首先推导得出了固定功率分配策略下系统有效容量的闭合表达式;随后在可变功率分配策略下,给出了最优的功率分配策略并推导得出了该策略下系统中断概率和有效容量的闭合表达式。蒙特卡罗仿真验证了理论分析的结论,并表明最优功率分配策略可以显著的提高系统的统计型QoS保障能力。
     3.针对采用TAS/MRC传输方案的MIMO系统,首先给出了系统接收信噪比的概率密度函数表达式,并据此推导得出了固定功率分配策略下系统有效容量的闭合表达式;接着在发射功率可变的情况下,给出了最优的功率分配策略并推导得出了该策略下系统中断概率和有效容量的闭合表达式;理论分析和蒙特卡罗仿真表明最优功率分配策略显著的提升了系统的统计型QoS保障能力。
     4.针对采用MRT/MRC传输方案的MIMO双跳译码转发中继系统,首先给出了最优接收信噪比的表达式,并在此基础之上推导得出了系统中断概率的闭合表达式;随后分别推导得出了系统在M-PAM、M-QAM、M-PSK和M-PSK调制下的平均误比特率的闭合表达式;最后推导得出了未调制系统的有效容量的闭合表达式。通过蒙特卡罗仿真验证了理论分析的结论,仿真结果表明MRT/MRC传输方案在中断概率、平均误比特率以及统计型QoS保障等方面都极大的提升了系统的性能。
This is an era when mobile internet is rapidly developing, and the users’expectation for Quality of Service (QoS) of wireless communication systems is growing.The research on using limited spectrum resources to provide QoS guarantees for theincreasingly heavy multimedia services has drawn great interests. Multiple-inputmultiple-output (MIMO) systems that employed multiple antennas at both transmitterand receiver are capable of exploiting extra spatial freedom gain and can providesignificant improvements in terms of capacity and reliability without requiring extrapower and bandwidth. It is chosen as the main physical layer transport technology forthe fourth generation of wireless communication (4G). On the other hand, it is infeasibleto provide deterministic QoS guarantees for multimedia services in wireless systemsbecause of the random and time-varying property of wireless channel. Therefore, thisdissertation researchs on the statistical QoS guarantees for MIMO systems basing on thetheory of effective capacity. The author’s main contributions in this dissertation are asfollows:
     1. For MISO systems in the presence of channel correlation, closed-formexpressions of effective capacity are derived under the assumption of Nakagami-m andRician fading channels. Some Monte Carlo simulation has verified theoretical analysisand showed the impact of antenna configuration, degree of spatial correlation, QoSrequirements and fading severity to effective capacity.
     2. For MIMO systems adopting MRT/MRC and M-array AMC scheme, firstly aclosed-form expression of effective capacity is derived under the policy of fixed powerallocation. For variable power allocation, the optimal power allocation scheme and theassociated outage probability and effective capacity are derived. Some Monte Carlosimulation has verified the theoretical analysis and showed the performance gain ofoptimal power allocation in terms of providing statistical QoS guarantees.
     3. For MIMO systems adopting TAS/MRC and M-array AMC scheme, firstly theprobability density function of receive SNR is derived, based on which a closed-formexpression of effective capacity is derived for fixed power allocation. For variablepower allocation, the optimal power allocation scheme and the associated outageprobability and effective capacity are derived. Both Monte Carlo simulation andtheoretical analysis suggest that the optimal power allocation scheme can greatlyimprove the system performance in statistical QoS guarantees.
     4. For dual hop DF relaying MIMO systems adopting MRT/MRC scheme, firstly aexpression of optimal receive SNR is derived, based on which a closed-form expressionof outage probability is obtained. The closed-form expressions of average bit error rateare derived under M-PAM、M-QAM、M-PSK and M-PSK modulation respectively.Finally, a closed-form expression of effective capacity is derived. The related MonteCarlo simulation has verified the theoretical analysis and indicated that applyingMRT/MRC scheme can greatly improve the performance in terms of outage probability,average bit error rate and statistical QoS guarantees.
引文
[1] David Tse and Pramod Viswanath, Fundamentals of Wireless Communication.Cambridge, UK: Cambridge University Press,2005.
    [2] Q. Li, G. Li, W. Lee, M. Lee, D. Mazzarese, B. Clerckx, and Z. Li,“MIMOtechniques in WiMAX and LTE: a feature overview,” IEEE Commun. Mag.,vol.48, no.5, pp.86-92, May2010.
    [3] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj and H.V. Poor, MIMO Wireless Communications. Cambridge, UK: CambridgeUniversity Press,2007.
    [4] A. B. Gershman and N. D. Sidiropoulos, Space-Time Processing for MIMOCommunications. The Atrium, Southern Gate, Chichester, West Wiley&Sons,Ltd,2005.
    [5] B. Vucetic and J. Yuan, Space-Time Coding. The Atrium, Southern Gate,Chichester, West Sussex, UK: John Wiley&Sons, Ltd,2003.
    [6] Chang C. S., Performance guarantees in communication networks, Berlin,Germany, Springer-Verlag,2000.
    [7] D. Wu,“Providing Quality of Service Guarantees in Wireless Networks,” Ph.D.dissertation, Carnegie Mellon University, Aug.2003.
    [8] Foschini G. J. and Gans M. J.,“On limits of wireless communications in afading environment when using multiple antennas,” Wireless PersonalCommun., vol.6, no.3, pp.311-335.1998.
    [9] Telatar I. E.,“Capacity of multi-antenna Gaussian channels,” Europ. Trans. OnTelecomm., vol.10, no.6, pp.585-595,1999.
    [10] Foschini G. J.,“Layered space-time architecture for wireless communication ina fading environment when using multi-element antennas,” bell labs technicaljournal, vol.1, no.2, pp.41-59,1996.
    [11] H. El Gamal and A. R. Hammons,“A new approach to layered space-timecoding and signal processing,” IEEE Trans. Info. Theory, vol.47, no.6, pp.2321-2334,2001.
    [12] Foschini G. J., Chizhik, D., Gans, M.J., Papadias, C., Valenzuela, R.A.,“Analysis and performance of some basic space-time architecture,” IEEE J. Sel.Areas Commun., vol.21, no.3, pp.303-320,2003.
    [13] Wolniansky, P.W., Foschini, G.J., Golden, G.D., Valenzuela, R.,“V-BLAST: anarchitecture for realizing very high data rates over the rich-scattering wirelesschannel” in proceeding of URSI International Symposium on Signals, Systems,and Electronics, pp.295-300,1998.
    [14] U. Fincke and M. Pohst,“Improved methods for calculating vectors ofshort length in a lattice, including a complexity analysis,” Mathematics ofComputation, vol.44, no.170, pp.463-471,1985.
    [15] H. Yao and Wornell Gregory W.,“Lattice-reduction-aided detectors for MIMOcommunication systems,” in proceeding of IEEE Global Telecommun. Conf.,pp.424-428,2002.
    [16] Fa, R. and de Lamare, R.C.,“Multi-branch successive interference cancellationfor MIMO spatial multiplexing systems: Design, analysis and adaptiveimplementation,” Communications, IET, vol.5, no.4, pp.484-494,2011
    [17] Wubben, D., Bohnke, R., Kühn, V. and Kammeyer, K.-D.,“MMSE-basedlattice-reduction for near-ML detection of MIMO systems,” in proceeding ofITG Workshop on Smart Antennas, pp.106-113,2004
    [18] Hassibi, B. and Vikalo H.,“On the sphere-decoding algorithm I. Expectedcomplexity,” IEEE Trans. Signal Processing, vol.53, no.8, pp.2806-2818,2005.
    [19] Stüber G. L., Barry J. R., Mclaughlin S. W., Y. Li, Ingram M.A. and Pratt T.G.,“Broadband MIMO-OFDM wireless communications,” Proceedings of IEEE,vol.92, no.2, pp.271-294,2004.
    [20] Bolcskei H., Gesbert D. and Paulraj A. J.,“On the capacity of wireless systemsemploying OFDM based on spatial multiplexing,” IEEE Trans. Commun., vol.48, no.3, pp.502-513,2002.
    [21] Y. Li, Winters J. H. and Sollenberger N. R.,“MIMO-OFDM for wirelesscommunications: signal detection with enhanced channel estimation,” IEEETrans. Commun., vol.50, no.9, pp.1471-1477,2002.
    [22] Nee R and Prasad R. OFDM for wireless multimedia communications, ArtechHouse,2000.
    [23] Sampath H., Talwar S., Tellado J., Erceg V., and Paulraj A.,“Afourth-generation MIMO-OFDM broadband wireless system: design,performance, and field trial results,” IEEE Communications Magazine, vol.40,no.9, pp.143-149,2002
    [24] S. M. Alamouti,“A simple transmit diversity technique for wirelesscommunications,” IEEE J. Select. Areas Commun., vol.16, no.7, pp.1451-1458, Oct.1998.
    [25] Tarokh Vahid, Seshadri N. and Calderbank A.R.,“Space-time codes for highdata rate wireless communication: performance criterion and codeconstruction,” IEEE Trans. Info. Theory, vol.44, no.2, pp.744-765,1998.
    [26] Tarokh Vahid, Jafarkhani Hamid and Calderbank A.R.,“Space-time blockcodes from orthogonal designs,” IEEE Trans. Info. Theory, vol.45, no.5, pp.1456-1467,1999.
    [27] Love D. J., Heath R. W. and Strohmer T.,“Grassmannian beamforming formultiple-input multiple-output wireless systems,” IEEE Trans. Info. Theory,vol.49, no.10, pp.2735-2747,2003.
    [28] T. Lo,“Maximum ratio transmission,” IEEE Trans. on Commun., vol.47, no.10, pp.1458-1461, Oct1999.
    [29] Yoo T. and Goldsmith A.,“On the optimality of multiantenna broadcastscheduling using zero-forcing beamforming,” IEEE J. Select. Areas Commun.,vol.24, no.3, pp.528-541,2006.
    [30] Zhu P., Tang L., Wang Y. and You X.,“Index assignment for quantizedbeamforming MIMO systems,” IEEE Trans. Wireless Commun., vol.7, no.8,pp.2917-2922,2922.
    [31] Andersen J. B.,“Antenna arrays in mobile communications: gain, diversity,and channel capacity,” IEEE Antennas Propagation Magazine, vol.42, no.2, pp.12-16,2000.
    [32] P. A. Dighe, R. K. Mallik, and S. S. Jamuar,“Analysis of transmit-receivediversity in Rayleigh fading,” IEEE Trans. Commun., vol.51,no.4, pp.694-703, Apr.2003.
    [33] D. Wu and R. Negi,“Effective capacity: a wireless link model for support ofquality of service,” IEEE Trans. Wireless Commun., vol.2, no.4, pp.630-643,July2003.
    [34] J. Tang and X. Zhang,“Quality-of-service driven power and rate adaptationover wireless links,” IEEE Trans. Wireless Commun., vol.6, no.8, pp.3058-3068, Aug.2007.
    [35] J. Tang and X. Zhang,“Cross-layer modeling for quality of service guaranteesover wireless links,” IEEE Trans. Wireless Commun., vol.6, no.12, pp.4504-4512, Dec,2007.
    [36] J. Tang and X. Zhang,“Cross-layer resource allocation over wireless relaynetworks for quality of service provisioning,” IEEE J. Sel. Areas Commun.,vol.25, no.4, pp.645-657, Jan.2007.
    [37] M. C. Gursoy, D. Qiao, and S. Velipasalar,“Analysis of energy effciency infading channel under QoS constrains,” IEEE Trans. Wireless Commun., vol.8,no.8, pp.4252-4263, Aug.2009.
    [38] D. Qiao, M. C. Gursoy, and S. Velipasalar,“The impact of QoS constraints onthe energy effciency of fxed-rate wireless transmissions,” IEEE Trans.Wireless Commun., vol.8, no.12, pp.5957-5969, Dec.2009.
    [39] Musavian L., Aissa S. and Lambotharan S.,“Effective capacity for interferenceand delay constrained cognitive radio relay channels,” IEEE Trans. WirelessCommun., vol.9, no.5, pp.1698-1707, Dec.2010.
    [40] Akin S. and Gursoy M.C.,“Effective Capacity Analysis of Cognitive RadioChannels for Quality of Service Provisioning,” IEEE Trans. WirelessCommun., vol.9, no.11, pp.3354-3364, Dec.2010.
    [41] Musavian L. and Aissa S.,“Effective capacity delay-constrained cognitiveradio in Nakagami fading channels,” IEEE Trans. Wireless Commun., vol.9,no.3, pp.1054-1062, Dec.2010.
    [42] S. Ren and Letaief K.B.,“Maximizing the effective capacity for wirelesscooperative relay networks with QoS guarantees,” IEEE Trans. WirelessCommun., vol.57, no.7, pp.2148-2159, Dec.2009.
    [43] Harsini J.S. and Zorzi M.,“Effective Capacity for Multi-Rate Relay Channelswith Delay Constraint Exploiting Adaptive Cooperative Diversity,” IEEETrans. Wireless Commun., vol.11, no.9, pp.3136-3147, Dec.2012.
    [44] Efazati S. and Azmi P.,“Effective Capacity Maximization in Multi-RelayNetworks with a Novel Cross Layer Transmission Framework and PowerAllocation Scheme,” IEEE Trans. Veh. Technol., vol. pp, no.99,2013.
    [45] Vassaki S., Panagopoulos A.D. and Constantinou Philip,“EffectiveCapacity and Optimal Power Allocation for Mobile Satellite Systems andServices,” IEEE Commun. Lett., vol.16, no.1, pp.60-63, Oct.2012.
    [46] Davy A., Meskill B. and Domingo-Pascual J.,“An empirical study of effectivecapacity throughputs in802.11wireless networks,” in proceeding of IEEEGlobal Telecommun. Conf., pp.1770-17705,2012.
    [47] L. Liu, P. Parag, J. Tang, W.-Y. Chen and J.-F. Chamberland,“Resourceallocation and quality of service evaluation for wireless communicationsystems using fuid models,” IEEE Trans. Info. Theory, vol.53, no.5, pp.1767-1777, May2007.
    [48] L. Liu and J.-F. Chamberland,“On the effective capacity of multi-antennaGaussian channels,” in Proc.2008IEEE Int. Sym. Info. Theory, pp.2583-2587.
    [49] E. Jorswieck, R. Mochaourab, and M. Mittelbach,“Effective capacitymaximization in multi-antenna channels with covariance feedback,” in Proc.IEEE Int. Conf. Commun., Dresden, Germany,2009.
    [50] E. Jorswieck, R. Mochaourab, and M. Mittelbach,“Effective capacitymaximization in multi-antenna channels with covariance feedback,” IEEETrans. Wireless Commun., vol.9, no.10, pp.2988-2993, Dec,2010.
    [51] M. C. Gursoy,“MIMO wireless communications under statistical queueingconstrains,” IEEE Trans. Inf. Theory, vol.57, no.9, pp.5897-5917, Sep.2011.
    [52] C. Zhong, T. Ratnarajah, K.-K. Wong, and M.-S. Alouini,“Effective capacityof correlated MISO channels,” in Proc. IEEE Int. Conf. Commun., Kyoto,Japan,2011.
    [53] M. Matthaiou, G. C. Alexandropoulos, H. Q. Ngo, and E. G. Larsson,“Analytic framework for the effective rate of MISO fadingchannels”, IEEE Trans. Commun., vol.60, no.6, pp.1741-1751,2012.
    [54] J. Proakis著.张力军,张宗橙,郑宝玉等译.数字通信(第四版)[M].北京:电子工业出版社,2003.
    [55] M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels,2nd edition. Hoboken, NJ, USA: John Wiley&Sons, Inc.,2005.
    [56] W. R. Braun and N. Cardona,“A Physical Mobile Radio Channel Model,”IEEE Trans. Veh. Technol., vol.40, pp.472-482,1991.
    [57] M. Nakagami,“Them-distribution-A general formula of intensity distributionof rapid fading,” in Statistical Methods in Radio Wave Propagation. Oxford,U.K.: Pergamon, pp.3–36,1960.
    [58] L. Rubio, J. Reig and N. Cardona,“Evaluation of Nakagami fading behaviourbased on measurements in urban scenarios,” Int. J. Electron. Commun., vol.61,pp.135-138,2007.
    [59] C. E. Shannon,“Communication in the presence of noise,” Proceeding of theIRE, pp.10-21,1949.
    [60] J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering,John Wiley and Sons, Reprinted by Waveland press,1965.
    [61] J. Wang and Payaró M.,“Is Transmit Beamforming Robust?” in proceeding ofIEEE Int. Conf. Communications, pp.1-5,2011.
    [62] Eng T., N. Kong and Milstein L.B.,“Comparison of diversity combiningtechniques for Rayleigh-fading channels,” IEEE Trans. Commun., vol.44, no.9, pp.1117-1129,1996.
    [63] Eng T., N. Kong and Milstein L.B.,“Correction to Comparison of diversitycombining techniques for Rayleigh-fading channels,” IEEE Trans. Commun.,vol.46, no.9,1998.
    [64] Horn R A, Johnson C R. Matrix Analysis, Cambridge, U. K.: CambridgeUniversity Press,1985.
    [65] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,7thedition. Academic Press,2007.
    [66] Chang C.,“Stability, queue length, and delay of deterministic and stochasticqueueing networks,” IEEE Trans. Automatic Control, vol.35, no.5, pp.913-931,1994
    [67] Kesidis G., Walrand J. and C. Chang,“Effective bandwidths for multiclassMarkov fluids and other ATM sources,” IEEE/ACM Trans. on Networking, vol.1, no.4, pp.424-428,1993.
    [68] Chang C. and Thomas J.A.,“Effective bandwidth in high-speed digitalnetworks,” IEEE J. Sel. Areas Commun., vol.13, no.6, pp.1094-1100,1994.
    [69] D. Shiu, Foschini G.J., Gans M.J. and Kahn J.M.,“Fading correlation and itseffect on the capacity of multi element antenna systems,” IEEE Trans.Commun., vol.48, no.3, pp.502-513,2000.
    [70] M. Z. Win, G. Chrisikos, and J. H. Winters,“MRC performance for M-arymodulation in arbitrarily correlated Nakagami fading channels,” IEEECommun. Lett., vol.4, no.10, pp.301-303, Oct.2000.
    [71] Q. T. Zhang,“A generic correlated Nakagami fading model for wirelesscommunications,” IEEE Trans. Commun., vol.51, no.11, pp.1745-1748, Nov.2003.
    [72] I. Ghareeb and S. Abu-Surra,“Differential detection of GMSK signal withpostdetection MRC over correlated and unbalanced Nakagami-m fadingchannels,” IEE Proc. Commun., vol.152, no.2, pp.221-228,Apr.2005.
    [73] G. K. Karagiannidis, N. C. Sagias, and T. A. Tsiftsis,“Closed-form statisticsfor sum of squared Nakagami-m variates and its applications”, IEEE Trans.Commun., vol.54, no.8, pp.1353-1359,2006.
    [74] M. Kang and M.-S. Alouini,“Capacity of MIMO Rician channels,” IEEETrans. Wireless Commun., vol.5, no.1, pp.112-122, Jan.2006.
    [75] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables,9th edition. Dover,
    [76] Alouini M.-S. and Goldsmith A.,“Capacity of Nakagami multipath fadingchannels,” in Proc. IEEE Vehicular Technology Conf., pp.358-362, May1997.
    [77] C.-N. Chuah, D. N. C. Tse, and J. M. Kahn,“Capacity scaling in MIMOwireless systems under correlated fading,” IEEE Trans. Inf. Theory, vol.48, pp.637-650,2002.
    [78] R. U. Nabar, H. B lcskei, and A. J. Paulraj,“Outage properties of space-timeblock codes in correlated Rayleigh or Ricean fading environments,” presentedat the IEEE ICASSP2002, Orlando, FL, May2002.
    [79] L. Musavian, M. Dohler, M. R. Nakhai, and A. H. Aghvami,“Closed-formcapacity expressions of orthogonalized correlated MIMO channels”, IEEECommun. Lett., vol.8, no.6, pp.365-367,2004.
    [80] Tse, D.N.C., Viswanath, P., Lizhong Zheng,“Diversity-multiplexing tradeoffin multiple-access channels,” IEEE Trans. Inf. Theory, vol.50, no.9, pp.1859-1874,2004.
    [81] A. Wittneben,“Base station modulation diversity for digital simulcast,” in Proc.IEEE Vehicular Technology Conf., pp.848-853, May1991.
    [82] A. Wittneben,“A new bandwidth efficient transmit antenna modulationdiversity scheme for linear digital modulation,” in Conf. Rec. IEEE Int. Conf.Communications, vol.3, pp.1630-1634, May1993.
    [83] N. Seshadri and J. H. Winters,“Two signaling schemes for improving the errorperformance of frequency-division-duplex (FDD) transmission systems usingtransmitter antenna diversity,” in Proc. IEEE Vehicular Technology Conf., pp.508-511, May1993.
    [84] J. H. Winters,“The diversity gain of transmit diversity in wireless systemswith Rayleigh fading,” in Conf. Rec. IEEE Int. Conf. Communications, vol.2,pp.1121-1125, May1994.
    [85] James A T.,“Distributions of matrix variates and latent roots derived fromnormal samples,” Ann. Math. Statist., vol.35, no.2, pp.475-501,1964.
    [86] Tellambura C, Mueller A J, Bhargava V K,“Analysis of M-ary phase-shiftkeying with diversity reception for land-mobile satellite channels,” IEEE Trans.Veh. Technol., vol.46, no.4, pp.910-922,1997.
    [87] Sanayei, S.; Nosratinia, A.,“Antenna selection in MIMO systems,” IEEECommun. Mag., vol.42, no.10, pp.68-73,2004.
    [88] T. Skinner, and J. Cavers,“Selective Diversity for Rayleigh Fading Channelswith a Feedback Link,” IEEE Trans. Commun., vol.21, no.2, Feb.1973, pp.117-126, Feb.1973.
    [89] M. Win and J. Winters,“Analysis of Hybrid Selection/Maximal-RatioCombining in Rayleigh Fading,” IEEE Trans. Commun., vol.47, no.12, pp.1773-1776,1999.
    [90] M. Alouini and M. K. Simon,“An MGF-Based Performance analysis ofGeneralized Selection Combining over Rayleigh Fading Channels,” IEEETrans. Commun., vol.48, no.3, pp.401-415,2000.
    [91] M. K. Simon and M. Alouini,“A Compact Performance Analysis ofGeneralized Selection Combining with Independent but NonidenticallyDistributed Rayleigh Fading Paths,” IEEE Trans. Commun., vol.50, no.9, pp.1409-1412,2002.
    [92] S. Thoen, L. Van der Perre, B. Gyselinckx, and M. Engels,“Performanceanalysis of combined transmit-SC/receive-MRC,” IEEE Trans. Commun., vol.49, pp.5–8, Jan.2001.
    [93] R. K. Mallik and M. Z. Win,“Analysis of Hybrid Selection/Maximal-RatioCombining in Correlated Nakagami Fading,” IEEE Trans. Commun., vol.50,no.8, pp.1372-1383,2002.
    [94] Z. Chen, J. Yuan, and B. Vucetic,“Analysis of transmit antennaselection/maximal-ratio combining in Rayleigh fading channels,” IEEE Trans.Veh. Technol., vol.54, no.4, pp.1312-1321, July2005.
    [95] A. F. Molisch, M. Z. Win, and J. H. Winters,“Reduced-complexitytransmit/receive-diversity systems,” IEEE Trans. Signal Processing, vol.51,no.11, pp.2729-2738, Nov.2003.
    [96] B. Y. Wang,“Accurate BER of Transmitter Antenna Selection Receiver-MRCover Arbitrarily Correlated Nakagami Fading Channels,” in ISCAS2006Proceedings., vol.4, pp.IV-753-IV-756, May,2006.
    [97] J. M. Romero-Jerez, and A. J. Goldsmith,“Performance of multichannelreception with transmit antenna selection in arbitrarily distributed Nakagamifading channels,” IEEE Trans. on Wireless Commun., vol.8, no.4, pp.2006-2013, Apr2009.
    [98] Z. Chen, W. Wang, X. Zhang, and D. Zhao,“Error performance of maximalratio combining with transmit antenna selection in flat Nakagami-m fadingchannels,” IEEE Trans. on Wireless Commun., vol.8, no.1, pp.424-431, Jan2009.
    [99] A. J. Goldsmith and S. Chua,“Variable-rate variable-power MQAM for fadingchannels,” IEEE Trans. Commun., vol.45, pp.1218-1230, Oct.1997.
    [100] S. T. chung and A. J. Goldsmith,“Degrees of freedom in adaptive modulation:a unified view,” IEEE Trans. on Commun., vol.49, no.9, pp.1561-1571, Sep2001.
    [101] I. Bahceci, T. M. Duman, Y. Altunbasak,“Antenna selection formultiple-antenna transmission systems: performance analysis and codeconstruction,” IEEE Trans. Inf. Theory, vol.49, no.10, pp.2669-2681,2003.
    [102] J. N. Laneman and G. W. Wornell,“Distributed space-time-coded protocols forexploiting cooperative diversity in wireless networks,” IEEE Trans. Inf. Theory,vol.49, pp.2415-2425, Oct.2003.
    [103] A. Sendonaris, E. Erkip, and B. Azhang,“User cooperation diversity-Part I:System description,” IEEE Trans. Commun., vol.51, pp.1927-1938, Nov.2003.
    [104] A. Sendonaris, E. Erkip, and B. Azhang,“User cooperation diversity-Part II:Implemention aspects and performance analysis,” IEEE Trans. Commun., vol.51, pp.1939-1948, Nov.2003.
    [105] J. N. Laneman, D. N. C. Tse, and G. W. Wornell,“Cooperative diversity inwireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf.Theory, vol.50, pp.3062-3080, Dec.2004.
    [106] Y. Yang, H. Hu and G. Mao,“Relay technologies for WiMAX andLTE-advanced mobile systems,” IEEE Commun. Mag., vol.47, no.10, pp.100-105, Oct.2009.
    [107] K. Loa, C. Wu, S. Sheu, Y. Yuan, Chion M., Huo D. and L. Xu,“IMT-advanced relay standards,” IEEE Commun. Mag., vol.48, no.8, pp.40-48, Aug.2010.
    [108] M. O. Hasna and M.-S. Alouini,“End-to-end performance of transmissionsystems with relays over Rayleigh-fading channels,” IEEE Trans. WirelessCommun., vol.2, no.6, pp.1126-1131, Nov.2003.
    [109] M. O. Hasna and M.-S. Alouini,“A performance study of dual-hoptransmissions with fixed gain relays,” IEEE Trans. Wireless Commun., vol.3,no.6, pp.1963-1968, Nov.2004.
    [110] T. A. Tsiftis, G. K. Karagiannidis, P. T. Mathiopoulos, and S. A. Kotsopoulos,“Nonregenerative dual-hop cooperative links with selection diversity,”EURASIP J. Wireless Commun. Networking, vol.2006, article ID17862, pp.1-8.
    [111] A.S. Behbahani and A.M. Eltawil,“Amplify-and-Forward Relay NetworksUnder Received Power Constraint,” IEEE Trans. Wireless Commun., vol.8,pp.5422-5426, Nov.2009.
    [112] Y.W. Ding, J.K. Zhang and K.M. Wong,“Ergodic Channel Capacities for theAmplify-and-Forward Half-Duplex Cooperative Systems,” IEEE Trans. Info.theory, vol.55, pp.713-730, Feb.2009
    [113] C. Conne and I1-M. Kim,“Outage Probability of Multi-HopAmplify-and-Forward Relay Systems,” IEEE Trans. Wireless Commun., vol.9,pp.1139-1149, Mar.2010.
    [114] R. Zhang, C. C. Chai, and Y.-C. Liang,“Joint beamforming and power controlfor MIMO relay broadcast channel with QoS constraints,” in Proc. Forty-FirstAsilomar Conference on Signals, Systems and Computers (ACSSC), PacificGrove, CA, Nov.2007, pp.453-457.
    [115] R. H. Y. Louie, Y. Li, and B. Vucetic,“Performance analysis of beamformingin two hop amplify and forward relay networks,” in Proc. IEEE Int. Conf. onCommun.(ICC), Beijing, China, May2008, pp.4311-4315.
    [116] R. H. Y. Louie, Y. Li, H. Suraweera, and B. Vucetic,“Performance analysis ofbeamforming in two hop amplify and forward relay networks with antennacorrelation,” IEEE Trans. Wireless Commun., vol.8, no.6, pp.3132-3141,June.2009.
    [117] T. Q. Duong, H.-J. Zepernick, and V. N. Q. Bao,“Symbol error probability ofhop-by-hop beamforming in Nakagami-m fading,” Electron. Lett., vol.45, no.20, pp.1042-1044, Sep.2009.
    [118] D. B. da Costa and S. A ssa,“Cooperative dual-hop relaying systems withbeamforming over Nakagami-m fading channels,” IEEE Trans. WirelessCommun., vol.8, no.8, pp.3950-3954, Aug.2009.
    [119] N. Yang, M. Elkashlan, J.-H. Yuan, and T.-Z. Shen,“On the SER of fixed gainamplify-and-forward relaying with beamforming in Nakagami-m fading,”IEEE Commun. Lett. vol.14, no.10, pp.942-944, Oct.2010.
    [120] J.-B. Kim and D. Kim,“Performance of dual-hop amplify-and-forwardbeamforming and its equivalent systems in Rayleigh fading channels,” IEEETrans. Commun., vol.58, no.3, pp.729-732, Mar.2010.
    [121] H. Min, S. Lee, K. Kwak and D. Hong,“Effect of multiple antennas at thesource on outage probability for amplify-and-forward relaying systems,” IEEETrans. Wireless Commun., vol.8, no.2, pp.633-637, Feb.2009.
    [122] H. Suraweera, Tsiftsis T.A, Karagiannidis G.K and Faulkner M,“Effect offeedback delay on downlink amplify-and-forward relaying withbeamforming,” in proceeding of IEEE Global Telecommun. Conf., pp.1-5,2009.
    [123] B. Khoshnevis, W. Yu, and R. Adve,“Grassmannian beamforming for MIMOamplify-and-forward relaying,” IEEE J. Sel. Areas Commun., vol.26, no.8, pp.1397-1407, Oct.2008.
    [124] X. Tang and Y. Hua,“Optimal design of non-regenerative MIMO wirelessrelays,” IEEE Trans. Wireless Commun., vol.6, no.4, pp.1398-1407, Apr.2007.
    [125] C.-B. Chae, T. Tang, Hearth R.W and S. Cho “MIMO relaying with linearprocessing for multiuser transmission in fxed relay networks,” IEEE Trans.Signal Process., vol.56, no.2, pp.727-738, Feb.2008.
    [126] I. Hammerstrom and A. Wittneben,“Power allocation schemes foramplify-and-forward MIMO-OFDM relay links,” IEEE Trans. WirelessCommun., vol.6, no.8, pp.2798-2802, Aug.2007.
    [127] C. Song, K.-J. Lee, and I. Lee,“Performance analysis of amplify-and-forwardspatial multiplexing MIMO relaying systems,” in Conf. Rec. IEEE Int. Conf.Communications, vol.2, pp.1-5,2010.
    [128] M. Li, M. Lin, Q. Yu, W. Zhu and L. Dong,“Optimal Beamformer Design forDual-Hop MIMO AF Relay Networks over Rayleigh Fading Channels,” IEEEJ. Select. Areas Commun., vol.30, No.8, pp.1402-1414,2012.
    [129] J. Park, H. Son and S. Lee,“Throughput and QoS improvement via fixed relaystation cooperated beamforming,” IEEE Trans. Wireless Commun., vol.8, no.5, pp.2400-2409, May2009.
    [130] J. Park and S. Lee,“MIMO Beamforming for QoS Enhancement via Analog,Digital and Hybrid Relaying,” IEEE Trans. Broadcasting, vol.56, no.4, pp.494-503, Dec.2010.
    [131] Y. Fu, L. Yang, W. Zhu and C. Liu,“Optimum Linear Design of Two-HopMIMO Relay Networks With QoS Requirements,” IEEE Trans. SignalProcessing, vol.59, no.5, pp.2257-2269, May2011.
    [132] Sanguinetti L. and D'Amico A. A,“Power Allocation in Two-HopAmplify-and-Forward MIMO Relay Systems With QoS Requirements,”IEEE Trans. Signal Processing, vol.60, no.5, pp.2494-2507, May2012.
    [133] Y. Hu and Gross J.,“On the outage probability and effective capacity ofmultiple decode-and-forward relay system,” in proceeding of Conf. IEEE IFIP,pp.1-8,2012.
    [134] D. Qiao, Gursoy M.C. and Velipasalar S.,“Effective Capacity of Two-HopWireless Communication Systems,” IEEE Trans. inform. theory, vol.59, no.2,pp.873-885, Feb.2013
    [135] Harsini J.S. and Zorzi M.,“Effective Capacity for Multi-Rate Relay Channelswith Delay Constraint Exploiting Adaptive Cooperative Diversity,” IEEETrans. Commun., vol.11, no.9, pp.3136-3147,2012.
    [136] Aksu S. and Kurt G.K.,“Effective capacity in multihop multi-rate adaptivecooperative networks under Nakagami-m fading,” in IEEE WirelessCommunication and Networking Conf.(WCNC), pp.3926-3931,2013.
    [137] R. M. Gagliardi, Introduction to Communication Engineering. New York:Wiley,1998.
    [138] K. Cho and D. Yoon,“On the general BER expressions of one-andtwo-dimensional amplitude modulations,” IEEE Trans. Commun., vol.50, no.7, pp.1074-1080, Jul.2002.
    [139] S. Chennakeshu and J. B. Anderson,“Error rates for Rayleigh fadingmultichannel reception of MPSK signals,” IEEE Trans. Commun., vol.43, no.2/3/4, pp.338-346, Feb/Mar/Apr.1995.
    [140] J. N. Laneman and G. W. Wornell,“Energy efficient antenna sharing andrelaying for wireless networks,” in IEEE Wireless Communication and
    Networking Conf.(WCNC), Chicago, IL, Oct.2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700