用户名: 密码: 验证码:
多重针织结构复合材料的制备及其力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为增强结构材料,针织结构以其优良的模塑成形性、良好的抗冲击性和能量吸收特性,以及相对其它纺织增强结构低廉的生产成本,日益引起了工业界的广泛关注。
     目前,国内外对单一针织增强复合材料的研究比较深入,但对不同针织结构叠加做成的复合材料的研究还很少。论文主要分析研究了多重针织结构复合材料的力学性能。论文首先研究了增强体的加工,包括玄武岩纤维纱经编双轴向和双罗纹针织织物的准备,再将两种不同的针织结构以一定的方向和顺序进行叠加、用玄武岩纤维纱手工缝合;接下来介绍了复合材料的加工,将缝合与不缝合的增强体采用真空辅助树脂转移模塑成型工艺加工成复合材料,论文最后测试并分析了多重针织结构复合材料的弯曲和拉伸力学性能,并研究其能量吸收性能。
     论文主要包括三部分的内容:
     1.增强体的加工。通过调整合适的弯纱深度、给纱张力、织物牵拉力大小和编织速度等编织工艺参数,在Stoll电脑横机上顺利编织出质量和外观都很好的双罗纹针织物。经编双轴向织物由公司提供。
     将两种织物按一定的顺序和角度铺层,采用同向铺层,经编双轴向织物在表面两层,利于能量的迅速传播,双罗纹织物在中间两层,利于能量的良好吸收,形成四层织物的多重针织结构。再将一部分四层织物用玄武岩纤维纱采用改进的锁式链迹手工缝合。
     2.多重针织复合材料的制备。将缝合与未缝合的增强体通过真空辅助树脂转移模塑成型加工成复合材料。试验采用乙烯基树脂。为了树脂能很好的浸润预制件,在缝合增强体下表面垫加脱膜布并选用合适的工艺参数。
     3.多重针织复合材料的力学性能测试与分析。复合材料的力学性能涉及到多个方面,考虑到工作量和研究的深度,对最基本的弯曲性能和拉伸性能进行了试验。研究结果表明,弯曲方向受力纱线根数的不同是造成经纬向弯曲性能差异的主要原因,取向度和拉伸方向上受力纱线根数的不同是造成经纬向拉伸性能差异的主要原因;缝合的复合材料的单位纤维体积分数的弯曲和拉伸强度与模量比未缝合的复合材料大;复合材料的弯曲和拉伸破坏模式说明通过缝合对抑制分层有显著作用。
     本论文的研究结果初步探索了多重针织复合材料的力学与能量吸收性能,为以后的研究提供参考。
In recent years,knitted fabrics have attracted great attention as reinforced structures which have a suitable liquid-molding property,improved impact resistance,good energy absorption properties and lower manufacture costs when compared to other textile composite reinforcements.
     Currently,there are many studies on single knitted reinforced composites.However,there is very little literature that focuses on the composites layered by different knitted reinforcements.The mechanical properties of the multilayer knitted composites were investigated in this thesis.Firstly,two different knitted structures,namely bi-axial warp knitted fabric and interlock fabric,made from basalt fiber yarns have been prepared.Then,these two knitted structures have been sewed together with selected basalt fiber yarns according to the given direction and order.After that,the composite materials were fabricated using those two kinds of preforms which are with and without sewing by vacuum assisted resin transfer molding technique.Finally,the tensile and flexural properties of multilayer knitted composites were tested and analyzed. Meanwhile,the energy absorption properties of the composites have been researched.
     The thesis mainly includes there parts:
     1.Fabrication of preforms.By adjusting suitable knitting parameters such as cam setting,feeding yarn's tension, take-down force and machine speed,interlock fabrics with good quality and aspects were successfully knitted on a Stoll computerized flat knitting machine.Bi-axial warp knitted fabrics were supplied by company.
     Two knitted structures were made up to four layer multilayer knitted structures,layered according to given direction and order,in parallel laid-up.Bi-axial warp knitted fabrics were layered on surface layer.This is good for spreading energy quickly.Interlock fabrics were layered on internal layer. This is good for energy absorption.Some of four layer fabrics were sewed together with basalt fiber yarn in improved chain lock stitch.
     2.Fabrication of multilayer knitted composites.The preforms with and without sewing were used to manufacture composites by vacuum assisted resin transfer molding process.Vinyl resin was used in trails.For immersed by resin completely,choosing suitable process parameters,demoulding fabrics were layered under sewing preforms.
     3.Tests and investigation of mechanical Properties of the multilayer knitted composites.Mechanical Properties of composites including several aspects,taking in consideration on workload and depth of study,only two typical tests,i.e.,flexural and tensile tests were carried out.The results showed that the numbers of load-bearing yarns are main reasons for influencing flexural tensile properties in the wale and course directions and the orientation and numbers of load-bearing yarns are main reasons for influencing tensile properties.The stitched composites have higher flexural and tensile strength and modulus per unit fiber volume percentage than those of no-stitched composites.The damage modes demonstrate that stitch plays a significant role against the delamination.
     The results of this thesis just preliminarily searched mechanical and energy absorption properties of the multilayer knitted composites and these could be referenced in the future studies.
引文
[1]LeongKH,FalzonPJ,Bannister M K,etc.An investigation of the mechanical performance of weft-knit milano-rib glass/epoxy composites[J].Composires Science and Technology,1998,58(2):239-251.
    [2]薛璞,陶肖明,余同希.纺织复合材料能量吸收性能的研究进展[J].力学进展,2000,30(2):227-236.
    [3]龙海如.纬编针织物增强复合材料研究进展[J].玻璃钢/复合材料,2002(2):48-52.
    [4]Khondker O A,Leong K H,Herszberg I,etc.Impact and compression-after-impact performance of weft-knitted glass textile composites[J].Composites,2005,36(5):638-648.
    [5]周荣星,冯勋伟.针织结构增强材料能量吸收特性的研究进展[J].中国纺织大学学报,2000,26(6):131-136.
    [6]Zee R H,Hsieh C Y.Energy loss partitioning during ballistic impact of polymer composites[J].Polymer Composites,1993,13(3):265-271.
    [7]杨磊,曹明法.防弹复合材料及其在舰船中的应用初探[J].船舶,2002(4):59-62.
    [8]梁子青,邱冠雄,周庆.纬编双轴向织物复合材料的弹道冲击响应[J].纺织学报,2003,24(3):217-219.
    [9]练军,顾伯洪,王善元.织物及其复合材料的弹道冲击性能[J].纺织学报,2006,27(8):109-112.
    [10]夏军佳,卫甘霖,张征定.纤维力学性能与防弹性能的关系[J].纤维复合材料,2004,21(1):18-20.
    [11]贾丽霞,蒋喜志,吕磊,等.玄武岩纤维及其复合材料性能研究[J].纤维复合材料,2005,22(4):13-14.
    [12]李华,冯圣玉,金子明.玻璃纤维增强乙烯基酯树脂抗冲击复合材料的研究[J].工程塑料应用,2006,34(4):17-20.
    [13]王善元.纤维增强复合材料[M].上海:中国纺织大学出版社,1998:86-89.
    [14]张宝艳,陈祥宝,李萍.碳纤维增强树脂基复合材料抗冲击性能的改进方法[J].纤维复合材料,1999,16(4):1-6.
    [15]Ralph H Z,ChungY H.Energy absorption processes in fibrous composite[J].Materials Science and Enginering A,1998,246(1-2):161-168.
    [16]Verpoest I,Gommer B,Houtte P V.Analysis of knitted fabric reinforced composites:Part Ⅰ.Fibre orientation distribution[J].Applied Science and Manufacturing,1998,29(12):1579-1588.
    [17]李勇,陈南梁.机织平纹布和经编双轴向布层合材料抗冲击性能研究[J].产业用纺织品,2004,22(2):26-29.
    [18]Potluri P,Kusak E,Reddy T Y.Novel stitch-bonded sandwich composite structures[J].Composite Structures,2003,59(2):251-259.
    [19]Lim C T,Tan V B C,Ramakrishna S,etc.Low velocity impact studies on a 4-Ply knitted kevlar fabric reinforced epoxy composite[J].Journal of Reinforced Plastics and Composites,2002,21(2):121-138.
    [20]周荣星,李炜,冯勋伟.多轴向经编增强复合材料低速冲击下能量吸收特性的研究[J].东华大学学报,2002,28(5):34-38.
    [21]Gellert EP,Cimpoeru S J,Woodward RL.Astudyoftheeffect of target thickness on the ballistic perforation of glass-fibre-reinforced plastic composites[J].International Journal of Impact Engineering,2000,24(5):445-456.
    [22]Shim V P W,Tan V B C,Tay T E.Modeling deformation and damage characteristics of woven fabric under smallprojectile impact[J].International Journal of Impact Engineering,1995,16(4):585-605.
    [23]MoryeS S,HineP J,Duckett RA,et al.Modeling of the energy absorption by polymer composites upon ballistic impact [J].Composites Science and Technology,2000,60(14):2631-2642.
    [24]Naik N K,Shrirao P.Composite structures under ballistic impact[J].Composite Structures,2004,66(1):579-590.
    [25]顾伯洪.织物弹道贯穿性能分析计算[J].复合材料学报,2002,19(6):92-96.
    [26]袁新林,徐艳华.复合材料中的纬编结构[J].纺织导报,2006(9):46-49.
    [27]Haller P,Birk T,Offermann P,etc.Fully fashioned biaxial weft knitted and stitch bonded textile reinforcements for wood connections[J].Composites PartB:Engineering,2006,37(4-5):278-285.
    [28]刘良森,张剑寒,邱冠雄.多层双轴向纬编复合材料的研制[J].针织工业,2001(4):24-26.
    [29]HuH,Araujo M D de,Fanguero R.Flat knitting machines for the production of 3D shaped fabrics for technical apllications[J].Melliand Textile Berichte English,1996(12):13-14.
    [30]Hu H,Araujo M D de,Fanguero R.3D technical fabrics[J].Knitting International,1996(9):55-57.
    [31]汪福坤,胡红.双轴向增强纬编间隔针织物的性能特点[J].针织工业,2006(4):9-11.
    [32]VuureAWV,Ko FK,BeeversC.Net-shape knitting for complex composite preforms[J].Textile Research Journal,2003,73(1):1-10.
    [33]胡红,龙海如.利用电脑横机生产三维成形产业用针织物[J].中 国纺织大学学报,1997,23(2):50-55.
    [34]Leong K H,Ramakrishna S,Huang Z H,etc,The potential of knitting for engineering composites-a review[J].Composites:Part A,2000,31(3):197-220.
    [35]Pandita S D,Falconet D,Verpoes I.Impact properties of weft knitted fabric reinforced composites[J]Composites Science and Technology,2002,62(7-8):1113-1123.
    [36]霍冀川,雷永林,王海滨,刘树信.玄武岩纤维的制备及其复合材料的研究进展[J].材料导报,2006,20(5):382-385.
    [37]石钱华.外连续玄武岩纤维的发展及其应用[J].玻璃纤维,2003(4):27-31.
    [38]陈在学.电脑横机上玻璃纤维纱线编织工艺的探讨[J].东华大学学报(自然科学版),2005,31(5):48-52.
    [39]朱梅.高模量纤维纱线针织可编织性能的研究[C].东华大学硕士学位论文,2004.
    [40]严柳芳,陈南梁,罗永康.缝合技术在复合材料上的应用及发展[J].产业用纺织品,2007(2):1-5.
    [41]马青松,陈朝辉.树脂传递模塑-复合材料成型新工艺[J].材料科学与工程,2000:18(4):92-97.
    [42]邓杰.高性能复合材料树脂传递膜技术研究[J].纤维复合材料,2005(1):50-52.
    [43]刁岩,陈一民,洪晓斌,等[J].真空辅助 RTM 成型技术应用及适用树脂体系.高分子通报,2006(12):84-87.
    [44]GB/T1449-2005,玻璃纤维增强塑料弯曲性能试验方法.
    [45]GB/T1446-2005,纤维增强塑料性能试验方法总则.
    [46]GB/T1447-2005,玻璃纤维增强塑料拉伸性能试验方法.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700