用户名: 密码: 验证码:
类水滑石薄膜的制备及其光控浸润性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状双羟基复合金属氧化物(LDHs)作为一种阴离子型层状功能材料,广泛应用于国民经济多个领域,如作为新型高性能催化材料、吸附材料、分离材料、功能性助剂材料、生物材料、医药材料等。如将这种具有巨大应用价值的LDHs材料薄膜化、固定化,或者多功能化,将会在光、电、磁等领域有着更为广阔的应用前景。因此,开发和拓展LDHs薄膜的新功能是一个十分重要的课题。
     首先本论文合成了一种带有疏水基团—OCF_3的偶氮苯衍生物(CF3AZO),能够在不同波长的光照下进行可逆的顺反构型转换。然后,以阳极氧化处理的铝片为基体,采用原位生长技术,制备得到垂直取向单层NiAl-CO_3~(2-)-LDHs薄膜,进一步用自制的偶氮苯衍生物的盐溶液进行表面改性后,得到光响应浸润性能可逆转变的NiAl-CO_3~(2-)-LDHs/CF3AZO单层薄膜。
     基于水滑石特有的超分子插层结构及主客体可调变性,采用相同的生长技术,在阳极氧化处理的铝基体上,制备层间阴离子为NO_3~-的ZnAl-NO_3~--LDHs薄膜,考察了制备条件对前体薄膜晶体结构和形貌的影响,并将偶氮苯(CF3AZO)阴离子表面活性剂插入LDHs层间,得到有机—无机杂化ZnAl-CF3AZO-LDHs薄膜,表面形貌与ZnAl-NO_3~--LDHs前体薄膜形貌基本相似。交替进行可见光和紫外光照射,薄膜表面的浸润性能在超疏水和亲水之间可逆转换。在不同光照处理后,随着时间延长,水滴在薄膜表面的超疏水性能得到保持,亲水性能增强。研究发现制备的水滑石薄膜的纳微复合结构,大大加强了ZnAl-CF3AZO-LDHs的超疏水性能和亲水性能。
     最后,本论文考察了ZnAl-CF3AZO-LDHs薄膜的耐光、热性能,并建立了CF3AZO插层LDHs可能的超分子结构模型。CF3AZO插层进入ZnAl-NO_3~--LDHs薄膜后,客体阴离子与主体层板之间以及客体与客体之间存在着多种化学相互作用,使得ZnAl-CF3AZO-LDHs薄膜的光、热稳定性能都得到了有效的提高。
Layered double hydroxides (LDHs), also known as anionic or hydrotalcite-like clays, are currently of intense academic and industrial research interests, in part, because of their properties as catalysis and catalyst precursors, adsorption, separation, biology and medicine materials. Filming or immobilizing LDHs materials will enlarge their usability in optic, electrical, magnetical fields. It should be possible to develop new applications of such LDHs films.
     The functional organic molecule CF3AZO used in this study was synthesized beforehand, which is known to undergo isomerization to the cis-isomer on UV irradiation. The isomerization is reversed by irradiation with visible light and there is a significant difference between the dipole moments (μ) of trans- (lowμ) and cis- (highμ) azobenzene isomers. Then, oriented NiAl-CO_3~(2-)-LDHs films with curved hexagonal microstructure have been prepared by the in situ crystallization in a closed hydrothermal system without use of any adscititious aluminium source and shape-directed surfactant on porous anodic alumina/aluminium (PAO/Al) substrate. The surface micro/nano-structure of the resulting LDHs films can be flexibly adjusted by controlling the crystallization temperature and time. After simple surface modification, the re-treated films under certain condition have found to exhibit photo controlled wettability.
     By taking advantage of the most attractive feature of LDHs viz. the ability to modify the properties of a film by intercalation of other functional anions by anion-exchange with anions, CF3AZO-intercalated ZnAl layered double hydroxide (ZnAl-CF3AZO-LDHs) hybrid films have been prepared on PA0/A1 substrates by one step anion-exchange with ZnAl-NO_3~--LDHs precursor films under mild conditions. After intercalation of CF3AZO~- anions, the morphology of the resulting hybrid film was similar to that of the precursor film, but there is some agglomeration of crystallites. The photosensitive wetting properties of the ZnAl-CF3AZO-LDHs hybrid films were evaluated by means of water contact angle measurement. The water contact angle of the as-prepared film was a superhydrophobic surface, whereas after UV irradiation the contact angle was hydrophilic. Subsequent irradiation with visible light led to the water contact angle being restored to the original value.
     The effects of intercalation on the thermo-stability and photo-stability of the guest species were investigated using a variety of physicochemical techniques. The ZnAl-CF3AZO-LDHs functional hybrid film exhibited superior thermo- and photo-stability to the pristine CF3AZO and to a CF3 AZO-surface modified film, possibly resulting from a complex network of supramolecular interactions such as hydrogen bonding between the host layers and guest anions in the intercalated structure.
引文
[1]沈家骢.超分子层状结构[M].北京:科学出版社,2003:125-185
    [2]Rives V.Layered Double Hydroxides:Present and Future[M].Nova Science Publishers:New York,2001
    [3]Rives V.Characterisation of layered double hydroxides and their decomposition products[J].Mater.Chem.Phys.,2002,75:19-25
    [4]Brindley G W,Kikkawa S.Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite[J].Clays Clay Miner.,1980,28:87-91
    [5]Reichle W T.Anionic clay minerals[J].Chemitech,1986,16:58-63
    [6]Genin J M R.Thermodynamic equilibria in aqueous suspersions of synthesis and natural Fe (Ⅱ)-Fe(Ⅲ) green rests:occurrences of the mineral in hydromorphic soils[J].Environ.Sci.Tech.,1998,32:1058-1068
    [7]Baltpurvins K A,Burns R C,Lawrance G A,Stuart A D.Effect of Ca~(2+),Mg~(2+),and anion type on the aging of iron(Ⅲ) hydroxide precipitates[J].Environ.Sci.Technol.,1997,31:1024-1032
    [8]Walter T R.Cryatal structures of some double hydroxide minerals[J].J.Catal.,1985,94:547-557
    [9]Fornasari G,Gazzano M,Matteuzzi D,Trifro F,Vaccari A.Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides[J].Appl.Clay Sci.,1995,10:69-82
    [10]Constantino V R L,Pinnavaia T J.Basic properties of Mg_(1-x)~(2+) Al_x~(3+) layered double hydroxides intercalated by carbonate,hydroxide,chloride,and sulfate anions[J].Inorg.Chem.,1995,34:883-892
    [11]Millange F,Walton R I,O'Hare D.Time-resolved in site X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds[J].J.Mater.Chem.,2002,10:1713-1720
    [12]Aramendia M A,Aviles Y,Borau V.Thermal decomposition of Mg/Al and Mg/Ga layered double hydroxides:a spectroscopic study[J].J.Mater,Chem.,1999,9:1603-1607
    [13]Shen J,Guang B,Tu M,Chen Y.Preparation and characterization if Fe-MgO catalysts obtained from hydrotalcite-like compounds[J].Catal.Today,1996,30:77-82
    [14]Rebours B,d'Espinosa de la Caillerie J B,Clause O.Decoration of nickel and magnesium oxide crystallites with spinel-type phases[J].J.Am.Chem.Soc.,1994,116:1707-1717
    [15]Kloprogge J T,Frost R L.Fourier Transform Infrared and Raman spectroscopic study of the local structure of Mg-,Ni-,and Co-hydrotalcites[J].J.Solid State Chem.,1999,146:506-515
    [16] Clause O, Coelho M G, Gazzano M. Synthesis and thermal reactivity of nickel-containing anionic clays [J]. Appl. Clay Sci., 1993, 8: 169-186
    
    [17] Malherbe F, Forano C, Besse J P. Use of organic media to modify the surface and porosity properties of hydrotalcite-like compounds [J]. Micro. Mater., 1997, 10: 67-84
    
    [18] Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaim E. A reexamination of hydrotalcite crystal chemistry [J]. J. Phys. Chem., 1996, 100: 8527-8534
    
    [19] Zhao Y, Li F, Zhang R, Evans D G, Duan X. Preparation of layered double hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps [J]. Chem. Mater., 2002, 14:4286-4291
    
    [20] Evans D G, Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J].Chem. Commun., 2006: 485-496
    
    [21] Drezdzon M A. Synthesis of isopolymetalate-pillared hydrotalcite via organic-anion-pillared precursors [J]. Inorg. Chem., 1988, 27: 4628-4632
    
    [22] Tetsuya S, Shinsuke Y, Katsuhiko T. Photopolymerization of 4-vinylbenzoate and m- and p-phenylenediacrylates in hydrotalcite interlayers [J]. Superamolecular Sci., 1998, 5: 303-308
    
    [23] Pausch I, Lohse H H, Schumann K, Allmann R. Synthesis of disordered and Al-rich hydrotalcite-like compounds [J]. Clays Clay Miner., 1986, 34: 507-511
    
    [24] Costantino U, Marmottini F, Nocchetti M, Vivani R. New synthetic routes to hydrotalcite-like compounds- characterisation and properties of the obtained materials [J]. Eur. J. Inorg. Chem., 1998, 10: 1439-1446
    
    [25] Ogawa M, Kaiho H. Homogeneous precipitation of uniform hydrotalcite particles [J]. Langmuir, 2002, 18: 4240-4242
    
    [26] Oh J M, Hwang S H, Choy J H. The effect of synthetic conditions on tailoring the size of hydrotalcite particles [J]. Solid State Ionics, 2002, 151: 285-291
    
    [27] Pagano M A, Forano C, Besse J P. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology [J]. J. Mater. Chem., 2003, 13: 1988-1993
    
    [28] Sood A. Process for removing heacy metal ions from solutions using adsobents containing activated hydrotalcite [P]. US patent, 4752397. 1988
    
    [29] Dutta P K, Puri M. Anion exchange in lithium aluminate hydroxides [J]. J. Phys. Chem., 1989, 93: 376-382
    
    [30] Ikeda T, Amoh H, Yamamoto T. Stereoselective exchange kinetics of L- and D-histidines for chloride ion in the interlayer of a hydrotalcite-like compound by the chemical relaxation method [J]. J. Am. Chem. Soc, 1984, 106: 5772-5779
    
    [31] Ulibarri M A, Pavlovic I, Cornijo J, Hermosin M C. Hydrotalcite-like compounds as potential sorbents of phenols from water [J]. Appl. Clay Sci., 1995,10: 131-145
    
    [32] Miyata S, Lijima N, Manabe T. Purifying agent and method for cooling water used in nuclear reactors [P]. Eur. Patent, 152101. 1985
    
    [33] Ogawa M, Kuroda K. Photofunctions of intercalation compounds [J]. Chem. Rev., 1995, 95: 399-438
    
    [34] Li F, Liu J J, Evans D G, Duan X. Stoichiometric synthesis of pure MFe_2O_4 (M = Mg, Co and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors [J]. Chem. Mater., 2004, 16: 1597-1602
    
    [35] Liu J, Li F, Evans D G, Duan X. Stoichiometri synthesis of a pure ferrite from a tailored layered double hydroxides (hydrotalcite-like) precursor [J]. Chem. Commun., 2003: 542-543
    
    [36] Takagi R, Nakagaki M. Charaterization of the membrane charge of Al_2O_3 membranes [J]. Sep. Purif. Technol., 2001, 25: 369-377
    
    [37] Negishi N, Takeuchi K. Preparation of TiO_2 thin film photocatalysts by dip coating using a highly viscous solvent [J]. J. Sol-Gel Sci. Tech., 2001, 22: 23-31
    
    [38] Meng G Y, Song H Z, Wang H B, Xia C R, Peng D K. Progress in ion-transport inorganic membranes by novel chemical vapor deposition (CVD) techniques [J]. Thin Solid Films, 2002, 409: 105-111
    
    [39] Li B S, Liu Y C, Chu Z S, Shen D Z, Lu Y M, Zhang J Y, Fan X W. High quality ZnO thin films grown by blasma enhanced chemical vapor deposition [J]. J. Appl. Phys., 2002, 91: 501-510
    
    [40] Ramesh R B. Inorganic Membranes, Synthesis, Characteristics and Applications [M]. Van Nostrand Reinhold: New York, 1991
    
    [41] Mintova S, Mo S, Bein T. Nanosized AlPO_(4-5) molecular sieves and ultrathin films prepared by microwave synthesis [J]. Chem. Mater., 1998,10: 4030-4036
    
    [42] Niesen T P, Deguire M R. Review: Deposition of ceramic thin films at low temperatures from aqueous solutions [J]. J. Electroceramics, 2001, 6: 169-207
    
    [43] Mann S. Biomimetic Materials Chemistry [M] VCH Publishers: New York, 1996
    
    [44] Fendler J H. Atomic and molecular clusters in membrane mimetic chemistry [J]. Chem. Rev., 1987, 87: 877-899
    
    [45] Fendler J H, Meldrum F C. Colloid chemical approach to nanostructured materials [J]. Adv. Mater., 1995, 7: 607-632
    
    [46] Bunker B C, Rieke P C, Tarasevich B J, Campbell A A, Fryxell G E, Graff G L, Song L, Liu J, Virden J W, MicVay G L. Ceramic thin-film formation on functionalized interfaces through biomimetic processing [J]. Science, 1994, 264: 48-54
    
    [47] Bell M, Yang H C, Mallouk T E. Materials Chemistry: An Emerging Discipline [M]. Washington D. C., [J]. American Chemical Society, 1995: 211-230
    [48]Gardner E,Huntoon K M,Pinnavaia T J.Derivatives of hydrotalcite-like layered double hydroxides:precursors for the formation of colloidal layered double hydroxide suspensions and transparent thin films[J].Adv.Mater.,2001,13:1263-1266
    [49]Yao K,Taniguchi M,Nakata M,Takahashi M,Yamagishi A.Electrochemical scanning tunneling microscopy observation of ordered surface layers on an anionic clay-modified electrode[J].Langmuir,1998,14:2890-2895
    [50]Itaya K,Chang H C,Uchida I.Anion-exchanged hydrotalcite-like-clay-modified electrodes [J].Inorg.Chem.,1987,26:624-626
    [51]Yao K,Taniguchi M,Takahashi M,Yamagishi A.Nanoscale imaging of molecular adsorption of metal complexes on the surface of a hydrotalcite crystal[J].Langmuir,1998,14:2410-2414
    [52]Tagaya H,Kuwahara T.Photochromic materiall,photochromic thin film,clay thin film,and their preparation[P].US 5576055.1996
    [53]Tagaya H,Morioka H,Ogata S,et al,Surface modification of inorganic layer compound with organic compound and preparation of thin films[J].Applied Surface Science,1997,121:476-479
    [54]He J X,Yamashita S,Jones W,Yamagishi A.Templationg effects of stearate monolayer on formation of Mg-Al-hydrotalcite[J].Langmuir,2002,18:1580-1586
    [55]Rudolph G B J,Glenn E S.Method for increasing the corrosion resistance of aluminum and aluminum alloys[P].US 5266356.1993
    [56]Gao Y F,Nagai M,Masuda Y,Sato F,Seo W S,Koumoto K.Surface precipitation of highly porous hydrotalcite-like film on Al from a zinc aqueous solution[J].Langmuir,2006,22:3521-3527
    [57]He J X,Kobayashi K,Takahashi M,Villemure G.Yamagishi A.Preparation of hybrid films of an anionic Ru(Ⅱ) cyanide polypyridyl complex with layered double hydroxides by the Langmuir-Blodgett method and their use as electrode modifiers[J].Thin Solid Films,2001,397:255-265
    [58]Lee J H,Rhee S W,Jung D Y.Solvothermal ion exchange of aliphatic dicarboxylates into the gallery space of layered double hydroxides immobilized on Si substrates[J].Chem.Mater.,2004,16:3774-3779
    [59]Lee J H,Rhee S W,Jung D Y.Orientation-controlled assembly and solvothermal ion-exchange of layered double hydroxide nanocrystals[J].Chem.Commun,2003:2740-2741
    [60]Yao K,Taniguchi M,Nakata M,Yamagishi A.Electrochemical STM observation of [Fe(CN)_6]~(3-) ions adsorbed on a hydrotalcite crystal surface[J].J.Electroanal.Chem.,1998,458:249-252
    [61]Yao K,Taniguchi M,Nakata M,Takahashi M,Yamagishi A.Electrochemical scanning tunneling microscopy observation of ordered surface layers on an anionic clay-modified electrode[J].Langmuir,1998,14:2890-2896
    [62] Wang L Y, Li Cang, Liu M, Evans D G, Duan X. Large continuous, transparent and oriented self-supporting films of layered double hydroxides with tunable chemical composition [J]. Chem. Commun., 2007, 2: 123-125
    
    [63] Lei X, Yang L, Zhang F, Evans D G, Duan X. Synthesis of oriented layered double hydroxide thin films on sulfonated polystyrene substrates [J]. Chem. Let., 2005, 34: 1610-1611
    
    [64] Lee J H, Rhee S W, Jung D Y. Ion-Exchange reactions and photothermal patterning of monolayer assembled polyactrlate-layered double hydroxide nanocomposites on solid substrates [J]. Chem. Mater., 2006,18: 4740-4746
    
    [65] Chen H Y, Zhang F Z, Fu S S, Duan X. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials [J]. Advanced Materials, 2006, 18: 3089-3093
    
    [66] Zhang F Z, Zhao L L, Chen H Y, Xu S L, Evans D G, Duan X. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum [J]. Angew. Chem. Int. Ed., 2008,47: 2466-2469
    
    [67] Woodward I, Schofield W C E, Roucoules V, Badyal J P S. Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films [J]. Langmuir, 2003, 19: 3432-3438
    
    [68] Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem., 1936, 28: 988-994
    
    [69] Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans. Faraday Soc. 1944, 40: 546-551
    
    [70] Mandelbrot B B. The fractal geometry of nature [M]. San Francisco: Freeman, 1982
    
    [71] Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces [J]. Langmuir, 2000, 16:5754-5760
    
    [72] Ramos S M M, Charlaix E, Benyagoub A. Contact angle hysteresis on nano-structured surfaces [J]. Surf. Sci., 2003, 540: 355-362
    
    [73] Buzagh A, Wolfram E. Bestimmung der haftfahigkeit von flüssigkeiten an festen korpern mit der abreiβwinkelmethode [J]. Colloid & Polymer Science, 1956, 149: 125
    
    [74] Li S H, Li H J, Wang X, Song Y, Liu Y, Jiang L, Zhu D. Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes [J]. J. Phys. Chem. B., 2002,106: 9274-9276
    
    [75] Nakajima A, Abe K, Hashimoto K, Watanabe T, Preparation of hard super-hydrophobic films with Visible light transmission [J]. Thin Solid Films, 2000, 376: 140-143
    
    [76] Onda T, Shibuichi S, Satoh N, Tsujii K. Super-water-repellent fractal surfaces [J]. Langmuir, 1996, 12: 2125-2127
    
    [77] Chen W, Fadeev A Y, Hsieh M C, Oner D, Youngblood J, McCarthy T J. Ultrabydrophobic and ultralyophobic surfaces: some comments and examples [J]. Langmuir, 1999, 15: 3395-3399
    
    [78] Youngblood J P, McCarthy T J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma [J]. Macromolecules, 1999, 32: 6800-6806
    
    [79] Teare D O H, Spanos C G, Ridley P, Kinmond E J, Roucoules V, Badyal J P S. Pulsed plasma deposition of super-hydrophobic nanospheres [J]. Chem. Mater., 2002, 14: 4566-4571
    
    [80] Tsujii K, YamamotoT, Onda T, Shibuichi S. Super oil-repellent surfaces [J]. Angew. Chem. Int. Ed. Engl., 1997,36: 1011-1012
    
    [81] Zhang J L, Li J, Han Y C. Superhydrophobic PTFE surfaces by extension [J]. Macromol. Rapid Commun., 2004, 25: 1105-1108
    
    [82] Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang Z, Jiang L, Li X. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface [J]. J. Am. Chem. Soc, 2004, 126: 3064-3065
    
    [83] Oner D, McCarthy T J. Ultrahydrophobic surfaces: effects of topography length scales on wettability [J]. Langmuir, 2000, 16: 7777-7782
    
    [84] Bico J, Marzolin C, Quéré D. Pearl drops [J]. Europhys. Lett., 1999,47: 220-226
    
    [85] Bartell F E, Shepard J W. The effect of surface roughness on apparent contact angles and on contact angle hysteresis I: The system Paraffin-Water-Air [J]. J. Phys. Chem., 1953, 57: 211-215
    
    [86] Nakajima A, Hashimoto K, Watanabe T. Transparent superhydrophobic thin films with self-cleaning properties [J]. Langmuir, 2000,16: 7044-7047
    
    [87] Tadanaga K, Morinaga J, Matsuda A, Minami T. Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method [J]. Chem. Mater., 2000, 12:590-592
    
    [88] Tadanaga K, Morinaga J, Matsuda A. Formation of superhydrophobic-superhydrophilic pattern on flowerlike alumina thin film by the sol-gel method [J]. J. Sol-Gel. Sci. Tech., 2000, 19:211-214
    
    [89] Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers [J]. Angew. Chem. Int. Ed., 2002,41: 1221-1223
    
    [90] Feng L, Song Y, Zhai J, Liu B, Xu J, Jiang L, Zhu D. Creation of a superhydrophobic surface from an amphiphilic polymer [J]. Angew. Chem. Int. Ed., 2003,42: 800-802
    
    [91] Genzer J, Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers [J]. Science, 2000, 290: 2130-2133
    
    [92] Erbil H Y, Demirel A L, Avci Y, Mert O. Transformation of a simple plastic into a superhydrophobic surface [J]. Science, 2003, 299: 1377-1380
    
    [93] Hozumi A, Sugimoto N, Sekoguchi H, Takai O. Preparation of silicon oxide films by ultraviolet-assisted rf plasma-enhanced chemical vapour deposition [J]. Journal of Materials Science Letters, 1997,16: 860-862
    
    [94] Liang L, Feng X D, Liu J, Rieke P C, Fryxell G E. Reversible surface properties of glass plate and capillary tube grafted by photopolymerization of N-Isopropylacrylamide [J]. Macromolecules, 1998, 31: 7845-7850
    
    [95] Liang L, Rieke P C, Fryxell G E, Liu J, Engehard M H, Alford K L. Temperature-sensitive surfaces prepared by UV photografting reaction of photosensitizer and N-Isopropylacrylamide [J]. Journal of Physical Chemistry B, 2000, 104: 11667-11673
    
    [96] Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D. Reversible switching between superhydrophilicity and superhydrophobicity [J]. Angew. Chem. Int. Ed., 2004,43: 357-360
    
    [97] Krupenkin T N, Taylor J A, Schneider T M, Yang S. From rolling ball to complete wetting: The dynamic tuning of liquids on nanostructured surfaces [J]. Langmuir, 2004, 20: 3824-3827
    
    [98] Lahann J, Mitragotri S, Tran T N, Kaido H, Sundaram J, Choi I S, Hoffer S, Somorjai G A, Langer R. Areversibly switching surface [J]. Science, 2003, 299: 371-374
    
    [99] Katz E, Sheeney-Haj-Ichia L, Basnar B, Felner I, Willner I. Magnetoswitchable controlled hydrophilicity/hydrophobicity of electrode surfaces using alkyl-chain-functionalized magnetic particles: application for switchable electrochemistry [J]. Langmuir, 2004, 20: 9714-9719
    
    [100] Hong X, Gao X F, Jiang L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet [J]. J. Am. Chem. Soc, 2007, 129: 1478-1479
    
    [101] Lu X Y, Zhang C C, Han Y C. Low-density polyethylene superhydrophobic surface by control of its crystallization behavior [J]. Macromolecular Rapid Communications, 2004, 25: 1606-1610
    
    [102] Holmes-Farley S R, Bain C D, Whitesides G M. Wetting of functionalized polyethylene film having ionizable organic acids and bases at the polymer-water interface: relations between functional group polarity, extent of ionization, and contact angle with water [J]. Langmuir, 1988,4:921-937
    
    [103] Bain C D, Whitesides G.M. A study by contact angle of the acid-base behavior of monolayers containing omega-mercaptocarboxylic acids adsorbed on gold: an example of reactive spreading [J]. Langmuir, 1989, 5: 1370-1378
    
    [104] Jiang Y, Wang Z, Yu X, Shi F, Xu H, Zhang X, Smet M, Dehaen W. Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces [J]. Langmuir, 2005,21: 1986-1990
    
    [105] Anastasiadis S H, Retsos H, Pispas S, Hadjichristidis N, Neophytides S. Smart polymer surfaces [J]. Macromolecules, 2003, 36: 1994-1999
    
    [106] Isaksson J, Tengstedt C, Fahlman M, Robinson N, Berggren M. A solid-state organic electronic wettability switch [J]. Advanced Materials, 2004, 16: 316-320
    
    [107] Xu L, Chen W, Mulchandani A, Yan Y. Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic [J]. Angew. Chem. Int. Ed., 2005, 44: 6009-6012
    
    [108] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces [J]. Nature, 1997, 388: 431-432
    
    [109] Liu H, Feng L, Zhai J, Jiang L, Zhu D B. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity [J]. Langmuir, 2004, 20: 5659-5661
    
    [110] Wang S, Feng X, Yao J, Jiang L. Controlling wettability and photochromism in a dual-responsive tungsten oxide film [J]. Angew. Chem. Int. Ed., 2006,45: 1264-1267
    
    [111] Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D B. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J]. J. Am. Chem. Soc, 2004, 126: 62-63
    
    [112] Zhu W, Feng X, Feng L, Jiang L. UV-manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film [J]. Chemical Communications, 2006, 2753-2755
    
    [113] Lim H S, Kwak D, Lee D Y, Lee S G, Cho K. UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity [J]. J. Am. Chem. Soc, 2007, 129:4128-4129
    
    [114] Rosario R, Gust D, Garcia A A, Hayes M, Taraci J L, Clement T, Dailey J W, Picraux S T. Lotus effect amplifies light-induced contact angle switching [J]. Journal of Physical Chemistry B, 2004, 108: 12640-12642
    
    [115] Jiang W, Wang G, He Y, Wang X, An Y, Song Y, Jiang L. Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer [J]. Chemical Communications, 2005, 3550-3552
    
    [116] Feng C L, Jin J, Zhang Y J, Song Y L, Xie L Y, Qu G R, Xu Y, Jiang L. Reversible light-induced wettability of fluorine-containing azobenzene-derived Langmuir-Blodgett films. Surface and Interface Analysis 2001, 32: 121-124
    
    [117] Feng C L, Zhang Y J, Song Y L, Xie L Y, Qu G R, Jiang L, Zhu D B. Reversible wettability of photoresponsive fluorine-containing azobenzene polymer in Langmuir-Blodgett films. Langmuir 2001, 17: 4593-4597
    
    [118] Lim H S, Han J T, Kwak D, Jin M, Cho K. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern [J]. J. Am. Chem. Soc, 2006,128: 14458-14459
    
    [119] Ichimura K, Oh S K, Nakagawa M, Light-driven motion of liquids on a photoresponsive surface [J]. Science, 2000, 288: 1624-1626
    
    [120] Prescher D, Thiele T, Ruhmann R. Various synthetic approaches to fluoroalkyl p-nitrophenyl ethers [J]. Journal of Fluorine Chemistry, 1996, 79: 145-148
    [121] Prescher D, Thiele T, Ruhmann R, Schulz G.Synthesis of liquid-crystalline poly (meth) acrylates with 4-trifluoromethoxy-azobenzene mesogenic side-groups [J]. Journal of Fluorine Chemistry, 1995, 74: 185-189
    
    [122] Patermarakis G, Moussoutzanis K, Chandrinos J. Preparation of ultra-active alumina of designed porous structure by successive hydrothermal and thermal treatments of porous anodic Al_2O_3 films [J]. Appl. Catal. A: Gen., 1999, 180, 345-358
    
    [123] Hernandez-Moreno M J, Ulibarri M A, Rendon J L. IR characteristics of hydrotalcite-like compounds [J]. Phys. Chem. Min., 1985, 129: 34-38
    
    [124] Titulaer M K, Jansen J B H, Geus J W. The quantity of reduced nickel in synthetic takovite: effects of preparation conditions and calcinations temperature [J]. Clays. Clay. Miner., 1994, 42: 249-258
    
    [125] Paulhiac J L, Clause O, Surface coprecipitation of cobalt(II), nickel(II), or zinc(II) with aluminum(III) ions during impregnation of .gamma.-alumina at neutral pH [J]. J. Am. Chem. Soc, 1993,115: 11602-11603
    
    [126] d'Espinose de la Caillerie J B, Kermarec M, Clause O, Impregnation of gamma.-Alumina with Ni(II) or Co(II) Ions at Neutral pH: hydrotalcite-type coprecipitate formation and characterization [J]. J. Am. Chem. Soc, 1995, 117: 11471-11481
    
    [127] Fujihara S, Hosono E, Kimura T, Fabrication of porous metal oxide semiconductor film by a self-template method using layered hydroxide metal acetates [J]. J. Sol-Gel Sci. Technol., 2004,31:165-168
    
    [128] Hussein M Z, Zainal Z, Yahaya A H, Foo D W V. Controlled release of a plant growth regulator, a-naphthaleneacetate from the lamella of ZnAl-layered double hydroxide nanocomposite [J]. J. Cont. Relea., 2002, 82: 417-427
    
    [129] Xu Z P, Bratermn P S. High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes [J]. J. Mater. Chem. 2003,13: 268-273
    
    [130] Schwenzer B, Gomm J R, Morse D E, Substrate-induced growth of nanostructured zinc oxide films at room temperature using concepts of biomimetic catalysis [J]. Langmiur, 2006, 22: 9829-9831
    
    [131] Govender K, Boyle D S, Kenway P B, O'Brien P, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution [J]. J. Mater. Chem., 2004, 14:2575-2591
    
    [132] Yamaguchi N, Nakamura T, Tadanaga K, Matsuda A, Minami T, Tatsumisago M, Direct formation of Zn-Al layered double hydroxied films with high transparency on glass substrate by the sol-gel process with hot water treatment [J]. Cryst. Growth Des., 2006, 6:1726-1729
    
    [133] Gao Y F, Nagai M, Masuda Y, Sato F, Seo W S, Koumoto K, Surface precipitation of highly porous hydrotalcite-like film on Al from a zinc aqueous solution [J]. Langmuir, 2006, 22: 3521-3527
    [134] Xu Z P, Braterman P S. High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes. [J]. Journal of Materials Chemistry, 2003, 13: 268-273
    
    [135] Singh M, Ogden M I, Parkinson G M, Buckley C E, Connolly J. Delamination and re-assembly of surfactant-containing Li/Al layered double hydroxides. [J]. Journal of Materials Chemistry, 2004, 14: 871-874
    
    [136] Gago S, Pillinger M, Valente A A, Santos T M, Rocha J, Goncalves I S. Immobilization of oxomolybdenum species in a layered double hydroxide pillared by 2,2'-bipyridine-5,5'-dicarboxylate anions. [J]. Inorganic Chemistry, 2004,43: 5422-5431
    
    [137] Zhao Y, Li F, Zhang R, Evans D G, Duan X. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps. [J]. Chemistry of Materials, 2002, 14: 4286-4291
    
    [138] Borja M, Dutta P K. Fatty acids in layered metal hydroxides: membrane-like structure and dynamics. [J]. Journal of Physical Chemistry, 1992, 96: 5434-5444
    
    [139] Clearfield A, Kieke M, Kwan J, Colon J L, Wang R C. Intercalation of dodecyl sulfate into layered double hydroxides. [J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1991, 11:361-378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700