用户名: 密码: 验证码:
基于残余应力场分析的焊接钢结构疲劳强度预测理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳破坏是焊接钢结构最主要的失效方式。由于钢结构在焊接过程中高度集中的瞬时不均匀热输入,在焊后不可避免的会产生焊接残余应力。焊接残余应力的存在会影响结构的疲劳性能。因此,在对焊接残余应力进行分析的基础上研究焊接钢结构疲劳强度预测方法具有重要的意义。本文主要研究内容有:
     本文采用数值模拟方法,利用有限元分析技术,考虑材料的热物理性能和力学性能随温度的变化,运用内生热率的加载方法模拟焊接热源,通过APDL语言编写程序实现焊接热源的移动加载,建立了焊接瞬态温度场分析的数学模型。利用有限元分析软件的热-结构耦合功能,考虑焊接温度场对应力应变场的单向耦合,针对焊接热应力场的材料非线性瞬态问题,选用弹塑性力学的增量理论进行计算分析,材料屈服遵循Mises屈服条件,塑性区内的行为服从流变法则,运用“生死单元技术”,动态模拟焊接过程中焊料的填入和凝固,建立了焊接应力应变场计算的理论模型。
     本文采用间接法,分别对几类错位板接头、对接板接头和T型板接头等典型的焊接钢结构的焊接温度场和焊接残余应力场进行了数值计算分析。分别得到了几类典型焊接钢结构的三维焊接温度场和三维焊接残余应力场。
     本文较系统的研究了钢结构疲劳强度预测的临界距离理论,并在临界距离点法、线法、面积法、体积法和半椭圆面积法的基础上建立了相应的疲劳切口系数理论。采用临界距离体积法,以焊趾根部局部半球区域内的第一平均主应力来描述焊接钢结构的疲劳强度,在考虑结构几何形式、焊缝局部的几何形状、荷载形式、应力比、尺寸效应,残余应力等诸多因素的基础上,通过对焊接残余应力场的分析,建立了一种预测焊接钢结构疲劳强度的临界距离理论。通过对几类典型焊接钢结构进行理论预测,计算值与实验结果吻合较好,验证了方法的正确性。
     本文在对焊接钢结构三维残余应力场分析和焊接钢结构疲劳强度预测的临界距离理论的基础上建立了S-N曲线预测方法模型。通过对几类错位板接头、对接板接头和T型板接头等典型的焊接钢结构的S-N曲线进行了预测,理论预测值与试验结果比较吻合较好,验证了该方法的有效性。本文方法对于焊接钢结构疲劳强度预测的工程应用有实用价值。
Fatigue damage is the main damage way of welded steel structures. As the instantaneous high concentration of uniform heat input during the welding process, it’s inevitable generating the residual stress after welding. Obviously, the residual stress will affect the fatigue properties of the structure. Therefore, it’s of great significance to research the fatigue strength prediction method of welded steel structures based on the analysis of welding residual stress. This paper studies the contents as:
     Adopting with numerical simulation, finite element analysis, considering the material’s thermal physical properties and mechanical properties changing with temperature, using the inside heat rate loading method to simulate welding heat source, through the APDL programming language to achieve welding mobile loading of the heat source, established a mathematical model of welding transient temperature distribution. Adopting with the finite element analysis software’s function of thermal-structural coupling, considering the one-way coupling of the temperature field on the stress-strain fields, Aiming the material nonlinear transient problem of thermal stress field for the welding, using the incremental theory of plastic mechanics to calculate, Material yield follows the Mises yield condition, Behavior in plastic region follows the flow rule. Through the "birth and kill technology," dynamically simulating solder fill and solidification during welding process, established the theoretical model of the welding stress-strain field calculation.
     Through indirect method, respectively and numerically analyzed the welding temperature field and welding residual stress field of several types of dislocation board connectors, butt joint and T joint and other typical welded steel structures. The several typical welding steel’s three-dimensional welding temperature field and three-dimensional welding residual stress field were obtained.
     This paper systematically studies the critical distance method, on the basis of the critical distance point method, line method, area method, the volume method and the semi-ellipse area method, established fatigue notch factor theory of the fatigue strength prediction for welded structures. through critical distance volume method, using the first average principal stress in the hemisphere region of the root of the local welded toe to describe the fatigue strength for welded steel structure, based on the considerations of many factors, such as the structure geometry, the local weld geometry, loading form, stress ratio, size effect , residual stress, by analysis to the welding residual stress field, established a theory of critical distance to predict fatigue strength of welded steel structure. Through some theoretical predictions to typical welding steel, the calculated values are in good agreement with the experimental results to verify its effectiveness.
     Based on the analysis of the three-dimensional welding residual stress field and critical distance theory for welded steel structures, established the S-N curve prediction model. Through the prediction to several types of dislocated board joints, butt joints and T joints by S-N curve, theoretical prediction agrees well with the experimental data to verify the validity of the method. This method is valuable for engineering applications.
引文
[1]管德清.焊接结构疲劳断裂与寿命预测,长沙:湖南大学出版社,1996
    [2]Gurney T.R. Fatigue of Welded Structures. Cambridge, UK: Cambridge University Press, 1979
    [3]Maddox S.J. Fatigue Strength of Welded Structures (second edition). Cambridge, UK: Abington Publishing, 1991
    [4]霍立兴.焊接结构工程强度,北京:机械工业出版社,1995
    [5]潘际炎.铁路钢桥疲劳.中国土木工程学会第八届年会论文集,1998,3
    [6]上田幸雄.焊接变形和残余应力的数值计算方法与程序,四川:四川大学出版社,2008
    [7]Goldak J. Thermal stress analysis of welds from melting point to room temperature. Theoretical Prediction in Joining and Welding (Osaka, Japan).1996: 225-230
    [8]Josefson B.L. Stress Redistribution during Local Annealing of a Multi-Pass Butt-welded Pipe J. Press vessel technology.1986, 108: 125-130
    [9]Anderson B. Thermal stress in large butt-welded plates. Journal of Thermal Stress. 1981, (4):492-500
    [10]GrongФ. Metallurgical modeling of welding. The Institute of Materials.1994
    [11]Ushio M. Theoretical Prediction in Joining and Welding. Osaka (Japan).1996
    [12]汪建华,戚新海,钟小敏.焊接结构三维热变形的有限元模拟.上海交通大学学报, 1994,28(6):5965
    [13]赵海燕,鹿安理,史清宇.焊接结构CAE中数值模拟技术的实现.中国机械工程.2000,11(7):732-734
    [14]董俊慧,霍立兴,张玉风.低碳钢管道焊接残余应力有限元分析.焊接学报.2000,(12):11-15
    [15]蔡志鹏,赵海燕,鹿安理等.串热源模型及其在焊接数值模拟中的应用.中国机械工程.2001,37 (4):25-28
    [16]蔡志鹏,鹿安理,赵海燕等.串热源模型及1200t桥式起重机主梁腹板装焊过程的数值模拟.中国机械工程,2002, 13 (9): 802-806
    [17]倪红芳,凌祥,涂善东.多道焊三维残余应力场有限元模拟.机械强度, 2004, 26(2): 0032-04
    [18]Wohler. Wohler's experiment on the strength of metals. Engineering, 1967
    [19]Suresh S.著.王中光译.材料的疲劳,北京:国防工业出版社,1993
    [20]Goodman J. Mechanies Applied to Engineering, 1914
    [21]Miner M.A. Cumulative damage in fatigue,Journal of Applied Mechanies. 1945, 12(6):159-64
    [22]Manson S. S. National advisory conunlttee for aeronautics. Cleveland,1954
    [23]Coffin L. F., Jr. ASME Transaction, Vol.16, P931, 1954
    [24]杨广里著.断裂力学及其应用,北京:中国铁道出版社,1990
    [25]Pearson S. Investigation of fatigue cracks in commercial aluminum alloys and subsequent propagation of very short fatigue cracks. Engineering Fracture Mechanics, 1975, 7: 235-247
    [26]Miller K. J. The behavior of short fatigue cracks and their initiation. Fatigue Fracture and Engineering Material and Structure, 1987, 10(2): 93-113
    [27]Hobbacher A. Recommendations for fatigue design of welded joints and components.ΙΙW document XIII-1539-96/XV-845-96, Update, March 2002
    [28]Taylor D. Geometrical effects in fatigue: a unifying theoretical model. International Journal of Fatigue, 1999, 21: 413-420
    [29]Taylor D., Wang G. The validation of some methods of notch fatigue analysis. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23: 387-394
    [30]Bellett D., Taylor D., Marco S. The fatigue behavior of three-dimensional stress concentrations, International Journal of Fatigue, 2005, 27: 207-221
    [31]Taylor D., Barrett N., Lucano G. Some new methods for predicting fatigue in welded joints. International Journal of Fatigue, 2002, 24: 509-518
    [32]Taylor D., David H. High cycle fatigue of welded joints: The TCD experience. International Journal of Fatigue, 2009, 31: 20-27
    [33]Taylor D. The theory of critical distances. Engineering Fracture Mechanics, 2008, 75: 1696-1705
    [34]Luca S. The theory of critical distances: a review of its applications in fatigue. Engineering Fracture Mechanics, 2008, 75: 1706-1724
    [35]Castro F. C., Araujo. J. A., Zouain. N. On the application of multiaxial high-cycle fatigue criteria using the theory of critical distances. Engineering Fracture Mechanics, 2009, 76: 512-524
    [36]黄小平,崔维成,石德新.压弯载荷下焊趾表面裂纹工程萌生寿命预测.海洋工程,2002,20: 49-53
    [37]何波,胡宗武,商伟军.残余应力对对焊接头疲劳性能的影响.机械强度.1998,20:167-170
    [38]陈惟珍,Albrecht G., Kosteas D.钢桥焊接构件疲劳寿命预测.同济大学学报, 2001,29: 45-49
    [39]黎之奇,柳春图,崔民孑等.海洋平台用钢的焊接疲劳性能分析.机械强度,2000,22:264-266
    [40]童乐为,沈祖炎.正交异性钢桥面板疲劳验算.土木工程学报,2000, 33(3): 16-21
    [41]王何明,刘文瑗,王忠波.钛合金焊接件疲劳特性评估的当量K t法.北京航空航天大学学报,2002,28:102-104
    [42]吴冰,杨新岐,贾法勇.双相不锈钢焊接接头疲劳评定体积法.焊接学报, 2004,25(6): 7-10
    [43]张艳新,杨新岐,霍立兴,张玉凤.焊接接头疲劳评定的等效应力强度因子法.机械强度, 2004,26(1): 92-96
    [44]管德清,汪广海.错位板节点疲劳强度估算方法.工程力学,1994(1):118-124
    [45]Guan Deqing.A method of predicting the fatigue life curve for misaligned welded joints.International Journal of Fatigue,1996,18:4,221-226
    [46]Guan Deqing,Yang Yong.Computation of stress intensity factor for surface crack in welded joint.Advances in Steel Structures,1999,2.1013-1020.
    [47]Guan Deqing,Yi Weijian,Li Li.Fatigue strength prediction for misaligned welded joints by stress field intensity method,Advances in Steel Structures,2002,2:1009-1016
    [48]管德清,吕黎明,杨勇,赵晓华.焊接结构疲劳强度预测的局部法研究.湘潭大学自然科学学报,2005,1:36-39
    [49]Jiang Zhikai, Guan Deqing, Shi Licheng. Critical distance method to predict the fatigue strength for welded steel structures. Advances in Steel Structures. 2009, 2: 708-715
    [50]管德清.焊接钢结构疲劳强度与寿命预测理论的研究:[湖南大学博士学位论文].湖南:湖南大学土木工程学院,2003.10
    [51]陈楚等著.数值分析在焊接中的应用,上海:上海交通大学出版社,1985
    [52]武传松著.焊接热过程数值分析,哈尔滨:哈尔滨工业大学出版社,1990
    [53]陈丙森著.计算机辅助焊接技术,北京:机械工业出版社,1999
    [54]汪建华著.焊接数值模拟技术及其应用,上海:上海交通大学出版社,2003
    [55]王勖成著.有限单元法,北京:清华大学出版社,2003
    [56]张朝晖著.ANSYS热分析教程与实例解析,北京:中国铁道出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700