用户名: 密码: 验证码:
不同水稻品种基因表达对干旱胁迫的应答
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以中旱3号和矮仔占为材料,分析了10%聚乙二醇(PEG6000)模拟干旱胁迫对上述两水稻品种叶片含水量的影响,应用基因芯片技术分析了中旱3号和矮仔占叶片基因表达对干旱胁迫的应答,并应用RT-PCR对部分干旱胁迫诱导基因的转录水平进行了验证。进而探讨了水稻对干旱胁迫的应答机制,其主要结果如下:
     1.干旱胁迫对水稻幼苗含水量的影响
     PEG6000模拟干旱对两种供试水稻幼苗叶片含水量均有明显影响。供试水稻幼苗叶片的相对含水量随着干旱处理时间的延长而降低,并且中旱3号相对含水量下降的幅度较小,矮仔占相对含水量下降幅度较大。这表明,中旱3号为耐旱品种,矮仔占为干旱胁迫敏感型品种。
     2.水稻基因表达对干旱胁迫应答的基因芯片分析
     PEG6000模拟干旱胁迫对两供试水稻品种幼苗叶片的基因表达有明显的影响。中旱3号幼苗叶片中受到PEG6000模拟干旱胁迫诱导基因有信号受体相关基因、信号转导相关基因、转录因子及转录调控相关基因、抗脱水特异性蛋白相关基因、解毒相关基因、次生物和抗生素合成相关基因、分子构型和大分子修饰相关基因、物质运输与代谢相关基因几大类型。其中,中旱3号叶片中信号转导、转录调控、抗脱水特异性蛋白以及解毒相关基因受到干旱胁迫大量诱导,尤其是干旱胁迫诱导中旱3号叶片中木菠萝凝集素、水通道蛋白强烈表达,而在矮仔占叶片中未检测到其诱导作用。这可能是中旱3号耐干旱胁迫主要机制。
     相反,矮仔占叶片中受干旱胁迫所诱导基因的数量不仅很少,而且受诱导基因的上调倍数也较低,尤其是受诱导的抗脱水特异性蛋白相关基因数量很少。这可能是矮仔占对干旱胁迫敏感的主要机制。
     3.干旱胁迫诱导基因的RT-PCR验证
     RT-PCR结果表明干旱胁迫对中旱3号叶片中与活性甲基循环、转移相关基因的表达既有抑制作用又有诱导作用。而对矮仔占叶片中与活性甲基循环、转移相关基因的表达具有抑制作用,这与基因芯片的检测结果相一致。
In this work, the responses of rice (Zhonghan3 and Aizaizhan) to drought stress (simulated by 10%PEG6000) were investigated with gene-chip analysis and RT-PCR technology. Results were showed as follow:
     1. The effects drought stress on relative water content in rice seedling leaves
     The relative water content in both rice seedling leaves were significantly affected by drought stress. The relative water content in rice seedlings decreased along with time change under the drought stress and it decreased lightly in zhonghan3, but more severe in aizaizhan. The results suggested that the zhonghan3 was more tolerant to water stress, whereas aizaizhan sensitive.
     2. Gene expression analysis of rice using gene-chip under drought stress
     The gene expression in both rice seedling leaves were significantly affected by drought stress. Receptor gene, signal transduction gene, transcription factors and transcriptional regulation gene, anti-dehydration-specific gene, detoxication gene, synthesis of secondary metabolites and antibiotics gene, modification of molecular structure and macromolecular, transportation and metabolic gene all were induced by drought stress in zhonghan3 leaves. Among them, signal transduction gene, transcription factors and transcriptional regulation gene, anti-dehydration-specific gene and detoxication gene were largely induced by drought stress. In particular, jacalin and aquaporin were strongly expressed in zhonghan3 seedling leaves, but not detected in aizaizhan. This may be the main mechanism for tolerance to drought stress of zhonghan3.
     Contrary,the mumber of genes, induced by drought stress was small and the magnitude up-regulated was also small in aizaizhan leaves. Especially the mumber of anti-dehydration-specific gene was very small. This may be mainly contributed to the sensitivity to drought stress of aizaizhan.
     3. Identifing drought stress-induced gene in rice seedling leaves with RT-PCR technology
     The result showed that active methyl cycle and transfer genes would be inhibited or inducted in zhonghan3 leaves by drought stress, but only be inhibited in aizaizhan leaves. The results were consistent with the result of gene-chip.
引文
1. International Human Genome Sequencing Consortium. Analysis and sequencing of the human -genome. Nature [J], 2001, 409 (6822): 860-921
    2. The Arabidopsis Genome Initiative1. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature [J], 2000, 408: 796-815
    3.山仑.我国西北半干旱地区农业可持续发展技术对策—发展有限灌溉农业是必然选择[J].中国科学基金, 1999, 13(1): 13-15
    4.邓西平,山仑,稻永忍.旱地春小麦有限灌水高效利用的研究[J].干旱地区农业研究, 1995, 13(13): 43-46
    5.罗良国,任爱胜,王瑞梅,郭鸿鹏.我国农业可持续发展的水危机及广泛开展节水农业前景初探[J]. 2000, 5: 6-13
    6. Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to waterdeficts: prospects forwater-saving agriculture. J Exp Bot, 2004, 55: 2365-2384
    7. Zhu J K. Salt and drought stress signal transdution in plants. Annu Rev Plant Biol, 2002, 53: 247-273
    8. Paul E V, Robert E S. Proline accumulation in maize (Zea maysL.) primary roots at low water potentials. Plant Physiol, 1999, 119: 1349-1360
    9. Duan B L (段宝利), LüY W (吕艳伟), Yin C Y (尹春英), Li C Y(李春阳). Morphological and physiological plasticity of woody plant in response to high lightand low light. Chin J Appl Environ Biol (应用与环境生物学报), 2005, 11(2): 238-245
    10. Yang J W (杨建伟), Han R L (韩蕊莲), Wei Y K (魏宇昆), Sun Q(孙群), Liang Z S (梁宗锁). Water relation and growth of seabuck-thorn and poplar under different soil water content. Acta Bot Bor-Occid Sin(西北植物学报), 2002, 22(3): 579-586
    11. Hong Z, Lakkineni K, Zhang Z. Removal of feedback inhibition of 1-pyrroling-5-carboxylate synthase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol, 2000, 122: 1129-1136
    12. Gebre M, Kuhns R, Brandle R. Organic solute accumulation and de-hydration tolerance in three water stressed Populusdeltoids clones. TreePhysiol, 1994, 14: 575-587
    13. Yang W Q (杨万勤), Wang K Y (王开运), Song G Y (宋光煜), He Y R (何毓蓉), Zhang Y B (张远彬). Effects ofwater stress on activities ofprotective enzymes in leaves ofmaize (ZeamaysL.) grown in dry-red soil and vertisl. Chin JApplEnviron Biol(应用与环境生物学报), 2003, 9(6):588-593
    14. Wang X (王霞), Hou P (侯平), Yin L K (尹林克), Zhu T W (朱天武). Effect of soilmoisture stress on the membrane protective enzyme and themembrane liquid peroxidation of tamarix. Arid Zone Res(干旱区研究), 2002, 19(3): 17-20
    15. Yin C Y, Duan B L, Wang X, Li C Y. Morphological and physiological responses of two contrasting poplar species to drought stress and exogenous abscisic acid application. Plant Sci, 2004, 167: 1091-1097
    16.庞晓斌,毛新国,施俊凤.小麦幼苗水分胁迫应答基因表达谱分析.作物学报, 2007, 33(2):333-336
    17.高凤华,张洪亮,王海光,高宏,李自超.应用Cdna-AFLP比较干旱胁迫条件下水稻和旱稻转录本表达谱.科学通报, 2009, 54(16): 2305-2319
    18. Velasco R, Salamini F, Bartels D. Gene structure and expression analysis of the drought- and abscisic acid-responsive CDeT11-24 gene family from the resurrection plant. Planta, 1998, 204(4): 459-471
    19. Sakamoto H, Araki T, Meshi T, Iwabuchi M. Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene, 2000, 248(1-2): 23-32
    20. Song D, Li G, Song F, Zheng Z. Molecular characterization and expression analysis of OsBISERK1, agene encoding a leucine-rich repeat receptor-like kinases, during disease resistan- ce responses in rice[J]. Mol.Biol.Rep, 2008, 35(2): 275-283
    21. Alig S, Prasad K V, Dayi, Reddy A S. Ligand-dependent reduction in the membrane mobility of flagellin sensetive2, an Arabidopsis receptor-like kinases[J]. Plant Cell Physicl, 2007, 48(11): 1601-1611
    22. Kobe B, Kajava A V. The lecuine-rich repeat as a protein recognition motif [J]. Curr Opin Struct Bial, 2001, 11(6): 725-732
    23. Shiu S H, Karlowski W M, Pan R, Tzeng Y H, Mayer K F, Li W H. Comparative analysis of the receptor-like kinases family in Arabidopsis and rice[J]. Plant Cell, 2004, 16(5): 1220-1234
    24. Sedgwick S G, Smerdon S J. The ankyrin repeat: a diversity of interactions on a common structural framework. Science, 1999, 24(8): 311-316
    25. Lu H, Rate D N, Song J T, Greenberg J T. ACD, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. The Plant Cell, 2003, 15(10): 2408-2420
    26. Dong X. The Role of Membrane-Bound Ankyrin-Repeat Protein ACD6 in Programmed CellDeath and Plant Defense. Sci STKE, 2004, (221): pe6
    27. Pratelli R, Lacombe Kuhlmann M, Horvay K. OHP1: A Maize Basic Domain/Leucine Zipper Protein That Interacts with Opaque2. J Biol Chem, 2003, 278(10): 8786-8794
    28. Wirdnam C, Motoyama A, Arn-Bouldoires E, Eeden S, Iglesias A, Jr F M. Altered expression of an ankyrin-repeat protein results in leaf abnormalities, necrotic lesions, and the elaboration of a systemic signal. Plant Mol Biol, 2004, 56(5): 717-730
    29.李玉兵,杨凯. TGF-bate及其受体在泌尿肿瘤治疗中的研究进展.国际泌尿系统杂志, 2008,28(5): 625-628
    30. Sun C, Zhang Z P. The development of G protein-coupled receptor. Acta Ecologiae Animalis Dom-astici, 2009, 30(1): 91-94
    31. Bogre L, Li gterink W, Heberle-Bors E. Mechanosensors in plants. Nature, 1996, 383: 489-490
    32. Bork P, Brown N P, Hegyi H. The protien phosphatase 2C (PP2C) superfamily: detection of bacterial homologues [J]. protien Sci, 1996, 5: 1421-1425
    33. Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatase: emerging functions in stress signaling [J]. Trends Plant Sci, 2004, 9: 236-243
    34.马伯军,顾志敏,唐海娟,陈析丰,刘峰,张红生.水稻类钙调磷酸酶B亚基蛋白基因OsCBL8功能的初步研究.中国水稻科学. 2009, 23(2): 127-134
    35. Martinez-Atienza J, Jiang X, Garciadeblas B, et al. Conser-vation of the salt overly sensitive pathway in rice. Plant Physiol, 2007, 143: 1001-1012
    36. Geisler M, Frangne N, Gomes E, et al. The ACA4 gene of Arabidopsis encodes a vacuolar me- mbrane calcium pump thatimproves salt tolerance in yeast. Plant Physiol, 2000, 124: 1814-1827
    37. Golovkin M, Reddy A S N. A calmodulin-binding protein from Arabidopsishas an essential role in pollen germination. Proc Natl Acad Sci USA, 2003, 100: 10558-10563
    38. Reddy V S, Reddy A S N. The calmodulin-binding domain from a plant kinesin functions as a modular domain in confer-ring Ca2+/calmodulin regulation to animal plus-and minus-endkinesins. J Biol Chem, 2002, 277: 48058-48065
    39. Snedden W A, Fromm H. Calmpdulin as a versatile calcium signal transducer in plants. New Physol, 2001, 151: 35-66
    40. Yang T, Poovaiah B W. Hydrogen peroxide homeostasis: Ac-tivation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA, 2002, 99: 4097-4102
    41. Forst S, Inouye M. Environmentlly regulated gene expression for membrance proteins in Escherichia coli. Annu Rev Cell Biol, 1998, 4: 21-42
    42. Maeda T, Takekewa M, Saito H. Activation of yeast PBS2 MAPKKKs or by binding of an SH3- containing osmosensor. Science, 1995, 269(5223): 554-558
    43. Ota I M, Varshavsjy A. yeast protein similar to bacterial two component regulators. Science, 1993(5133): 566-569
    44. Posas F, Wurgler-Murphy S M, Maeda T, et al. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1“two-component”osmosen- sor. Cell, 1996, 86 (6): 865-875
    45. Galcheva-Gargova Z, Derijard B, Wu I H, et al. An osomsensing signal transduction pathway in mammalian cells. Science, 1994, 265(5173): 806-808
    46. MacPherson S, Larochelle M, Turcotte B. A fungal family of tran-scriptional regulators: the zinc cluster proteins [J]. Microbiol Mol Bio Rev, 2006, 70(3): 583-604
    47. Wolfe S A, Nekludova L, Pabo C O. DNA recognition by Cys2 His2zinc finger proteins [J]. Ann Rev Bio phys Bio mol Struc, 2000, 29: 183-212
    48. Li L, He S H, Sun J M, et al. Gene regulation by Sp1 and Sp3 [J]. Biochem Cell Bio, 2004, 82: 460-471
    49. Lee J A, Suh D C, Kang J E. et al. Transcriptional activity of Sp1 is regulated by molecular interactions between the zinc finger DNA binding domain and the inhibitory domain with corepressors, and this interaction is modulated by MEK [J]. J Bio Chem, 2005, 280(30): 28061-28071
    50. Cantor A B, Orkin S H. Coregulation of GATA factors by the friend of GATA (FOG) family of multitype zinc finger proteins [J]. Cell Dev Bio, 2005, 16(1): 117-128
    51. Gao Q G, Chu C C, Liu X Q, Li Y R. Current Progress on WRKY Superfamily of Plant Transcription Factors. Chinese Bulletin of Botany, 2005, 22(1): 11-18
    52. Wu K L, Guo Z J, Wang H H, Li J. The WRKY family of transcription factors in rice and Arabidopsis and their origins [J]. DNA Res, 2005, 12(1): 9-26
    53. Zhang Z L, Xing P, Zhou X. et al. A rice WRKY gene encodesa transcriptional repressor of the gibberellin signaling pathway in aleurone ce11 [J]. Plant Physio, 2004, 134: 1500-1513
    54. Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, et al. Arabidopsis transcription factors: genome-wide comparative analysis among Eukaryotes. Science, 2000, 290: 2105-2110
    55. Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in A rabidopsis tha1iana [J]. Curr Opin Plant Bio, 2001, 4: 447-456
    56. Gao G, Zhong Y, Guo A, Zhu Q, Tang W, Zheng W, Gu X, Wei L, Luo J. DRTF: a database of rice transcription factors. Bio informatics, 2006, 22(10): 1286-1287
    57.张子佳,王迪,傅彬英.水稻转录因子bHLH家族基因响应环境胁迫表达谱分析.分子植物育种, 2008, 6(3): 425-431
    58. Li X X, Duan X P, Jiang H X, Sun Y J, Tang Y P, Yuan Z, Guo J K, Liang W Q, Chen L, Yin J Y, Ma H, Wang J, Zhang D B. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiology, 2006, 141(4): 1167-1184
    59. Fischer A, Gessler M. Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res, 2007, 35(14): 4583-4596
    60. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes Involved in Organ Separation in Arabidopsis: An Analysis of the cup-shaped cotyledon Mutant. Plant Cell, 1997, 9: 841-857
    61. Singh K, Foley R C, Onate-Sanehez L. Transcription factors in plant defense and stress responses. Plant Biol, 2002, 5: 430-436
    62. Simpon S D, Nakashima K, Narusaka N, Seki M, Shinozaki K. Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J, 2003, 33: 259-270
    63. Nakashima K, Tran L S P, Nguyen V D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional Analysis of NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007, 51: 617-630
    64. Oyama T, Shimura Y, Okada K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyls [J]. Genes Devel, 1997, 11: 2983-2995
    65. Walsh J, Waters C A, Freeling M. The maize geneliguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary [J]. Genes Devel, 1998, 12: 208-218
    66.霍大勇,沈黎明.逆境胁迫诱导基因的结构和功能与表达调控[J].生物化学与生物物理进展, 1998, 25(3): 216-221
    67. Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors. J Biol Chem, 2000, 275: 1723-1730
    68. Tepperman J M, Zhu T, Chang H S, et al. Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci USA, 2001, 98: 943-9442
    69. Schofflf P R, Andl R, Reindl A. Regulation of the heat-shock response [J]. Plant Physiol, 1998,117: 1135-1141
    70. Mishr A S K, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf K D. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato [J]. Gene Dev, 2002, 16: 1555-1567
    71. Ohme-Takagi, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element [J]. Plant Cell, 1995, 7 (2): 173-182
    72. Wilson K, Long D, Swinburne J, Coupland G. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidoppsis gene related to APETALA2. Plant Cell, 1996, (8): 659-671
    73.刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报, 2000, 45 (14): 1465-1474
    74. Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress responses [J]. Curr Opin Plant Biol, 2002, 5 (5): 430-436
    75. Berrocal L M, Molina A, Solano R. Constitutive expression of ETHYLENE RESPONSE FACTOR in Arabidopsis confers resistance to several necrotrophic fungi [J]. Plant J, 2002, 29: 23-32
    76. Luis oanchez, jonathan P, Anderaon, jodi Young, Karam B. Singh AtERF14, A Member of the ERF Family of Transcription Factors, Plays a Non redundant Role in Plant Defense [J]. Plant Physiology, 2007, 143: 400-409
    77. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinizaki K, Yamaguchi-Shinozaki. Functional analysis of an Arabldopsis transcription factor, DREB2A, involved in drought responsive gene expression. Plant Cell, 2006, 18: 1292-1309
    78. Guo H J, Jiao Y N, Di C, Yao D X. Discovery of Arabidopsis GRAS Family Genes in Response to Osmotic and Drought Stresses. Bulletin of botany, 2009, 44(3): 55-62
    79. Tyerman S D, Niemietz C M, Bramley H. Plant aquaporins: multifunctional water and solute channels with expanding roles [J]. Plant Cell Environ, 2002, 25:173-194
    80. Close T J. Dehydrins: a commonalty in the response of plants to dehydration and low temperature [J]. Physiol Plant, 1997, 100(2): 291-296
    81. Shao H B(邵宏波), Liang Z S(梁宗锁), Shao M A(邵明安). Progress and tends in the study of anti-drought physiology and bio-chemistry and molecular biology of Triticum aestivum [J]. Acta Prataculture Sinica(草业学报), 2006, 15(3): 5-17
    82. Cecile M, Parmentier-line, Ganesh R. Panta, et al. Changes in dehydrin expression associatedwith cold, ABA and PEG treatments in blueberry cell cultures [J]. Plant Science, 2002, 162: 273-282
    83. Wang J D(王君丹), Hu Y L(胡鸢雷), Wei X(魏晓), et al. Dehydrin gene transformed petunia showed strong resistance to drought stress [J]. Molecular Plant Breeding(分子植物育种), 2004, 2(3): 369-374
    84. Song S Q(宋松泉), Wang Y Y(王彦荣). The molecular response of plant to drought stress [J]. Chinese Journal of Applied Ecology (应用生态学报), 2002, 13(8): 1037-1044
    85. Anik L. Dhanara J, Janet P. Slovi N, Lisa J, Rowla N D. Isolation of a cDNA clone and characterization of expression of thehighly abundant, cold acclimation-associated 14 kDa dehydrin of blueberry [J]. Plant Science, 2005, 168: 949-957
    86. Yu H SH(余华顺), Zhang L SH(张林生). Expression of PvLEA-18-like during germination of wheat seeds [J]. Acta Bot Boreal Occident Sin(西北植物学报), 2002, 22(1): 63-68
    87. Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought- induced expression but not the seed-specific expression of rd22, a gene responsive to dehydra -tion stress in Arabidopsis thaliana [J]. Mol Gene Genet, 1993, 238(1-2): 17-25
    88.郑磊,刘关君,杨传平.西伯利亚蓼rd22基因的克隆与序列分析[J].植物研究, 2007, 27(2): 212-217
    89. SunderlíkováV, Wilhelm E. High accumulation of legumin and Lea -like mRNAs during maturation is associated with increased conversion frequency of somatic embryos from pedunculate oak ( Quercus robur L.). Protoplasma, 2002, 220: 97-103
    90. Wang B F, Wang Y C, Zhang D W, Li H Y,Yang C P. Verification of the resistance of a LEA gene from Tamarix expression in Saccharomyces cerevisiae to abiotic stresses Journal of Forestr–y. Research, 2008, 19(1): 58-62
    91. Tunnacliffe A, Michael J. The continuing conundrum of the LEA proteins. Naturwissenschaften, 2007, 94: 791-812
    92. Minami A, Nagao M, Ikegami K, Koshiba T, et al. Cold acclimation in bryophytes: low- temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta, 2005, 220(3): 414-423
    93. Okubo S, Asakura T, Okubo K. et al. Neoculin, a taste-modifying sweet protein, accumulates in ripening fruits of cultivated Curculigo latifolia [J]. J Plant Physiol, 2008, 165(18): 1964-1969
    94.马建华,郑海雷.植物耐盐的分子生物学基础[J].生物学杂志, 2007, 24(1): 4-8
    95. Yang N M, Johnston R A Z, Waston D C. The Amimo Acid Sequences of jacalin and the Maclurapomifera Agglutinin [J]. FEBS Letter, 1991, 282: 382-384
    96. Van Damme E J M, Barre A, Mazard A M. et al. Characterization and Molecular Cloning of the Lectin from Helianthus Tuberosus [J]. Eur J Biochem, 1999, 259: 135-142
    97. Tambussi E A, Bartoli C G, Beltrano J, et al. Oxidative damage to thylakoid proteins in water stressed leaves of wheat (Triticum aestivum) [J]. Physiol Plant, 2000, 108(4): 398-404
    98. Smirnoff N, Colombe S V. Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system [J]. J Exp Bot, 1988, 39(8): 1097-1108
    99. Foyer C H, Lopez-Delgado H, Dat J F. et al. Hydrogen peroxide-and glutathione-associated mechanisms of acclamatory stress tolerance and signaling [J]. Physiol Plant, 1997, 100(2): 241-254
    100.戴素明,周成爱,谢炳炎.细胞色素P450表达在植物防御反应中的作用[J].石河子大学学报:自然科学版, 2004(22): 184-187
    101. Sladek N E. Human aldehyde dehydrogenases: potential pathological, pharmacological and toxicological impact. J Biochem. Mol Toxicol, 2003, 17: 7-23
    102. Hyndman D, Bauman D R, Heredia V V, Penning T M. The aldo-keto reductase superfamily homepage. Chenico-Biological Interactions, 2003, 143-144: 621-631
    103. Jornvall H, Nording E, Presson B. Multiplicity of eukaryotic ADH and other MDR forms. Chem Biol Interact, 2003, 143-144: 255-261
    104. Gachon C M M, Langlois-Meurinne M, Saindrenan P. Plant secondary metabolism glycosyl transferases: the emerging functional analysis. TRENDS Plant Sci, 2005, 10(11): 542-549
    105. Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. TRENDS Plant Sci, 2000, 5(9): 380-386
    106. Burchell B, Coughtrie M. UDP-glucuronosyltransferases [J]. Pharmacol Therapeut, 1989, 43: 261-289
    107. Mackenzie P I, Owens I S, Burchell B. et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence [J]. Pharmacol genetics, 1997, 12: 255-269
    108. Meech R, Mackenzie P I. Structure and function of uridine diphosphate glucuronosyltransferases [J]. Clin Exp Pharmacol Physiol, 1997, 24: 907-915
    109. Zhang Y, Yang C P. The development of MT. Molecular Plant Breeding, 2006, 3(S): 73-78
    110. Sato Y, Wuli B, Sederoff. et al. Molecular cloning and expression of eight cDNAs in loblollypine (Pinus taeda) [J]. Plant Res, 2001, 114: 147-155
    111. Diamantidis G, Effosse A, Potier P, et al. Purification and characterization ofthe first bacterial laccase in the rhizospheric bacteriumAzospiril-lumlipoferum [J]. Soil Biol Biochem, 2001(32): 919-920
    112. Kramer K J, Kanost M R, HopkinsT L, et al. Oxidative conjugation of catechols with proteins in insect skeletal systems [J]. Tetrahedron, 2001(57): 385-392
    113. Sterjiades R, Dean J F D, Eriksson K E. Laccase from sycamore maple (Acer pseudoplatannus) polymerizes monolignols [J]. Plant Physiol, 1992(99): 1162-1168
    114. Alfred M Mayer, Richard C Staples. Laccase: new functions for an old enzyme [J]. Phytochemis -try, 2002(60): 551-565
    115. Singh R, Barden A, Mori T, et al. Advanced glycation end-products: a review. Diabetologia, 2001, 44(2): 129-146
    116. Thornalley P J. The glyoxalase system in health and disease. Mol Aspects of Med, 1993, 14(4): 287-371
    117. Davey M W, Van M M, InzéD. et al. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing [J]. Journal of the Science of Food and Agriculture, 2000, 80: 825-860
    118. Sairam P K, Srivastava G C. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat geno-types in response to long term salt stress [J]. Plant Science, 2002, 162: 897-904
    119. Shalata A, Mittova V, Volokita M. et al. Response of the cultivated tomato and its wild salttoler- ant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system [J]. Physiol Plant, 2001, 112: 487-494
    120. Li L, Van S J. Effects of plant growth regulators on the antiox-idant system in callus of two maize cultivars subjected to water stress [J]. Plant Growth Regul, 1998, 24: 55-66
    121. Smith D J, Eari A J, Turner G. The multifunctional peptide synthetase performing the first step in penicillin biosynthesis in Penicillium chrysogenum is a 421073 dalton protein similar to Bscillus brevis peptide antibiotic systhetases. EMBO J, 1990, 9: 2743
    122. Barredo J L, Cantoral J M, Alvarez E, et al. Cloning, sequence analysis and transcriptional study of the isopenicillin N synthase of Penicillium chrysogenum AS-P-78. Mol Gene Genet, 1989, 216: 91
    123. Koukol J, Conn E E. The metabolism of aromatic compounds in high plant. IV. Purification andproperties of the phenylalanine deaminase of Herdeum vulagare [J]. Journal of Biology and Chemistry, 1961, 236: 2692-2698
    124. Subramaniam R, Reinold S, Molitor E K. et al. Structure, inheritance, and expression of hybrid poplar phenylalanine ammonia-lyase genes [J]. Plant Physiology, 1993, 102: 71-83
    125. Chen J C, Jamieson D J, Hunter D,et al. Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Mol Biol. 2004, 55: 521-530
    126.Kim S H. et a1.The expression of genes was inhibited by lack of water. Plant Growth Regul, 2002, 38: 173
    127. Estévez J M, Cantero A, Reindl A, ReichIer S, Leon P. 1-deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J BiolChem, 2001, 25: 2290l-22909
    128. Kim B R, Kim S U, Chang Y J. Differential expression of three l-deoxy-D-xylulose-5- phosphate synthase genes in rice. Biotechnol Lett, 2005, 27(14): 997-100l
    129. Gong Z Z, Koiwa H, Cushman M A. et al. Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants [J]. PlantPhysiol, 2001, 126(3): 363-375
    130. Fukami H, Asakura T, Hirano H, et al. Salicylic acid carboxyl methyltransferase induced in hairy root cultures ofAtropa belladonnaafter treatmentwith exogeneously added salicylic acid [J]. Plant Cell Physiol, 2002, 43(9): 1054-1058
    131. Helena S, Strid A. Six genes strongly regulated by mercury in Pisum sativumroots [J]. Plant Physiol Biochem, 2004, 42(2): 135-142
    132. TUTEJA N. Plant DNA helicases: the long unwinding road [J]. J Exp Bot, 2003, 54(391): 2201- 2214
    133. Phant N, Ehtesham N Z, Tuteja R. et al. A nuclear DNA helicase with high specific activity from Pisum sativum catalytically translocates in the 3-5,direction [J]. Eur J Biochem, 2003, 270: 1735-1745
    134. Jack T. New members of the floral organ identity AGAMOUS pathway [J]. Trends Plant Sci, 2002, 7: 286-287
    135.郭远林,王瑞英.热休克蛋白70与家兔颈总动脉球囊损伤后增殖细胞抗原表达关系.中国病理生理杂志, 1999, 13(10): 880-883
    136. Gǒthel S F, Marahiel M A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts [J]. Cell Mol Life Sci, 1999, 55(3): 423-436
    137. Lu K P, Hanes S D, Hunter T. A human peptidyl-prolyl isomerase essential for regulation ofmitosis [J]. Nature, 1996, 380(6574): 544-547
    138. Jose V, Carbone L, Patrici A Contrera S. et al. Pectin-methylesterase activity in juices from mandarins, oranges and hybrids [J]. Eur Food Res Technol, 2006, 222: 83-87
    139. Polydera A C, Galanou E, Stoforos N G, Taoukis P S. Inactivation kinetics of pectin methylesterase of greek Navel orange juice as a function of high hydrostatic pressure and temperature process conditions [J]. Food Engineering, 2004, 62: 291-298
    140. Chae K, Zhang K, Zhang L, Morikis D, Kim S T, Mollet J C, dela Rosa N, Tan K, Lord E M. Two SCA(stigma/style cys-teine-rich adhesin)isoforms show structural differences that correlate with their levels of in vitro pollen tube adhesion activity. J Biol Chem, 2007, 282: 33845-33858
    141. Salcedo G, Sánchez-Monge R, Barber D, Díaz-Perales A. Plant non-specific lipid transfer proteins: An interface between plant defence and human allergy. Biochim Biophys Acta, 2007, 1771: 781–791
    142.杨彩菊,郝大海,杨素祥,王芳,陈善娜.高等植物中的蔗糖载体.植物生物学通讯, 2006, 42(4): 764-774
    143.叶永英,陈素珍.植物血红蛋白的类型及其功能.安徽农学通报, 2008, 14(7): 82-83
    144. Zhang F, Guo D P, Lin M L. Physiological, Biochemical and Molecular Properties of Cytokinin Oxidase/Dehydrogenase. Plant Physiology Communications. 2008, 44(4): 797-802
    145.吕刚,韩笑,张秀娟,杜培革.天冬氨酸蛋白酶的研究进展.吉林化工学院学报, 2008, 25(1): 14-17
    146. Jennifer T J, John E M. A salt-and dehydration-inducible pea gene, Cyp15a, encodes a cell-wall protein with sequence similarity to cysteine protease [J]. Plant Molecular Biology, 1995, 28: 1055-1065
    147. Petroski M D, Deshaies R J. Function and regulation of culling-RING ubiquitin ligases. Nat Rev Mol Cell Biol, 2005, 6(1): 9-20
    148.齐军茄,廖劲松,彭志英.β-甘露聚糖酶的制备及其应用研究进展[J].中国食品添加剂, 2002, (6): 12-16
    149.张少英,王俊斌,王海风.甜菜几丁质酶和β-1,3-葡聚糖酶活性与其对丛根病抗性的关系.植物生理与分子生物学学报. 2005, 31(3): 281-286
    150. Lefebvr Legendre L, Vaillier J, Benabdelhak H, Velours J, Slonimski P P, DiRago J P. Identific -ation of a Nuclear Gene(FMC1)Required for the Asembly/Stability of Yeast Mitochondrial F1-ATPase in Heat stress Conditions, J Bio1 Chem, 2001, 276: 6789-6796
    151.王晓云,毕玉芬.植物苹果酸脱氢酶研究进展.生物技术通报, 2006, 4: 44-50
    152. Schulze J, Tesfaye M, LitjensR H, Bucciarelli B, Trepp G, Miller S, Samac D, Allan D, Vance C P. Malate plays a central role in plant nutrition. Plant and Soil, 2002, 247: 133-139
    153.王霞,侯平,伊林克,冯大千,潘伯荣.水分胁迫对柽柳组织含水量和膜透性的影响.干旱区研究, 1999, 16(2): 12-15
    154.周虹,范巧佳,郑顺林,张毅,袁继超等.春季水分胁迫对川芎叶片相对含水量及保护酶活性的影响.中国中药杂志, 2009, 34(2): 132-137
    155. Rodríguez M, Canales E, Borroto C J. et al. Identification of genes induced upon water-deficit stress in a drought-tolerant rice cultivar. J Plant Physiol, 2006, 163: 577-584
    156. Lian H L, Yu X, Lane D. et al. Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treat-ment. Cell Res, 2006, 16: 651-660
    157.董朝蓬,杜林方,段真.植物凝集素研究进展.天然产物研究与进展. 2003, 15(1): 71-75
    158. Shran N, Goldstein I J. Lectins: More than insecticides. Science, 1998, 282(6): 1049
    159. Choi H, Hong J, Ha J. et al. ABFs, a family of ABA responsive element binding factors [J]. Biol Chem J, 2000, 275: 1723-1730
    160.施俊凤,孙常青.植物水分胁迫诱导蛋白研究进展.安徽农业科学, 2009, 37(12): 5355-5357
    161. Iuchi S, Yamagchi-Shinozakik, Uraot, et al. Novel drought-inducible genes inthe hight drought-tolerant Cowpea: Cloning of cDNA and analysis of the expression of correspon -ding genes [J]. Plant Cell Physiol, 1996, 37(8): 1073-1082

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700