用户名: 密码: 验证码:
零价铁/过硫酸钠体系产生硫酸根自由基氧化降解氯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于硫酸根自由基(SO4·-)的新型高级氧化技术是近几年来迅速发展起来并且逐渐成为研究热点的水处理技术。对氯苯酚(4-CP)和2,4,6-三氯苯酚(2,4,6-TCP)是比较典型的氯酚类化合物,毒性较大,是常见的难降解有机污染物。本研究采用环境友好的铁活化过硫酸钠(PDS)的方法,产生硫酸根自由基,氧化降解氯酚类有机污染物。具体内容是对基于硫酸根自由基的均相Fe(II)/PDS体系和非均相零价铁(ZVI)/PDS及紫外光(UV)/PDS/ZVI体系处理水中4-CP和2,4,6-TCP进行研究,主要开展了以下几方面的工作:
     (1)为了研究室温下均相体系亚铁离子活化过硫酸盐的能力,以4-CP为目标污染物,考察了温度、pH值、亚铁离子浓度、过硫酸钠浓度、柠檬酸浓度等因素对4-CP降解率的影响。结果表明,在30~7℃温度范围内,随着温度的升高,4-CP降解率显著提高。根据阿累尼乌斯方程,计算出在加热过硫酸钠体系中4-CP的降解活化能为110.2kJ/mol。pH值对4-CP降解率的影响较大,次序为酸性>中性>碱性。在室温下,亚铁离子活化过硫酸钠是促使4-CP降解的必要条件。随着亚铁离子浓度增加,4-CP降解率先增大后降低,表明溶液中亚铁离子有一个最佳浓度。随着过硫酸钠浓度增加,4-CP降解率先增大然后趋于平稳,说明过硫酸钠也有一个适宜浓度。对其他实验条件也进行了优化,同时分子探针实验证实了硫酸根自由基的存在。在过硫酸钠/亚铁离子体系加入适量的柠檬酸能够有效利用溶液中的亚铁离子,在过硫酸钠浓度一定的条件下,常温下过硫酸钠/亚铁离子/柠檬酸体系对4-CP降解率优于50℃下过硫酸钠体系对4-CP降解率。本研究为铁/过硫酸钠体系的深入研究提供了一定的理论依据。
     (2)为了提高污染物降解效率和避免附加离子对环境的污染,采用零价铁作为铁源在室温和近中性条件下活化过硫酸钠氧化降解4-CP。考察了零价铁的加入量、pH值、初始目标物浓度等因素对4-CP降解率的影响,并且进一步探究了反应机理。随着零价铁加入量的增大,4-CP降解率先增加后降低,零价铁的加入量在0.20 g/L时,4-CP降解率最高,1 h降解率可达到88%。亚铁离子浓度的检测证实随着零价铁加入量的增大,溶液中亚铁离子浓度逐渐增大。在PDS/ZVI体系,pH值为酸性条件下,对4-CP降解率影响不大,所以体系保持初始pH值为6.0。抑制剂甲醇和叔丁醇加入实验证实零价铁参与的活化过硫酸钠过程属于氧化反应过程,并且该体系是以硫酸根自由基为主的氧化反应机制。4-CP在降解过程中不仅产生了氯离子还有中间产物对苯二酚和对苯醌,以及小分子有机酸如草酸和丁二酸等。通过中间产物和降解产物的分析,对4-CP在PDS/ZVI体系的降解途径进行了推测,提出了以对苯二酚途径为主的反应机理。
     (3)为了进一步提高污染物的降解效率,利用UV和PDS/ZVI联合体系氧化降解4-CP和2,4,6-TCP。考察了UV, UV/ZVI, UV/PDS, UV/PDS/ZVI和PDS/ZVI体系对4-CP和2,4,6-TCP降解效率的影响。对4-CP在UV, UV/ZVI, UV/PDS和UV/PDS/ZVI四种体系的降解表明光照体系可以提高4-CP的降解效率,并且遵循UV/PDS/ZVI> UV/PDS> UV/ZVI> UV。对中间产物对苯二酚和对苯醌的定量分析表明,在不同体系中间产物的产率差别较大,光助UV/PDS/ZVI体系显著地加速了反应进程,促进4-CP矿化。针对这两种目标物,不同反应体系的降解效率略有差别,但总体上趋势一致,UV/PDS/ZVI体系降解效果最好,UV/PDS/ZVI> PDS/ZVI。说明借助光照,可以显著地提高2,4,6-TCP降解效率,体现了UV和PDS/ZVI联合体系的协同作用。在光照的条件下,PDS浓度对2,4,6-TCP降解率影响较大。同时提出了污染物在UV/PDS/ZVI体系中可能的降解途径。本研究为废水处理提供了一条新途径。
Advanced oxidation processes based on the generation of sulfate radicals (SO4-) have been developed in recent years and have been gaining increased attention for wastewater treatment. 4-Chlorophenol (4-CP) and 2,4,6-trichlorophenol (2,4,6-TCP) which possess chemical toxicity are typical chlorophenols and recalcitrant organic pollutants. The innovative approach described in this study provides a very promising and environmentally friendly technology for water treatment. The iron/sodium peroxydisulfate (PDS) systems are involved in Fe(II) and zero-valent iron (ZVI). These processes are based on the generation of sulfate radicals, which are powerful oxidizing species found in nature for the oxidation of 4-CP and 2,4,6-TCP. These studies are focused on the oxidation degradation of 4-CP and 2,4,6-TCP in terms of Fe(II)/PDS, PDS/ZVI amd UV/PDS/ZVI as the homogeneous and heterogeneous system. The main studies are as followed:
     (1) The Fe(Ⅱ)/PDS for the oxidation of 4-CP was investigated in order to examine the potental for the ferrous ion-activated PDS. The effects of temperature, pH, the initial concentrations of Fe(II), PDS and citric acid on the degradation efficiencies of 4-CP were studied. The results showed that the degradation efficiency of 4-CP was significantly enhanced as temperature increased in the range of 30-70℃. According to the Arrhenius Equation, the activation energy of 4-CP in the heat-activated PDS system was 110.2 kJ/mol. The effect of pH on the degradation efficiency of 4-CP followed the order:acidity> neutrality > basicity. In the PDS/Fe(II) system, ferrous ion played an important role in generating sulfate radicals at ambient temperature. The degradation efficiency of 4-CP increased first, then decreased with increasing concentration of Fe(II). Moreover, the degradation efficiency of 4-CP increased then kept constant with increasing concentration of PDS. The optimum experimental condition is established and the addition of probe compounds proved the formation of sulfate radicals. Furthermore, the iron availability in the aqueous solution was manipulated with the optimum amount of citric acid, as a chelating agent. The degradation efficiency of 4-CP was 50.9%in the PDS/Fe(II)/citric acid system, which was superior to 43.5%at 50℃at the same initial concentration of PDS. This study provided some fundamentals for in-depth investigation in the Iron/PDS system.
     (2) In order to improve the degradation efficiency of 4-CP and avoid the pollution of additional ions, ZVI-mediated decomposition of PDS that resulted in the generation of sulfate radicals was reported for the oxidation of 4-CP at ambient temperature and near neutral pH. The effects of ZVI loading, pH, the initial concentrations of target compound on the degradation efficiencies of 4-CP and reaction mechanism were investigated. The results showed that ZVI significantly improved the degradation efficiencies of 4-CP at ambient temperature. The degradation efficiency of 4-CP increased first, then decreased with increasing ZVI loading. The optimum loading of ZVI was around 0.20 g/L and 88%removal of 4-CP was observed in 1 h of reaction time. The concentration of Fe(II) in aqueous solution increased when the loading of ZVI increased. The effect of pH on the degradation of 4-CP in the PDS/ZVI system was slight and the solutiong kept at initial pH 6.0. The addition of methanol and tert-butyl alcohol as hydroxyl radical and sulfate radical scavengers proved the presence of sulfate radicals in the PDS/ZVI system. The degradation of 4-CP was accompanied by the formation of hydroquinone,1,4-benzoquinone, and small molecule compounds such as oxalic acid and succinic acid. Chloride ion release and formation of oxidation intermediates were evidence of 4-CP degradation involving sulfate radicals. Therefore, hydroquinone pathway was regarded as the main step in the oxidation of 4-CP.
     (3.) The photodegradation of two selected chlorophenols,4-CP and 2,4,6-TCP, in aqueous solutions of PDS/ZVI under UV irradiation at near neutral pH was investigated in order to improve the degradation efficiency of contaminants. The performance of UV/PDS/ZVI process was compared with other processes such as UV alone, UV/ZVI, UV/PDS, and PDS/ZVI in terms of 4-CP and 2,4,6-TCP degradation. In the case of 4-CP, the degradation efficiencies followed the order:UV/PDS/ZVI> UV/PDS> UV/ZVI> UV. It was evident that the addition of UV was highly effective in enhancing the degradation of 4-CP. Quantitative data of intermediates such as 1,4-benzoquinone and hydroquinone showed that the formation of intermediates was relatively small in the UV/PDS/ZVI, suggesting that the UV/PDS/ZVI process strongly accelerated the degradation of intermediates. In the case of 2,4,6-TCP, it was found that the photoassisted PDS/ZVI process significantly accelerated the degradation of 2,4,6-TCP in comparison with the dark reaction. The synergy effect of UV and PDS/ZVI process in the degradation of chlorophenols was observed. The effects of PDS concentration on the degradation of 2,4,6-TCP were also examined. Degradation mechanism of organic pollutant in the UV/PDS/ZVI system was proposed. The present study can provide a novel route for wastewater treatment using UV/PDS/ZVI.
引文
[1]Rosenfeldt E. J., Linden K. G. Degradation of endocrine disrupting chemicals Bisphenol A, Ethinyl Estradiol, and Estradiol during UV photolysis and advanced oxidation processes [J]. Environmental Science& Technology,2004,38(20):5476-5483.
    [2]Spanggord R. J., Yao D., Mill T. Kinetics of aminodinitrotoluene oxidations with ozone and hydroxyl radical [J]. Environmental Science& Technology,2000,34(3):450-454.
    [3]张旋,王启山.高级氧化技术在废水处理中的应用[J].水处理技术,2009,35(3):18-22.
    [4]孙德智.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.
    [5]De Laat J., Gallard H. Catalytic decomposition of hydrogen peroxide by Fe(Ⅲ) in homogeneous aqueous solution:Mechanism and kinetic modeling [J]. Environmental Science& Technology,1999, 33(16):2726-2732.
    [6]Malik P. K. Oxidation of Safranine T in aqueous solution using Fenton's reagent:Involvement of an Fe(III) chelate in the catalytic hydrogen peroxide oxidation of Safranine T [J]. The Journal of Physical Chemistry A,2004,108(14):2675-2681.
    [7]Arnold S. M., Hickey W. J., Harris R. F. Degradation of Atrazine by Fenton's reagent:Condition optimization and product quantification [J]. Environmental Science& Technology,1995,29(8): 2083-2089.
    [8]刘英艳,刘勇弟.Fenton氧化法的类型及特点[J].净水技术,2005,24(3):51-54.
    [9]Anotai J., Lu M.-C., Chewpreecha P. Kinetics of aniline degradation by Fenton and electro-Fenton processes [J]. Water Research,2006,40(9):1841-1847.
    [10]Zepp R. G., Faust B. C., Hoigne J. Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(Ⅱ) with hydrogen peroxide:the photo-Fenton reaction [J]. Environmental Science& Technology,1992,26(2):313-319.
    [11]唐受印,戴友芝.废水处理水热氧化技术[M].北京:化学工业出版社,2002.
    [12]Lin K. S., Wang H. P., Li M. C. Oxidation of 2,4-dichlorophenol in supercritical water [J]. Chemosphere,1998,36(9):2075-2083.
    [13]Suarez-Ojeda M. E., Stuber F., Fortuny A., et al. Catalytic wet air oxidation of substituted phenols using activated carbon as catalyst [J]. Applied Catalysis B:Environmental,2005,58(1-2):105-114.
    [14]Zhu W., Bin Y., Li Z., et al. Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater [J]. Water Research,2002,36(8):1947-1954.
    [15]Lin S. S., Chang D. J., Wang C.-H., et al. Catalytic wet air oxidation of phenol by CeO2 catalyst-effect of reaction conditions [J]. Water Research,2003,37(4):793-800.
    [16]Pintar A., Bercic G., Besson M., et al. Catalytic wet-air oxidation of industrial effluents:total mineralization of organics and lumped kinetic modelling [J]. Applied Catalysis B:Environmental, 2004,47(3):143-152.
    [17]Zimmermann F. J. New waste disposal process [J]. Chemical Engineering,1958,65(8):117-121.
    [18]李鱼,张荣,李海生.Co/Bi催化剂催化湿法氧化降解垃圾渗滤液中的氨氮[J].高等学校化学学报,2005,26(3):430-435.
    [19]李鱼,王健,李海生.催化湿法氧化处理垃圾渗滤液中Co/Bi催化剂的回收与再生[J].环境污染与防治,2005,27(1):56-59.
    [20]Tang W., Zeng X., Zhao J., et al. The study on the wet air oxidation of highly concentrated emulsified wastewater and its kinetics [J]. Separation and Purification Technology,2003,31(1): 77-82.
    [21]Quintanilla A., Casas J. A., Zazo J. A., et al. Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst [J]. Applied Catalysis B:Environmental,2006,62(1-2):115-120.
    [22]付冬梅.高级氧化技术处理难降解有机废水的研究[D].博士学位论文,2005:大连,中国科学院大连化学物理研究所.
    [23]Rivas F. J., Beltran F. J., Carvalho F., et al. Oxone-promoted wet air oxidation of Landfill Leachates [J]. Industrial& Engineering Chemistry Research,2005,44(4):749-758.
    [24]Yu J., Savage P. E. Phenol oxidation over CuO/Al2O3 in supercritical water [J]. Applied Catalysis B: Environmental,2000,28(3-4):275-288.
    [25]Kronholm J., Jyske P., Riekkola M. L. Oxidation efficiencies of potassium persulfate and hydrogen peroxide in pressurized hot water with and without preheating [J]. Environmental Science& Technology,2000,39(7):2207-2213.
    [26]Kronholm J., Metsala H., Hartonen K., et al. Oxidation of 4-chloro-3-methylphenol in pressurized hot water/supercritical water with potassium persulfate as oxidant [J]. Environmental Science& Technology,2001,35(15):3247-3251.
    [27]Kronholm J., Riekkola M. L. Potassium persulfate as oxidant in pressurized hot water [J]. Environmental Science& Technology,1999,33(12):2095-2099.
    [28]阎虹,韦朝海,张亚平等.水污染控制化学中高级氧化技术的研究及发展[J].应用科技,2008,16(3-4):19-23.
    [29]Feng Y. J., Li X. Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution [J]. Water Research,2003,37(10):2399-2407.
    [30]Li X.-y., Cui Y.-h., Feng Y.-j., et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes [J]. Water Research,2005,39(10):.1972-1981.
    [31]Polcaro A. M., Vacca A., Mascia M., et al. Oxidation at boron doped diamond electrodes:an. effective method to mineralise triazines [J]. Electrochimica A cta,2005,50(9):1841-1847.
    [32]周明华,吴祖成,汪大翠.几种难生化芳香化合物的电催化降解研究-结构对降解活性的影响[J].浙江大学学报(工学版),2003,37(1):74-77.
    [33]Richards W. T., Loomis A. L. The chemical effects of high frequency sound waves I. A preliminary survey [J]. Journal of the American Chemical Society,1927,49(12):3086-3100.
    [34]Lorimer J. P., Mason T. J., Cuthbert T. C., et al. Effect of ultrasound on the degradation of aqueous native dextran [J]. Ultrasonics Sonochemistry,1995,2(1):55-57.
    [35]李春喜,王京刚,王子镐等.超声波技术在污水处理中的应用与研究进展[J].环境污染治理技术与设备,2001,2(2):64-69.
    [36]袁易全.近代超声原理及应用[M].南京:南京大学出版社,1996.
    [37]Hoffmann M. R., Hua I., HOchemer R. Application of ultrasonic irradiation for the degradation of chemical contaminants in water [J]. Ultrasonics Sonochemistry,1996,3(3):S163-S172.
    [38]Drijvers D., De Baets R., De Visscher A., et al. Sonolysis of trichloroethylene in aqueous solution: volatile organic intermediates [J]. Ultrasonics Sonochemistry,1996,3(2):83-90.
    [39]Petrier C., David B., Laguian S. Ultrasonic degradation at 20 kHz and 500 kHz of atrazine and pentachlorophenol in aqueous solution:Preliminary results [J]. Chemosphere,1996,32(9): 1709-1718.
    [40]靳强,郑正,张全兴等.硝基苯水溶液的超声波降解动力学[J].环境化学,2003,22(2):154-158.
    [41]赵德明,史惠祥,雷乐成等.US/UV协同催化氧化降解对氯苯酚的研究[J].环境科学学报,2003,23(5):588-592.
    [42]张选军,戴友芝,曹建平等.纳米铁协同超声降解氯苯的研究[J].环境污染治理技术与设备,2004,5(8):32-34.
    [43]Fujishima A., Honda K. Electronchemical Photolysis of water at a Semiconductor electrode [J]. Nature,1972,238(358):37-38.
    [44]Carey J. H., Lawrence J., Tosine H. M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bulletin of Environmental Contamination and Toxicology,1976, 16(6):697-701.
    [45]Vulliet E., Emmelin C., Chovelon J.-M., et al. Photocatalytic degradation of sulfonylurea herbicides in aqueous TiO2 [J]. Applied Catalysis B:Environmental,2002,38(2):127-137.
    [46]Bianchi C. L., Pirola C., Ragaini V., et al. Mechanism and efficiency of atrazine degradation under combined oxidation processes [J]. Applied Catalysis B:Environmental,2006,64(1-2):131-138.
    [47]Watanabe N., Horikoshi S., Hidaka H., et al. On the recalcitrant nature of the triazinic ring species, cyanuric acid, to degradation in Fenton solutions and in UV-illuminated TiO2 (naked) and fluorinated TiO2 aqueous dispersions [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2005,174(3):229-238.
    [48]符小荣,张校刚,宋世庚等.TiO2/Pt/glass纳米薄膜的制备及对可溶性染料的光催化降解[J].应用化学,1997,14(4):77-79.
    [49]Soni S. S., Henderson M. J., Bardeau J.-F., et al. Visible-light photocatalysis in titania-based mesoporous thin films [J]. Advanced Materials,2008,20(8):1493-1498.
    [50]Yu Z. Y., Kiwi-Minsker L., Renken A., et al. Detoxification of diluted azo-dyes at biocompatible pH with the oxone/Co2+reagent in dark and light processes [J]. Journal of Molecular Catalysis A: Chemical,2006,252(1-2):113-119.
    [51]Renganathan R., Maruthamuthu P. Kinetics and mechanism of oxidation of aliphatic aldehydes by peroxomonosulphate [J]. International Journal of Chemical Kinetics,1986,18(1):49-58.
    [52]杨世迎,陈友媛,胥慧真等.过硫酸盐活化高级氧化新技术[J].化学进展,2008,20(9):1433-]438.
    [53]杨世迎,杨鑫,王萍等.过硫酸盐高级氧化技术的活化方法研究进展[J].现代化工,2009,29(4):13-19.
    [54]Gara P. M. D., Bosio G. N., Gonzalez M. C., et al. Kinetics of the sulfate radical-mediated photo-oxidation of humic substances [J]. International Journal of Chemical Kinetics,2008,40(1): 19-24.
    [55]Gara P. M. D., Bosio G. N., Arce V. B., et al. Photoinduced degradation of the herbicide Clomazone model reactions for natural and technical systems [J]. Photochemistry and Photobiology,2009,85(3): 686-692.
    [56]Gara P. M. D., Bosio G. N., Gonzalez M. C, et al. A combined theoretical and experimental study on the oxidation of fulvic acid by the sulfate radical anion. [J]. Photochemical& Photobiological Sciences,2009,8(7):992-997.
    [57]Ivanov K. L., Glebov E. M, Plyusnin V. F., et al. Laser flash photolysis of sodium persulfate in aqueous solution with additions of dimethylformamide [J]. Journal of Photochemistry and Photobiology A:Chemistry,2000,133(1-2):99-104.
    [58]Caregnato P., Gara P. M. D., Bosio G. N., et al. Theoretical and experimenta linvestigation on the oxidation of Gallic Acid by sulfate radical anions [J]. The Journal of Physical Chemistry A,2008, 112(6):1188-1194.
    [59]Das S., Kamat P, V., Padmaja S., et al. Free radical induced oxidation of the azo dye Acid Yellow 9 [J]. Journal of the Chemical Society, Perkin Transactions 2,1999, (6):1219-1223.
    [60]Yamashita K., Yamazaki-Nishida S., Harima Y., et al. Direct current electrogenerated chemiluminescent microdetermination of peroxydisulfate in aqueous solution [J]. Analytical Chemistry,2002,63(9):872-876.
    [61]Malato S., Blanco J., Richter C., et al. Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species [J]. Applied Catalysis B:Environmental,1998, 17(4):347-356.
    [62]Hori H., Yamamoto A., Hayakawa E., et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant [J]. Environmental Science& Technology,2005,39(7):2383-2388.
    [63]Chu W., Lau T.K., Fung S. C. Effects of combined and sequential addition of dual oxidants (H2O2/S2O82-) on the aqueous carbofuran photodegradation [J]. Journal of Agricultural and Food Chemistry,2006,54(26):10047-10052.
    [64]Chen J., Zhang P. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate [J]. Water Science and Technology,2006,54(11-12):317-325.
    [65]Madhavan J., Maruthamuthu P., Murugesan S., et al. Kinetic studies on visible light-assisted degradation of acid red 88 in presence of metal-ion coupled oxone reagent [J]. Applied Catalysis B: Environmental,2008,83(1-2):8-14.
    [66]Zhong J., Ma D., Zhao H., et al.Photocatalytic decolorization of methyl orange solution with potassium peroxydisulfate [J]. Central European Journal of Chemistry,2008,6(2):245-252.
    [67]Liang C, Bruell C. J., Marley M. C., et al. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries [J]. Soil& Sediment Contamination,2003,12(2):207-228.
    [68]Huang K.-C., Couttenye R. A., Hoag G. E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) [J]. Chemosphere,2002,49(4):413-420.
    [69]Huang K.-C., Zhao Z., Hoag G. E., et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation [J]. Chemosphere,2005,61(4):551-560.
    [70]Waldemer R. H., Tratnyek P. G., Johnson R. L., et al. Oxidation of chlorinated ethenes by heat-activated persulfate:Kinetics and products [J]. Environmental Science& Technology.2007, 41(3):1010-1015.
    [71]Hori H., Nagaoka Y., Murayama M., et al. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water [J]. Environmental Science& Technology,2008, 42(19):7438-7443.
    [72]Mora V. C., Rossoa J. A., Le Roux G. C., et al. Thermally activated peroxydisulfate in the presence of additives:A clean method for the degradation of pollutants [J]. Chemosphere,2009,75(10): 1405-1409.
    [73]Memming R. Mechanism of the electrochemical reduction of persulfates and hydrogen peroxide [J]. Journal of the Electrochemical society,1969,116(6):785-790.
    [74]Bunsow J., Johannsmann D. Production of polyacrylic acid homo-and copolymer films by electrochemically induced free-radical polymerization:Preparation and swelling behavior [J]. Macromolecular Symposia,2007,248(1):207-212.
    [75]Reuber J., Reinhardt H., Johannsmann D. Formation of surface-attached responsive gel layers via electrochemically induced free-radical polymerization [J]. Langmuir,2006,22(7):3362-3367.
    [76]Yang S., Wang P., Yang X., et al. A novel advanced oxidation process to degrade organic pollutants in wastewater:Microwave-activated persulfate oxidation [J]. Journal of Environmental Sciences, 2009,21(9):1175-1180.
    [77]Lee Y.-C., Lo S.-L., Chiueh P.-T., et al. Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate [J]. Water Research,2009,43(11):2811-2816.
    [78]Lee Y.-C., Lo S.-L., Chiueh P.-T., et al. Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation [J]. Water Research,2010, 44(3):886-892.
    [79]Apelblat A., Korin E., Manzurola E. Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate [J]. The Journal of Chemical Thermodynamics,2001,33(1):61-69.
    [80]Behrman E. J., Dean D. H. Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (persulfate) in polyacrylamide gel electrophoresis [J]. Journal of Chromatography B: Biomedical Sciences and Applications,1999,723(1-2):325-326.
    [81]McCallum J. E. B., Madison S. A., Alkan S., et al. Analytical studies on the oxidative degradation of the reactive textile dye uniblue A [J]. Environmental Science& Technology,2000,34(24): 5157-5164.
    [82]Betterton E. A., Hoffmann M. R. Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate [J]. Environmental Science& Technology,1990,24(12):1819-1824.
    [83]Babu M. N., Sahu K. K., Pandey B. D. Zinc recovery from sphalerite concentrate by direct oxidative leaching with ammonium, sodium and potassium persulphates [J]. Hydrometallurgy,2002,64(2): 119-129.
    [84]郑肇生,程浙.过硫酸钾氧化甲基红催化光度法测定痕量银[J].贵金属,1989,10(4):47-50.
    [85]McKenna J. H., Doering P. H. Measurement of dissolved organic carbon by wet chemical oxidation with persulfate:influence of chloride concentration and reagent volume [J]. Marine Chemistry,1995, 48(2):109-114.
    [86]Cuypers C., Grotenhuis T., Joziasse J., et al. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments [J]. Environmental Science& Technology,2000,34(10):2057-2063.
    [87]Carmona C., Ghanem R., Balon M., et al. Mechanism of the oxidation of yohimbine and two of its 7H-substituted derivatives by sodium peroxodisultate [J]. Journal of the Chemical Society, Perkin Transactions 2,2000, (4):839-845.
    [88]Mills A., Valenzuela M. A. The photo-oxidation of water by sodium persulfate, and other electron acceptors, sensitised by TiO2 [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004, 165(1-3):25-34.
    [89]Yamazaki S., Mori T., Katou T., et al. Photocatalytic degradation of 4-tert-octylphenol in water and the effect of peroxydisulfate as additives [J]. Journal of Photochemistry and Photobiology A: Chemistry,2008,199(2-3):330-335.
    [90]Wang Y., Hong C.-S. Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2 suspensions [J]. Water Research,1999,33(9):2031-2036.
    [91]Syoufian A., Nakashima K. Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst:Optimization of reaction by peroxydisulfate electron scavenger [J]. Journal of Colloid and Interface Science,2007,313(1):213-218.
    [92]Maurino V., Calza P., Minero C., et al. Light-assisted],4-dioxane degradation [J]. Chemosphere, 1997,35(11):2675-2688.
    [93]Dhanalakshmi K. B., Anandan S., Madhavan J., et al. Photocatalytic degradation of phenol over TiO2 powder:The influence of peroxomonosulphate and peroxodisulphate on the reaction rate [J]. Solar Energy Materials and Solar Cells,2008,92(4):457-463.
    [94]Manoj P., Varghese R., Manoj V. M., et al. Reaction of sulphate radical anion (SO4·-) with cyanuric acid:A potential reaction for its degradation? [J]. Chemistry Letters,2002,31(1):74-75.
    [95]Bao Z.-C., Barker J. R. Temperature and ionic strength effects on some reactions involving sulfate radical [SO4-(aq)] [J]. The Journal of Physical Chemistry,1996,100(23):9780-9787.
    [96]Anipsitakis G. P., Dionysiou D. D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J]. Environmental Science & Technology,2003,37(20):4790-4797.
    [97]Neta P., Madhavan V., Zemel H., et al. Rate constants and mechanism of reaction of SO4·- with aromatic compounds [J]. Journal of the American Chemical Society,1977,99(1):163-164.
    [98]Ziajka J., Pasiuk-Bronikowska W. Rate constants for atmospheric trace organics scavenging SO4·-in the Fe-catalysed autoxidation of S(IV) [J]. Atmospheric Environment,2005,39(8):1431-1438.
    [99]Huie R. E., Clifton C. L., Kafafi S. A. Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4·-:experimental and theoretical results for cyclic ethers [J]. The Journal of Physical Chemistry,1991,95(23):9336-9340.
    [100]Huie R. E., Clifton C. L. Temperature dependence of the rate constants for reactions of the sulfate radical, SO4·-, with anions [J]. The Journal of Physical Chemistry,1990,94(23):8561-8567.
    [101]George C., El Rassy H., Chovelon J.-M. Reactivity of selected volatile organic compounds (VOCs) toward the sulfate radical (SO4·-) [J]. International Journal of Chemical Kinetics,2001,33(9): 539-547.
    [102]George C., Chovelon J.-M. A laser flash photolysis study of the decay of SO4- and Cl2- radical anions in the presence of Cl- in aqueous solutions [J]. Chemosphere,2002,47(4):385-393.
    [103]Wu G., Katsumura Y., Chu G. Photolytic and radiolytic studies of SO4·-in neat organic solvents [J]. Physical Chemistry Chemical Physics,2000,2(24):5602-5605.
    [104]Azenha M. E. D. G., Burrows H. D., Canle L. M., et al. On the kinetics and energetics of one-electron oxidation of 1,3,5-triazines [J]. Chemical Communications,2003, (1):112-113.
    [105]Ball D. L., Edwards J. O. The Kinetics and Mechanism of the Decomposition of Caro's Acid. I [J]. Journal of the American Chemical Society,1956,78(6):1125-1129.
    [106]Ball D. L., Edwards J. O. The catalysis of the decomposition of Caro's Acid [J]. The Journal of Physical Chemistry,1958,62(3):343-345.
    [107]Anipsitakis G. P., Dionysiou D. D. Transition metal/UV-based advanced oxidation technologies for water decontamination [J]. Applied Catalysis B:Environmental,2004,54(3):155-163.
    [108]Anipsitakis G. P., Dionysiou D. D. Radical generation by the interaction of transition metals with common oxidants [J]. Environmental Science& Technology,2004,38(13):3705-3712.
    [109]Anipsitakis G. P., Stathatos E., Dionysiou D. D. Heterogeneous activation of Oxone using Co3O4 [J]. The Journal of Physical Chemisrtry B,2005,109(27):13052-13055.
    [110]Anipsitakis G. P., Dionysiou D. D., Gonzalez M. A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions [J]. Environmental Science& Technology,2006,40(3):1000-1007.
    [111]Bandala E. R., Pelaez M. A., Dionysiou D. D., et al. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process [J]. Journal of Photochemistry and Photobiology A:Chemistry,2007,186(2-3):357-363.
    [112]Bandala E. R., Velasco Y., Torres L. G. Decontamination of soil washing wastewater using solar driven advanced oxidation processes [J]. Journal of Hazardous Materials,2008,160(2-3):402-407.
    [113]Bandala E. R., Pelaez M. A., Salgado M. J., et al. Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation processes [J]. Journal of Hazardous Materials, 2008,151(2-3):578-584.
    [114]Chan K. H., Chu W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process [J]. Water Research,2009,43(9):2513-2521.
    [115]Huang Y.-F., Huang Y.-H. Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process [J]. Journal of Hazardous Materials,2009,167(1-3):418-426.
    [116]陈晓旸,陈景文,杨萍等.均相Co/PMS系统降解毗虫啉的影响因素及降解途径研究[J].环境科学,2007,28(12):2816-2820.
    [117]Chen X., Qiao X., Wang D., et al. Kinetics of oxidative decolorization and mineralization of Acid Orange 7 by dark and photoassisted Co2+-catalyzed peroxymonosulfate system [J]. Chemosphere, 2007,67(4):802-808.
    [118]Do S.-H., Jo J.-H., Jo Y.-H., et al. Application of a peroxymonosulfate/cobalt (PMS/Co(Ⅱ)) system to treat diesel-contaminated soil [J]. Chemosphere,2009,77(8):1127-1131.
    [119]Sun J., Li X., Feng J., et al. Oxone/Co2+oxidation as an advanced oxidation process:Comparison with traditional Fenton oxidation for treatment of Landfill Leachate [J]. Water Research,2009, 43(17):4363-4369.
    [120]Chen X., Chen J., Qiao X., et al. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using Acid Orange 7 as a model compound [J]. Applied Catalysis B: Environmental,2008,80(1-2):116-121.
    [121]Yang Q., Choi H., Al-Abed S. R., et al. Iron-cobalt mixed oxide nanocatalysts:Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications [J]. Applied Catalysis B:Environmental,2009,88(3-4):462-469.
    [122]Chu W., Choy W. K., Kwan C. Y. Selection of supported cobalt substrates in the presence of oxone for the oxidation of monuron [J]. Journal of Agricultural and Food Chemistry,2007,55(14): 5708-5713.
    [123]Yang Q., Choi H., Dionysiou D. D. Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate [J]. Applied Catalysis B: Environmental,2007,74(1-2):170-178.
    [124]Yang Q., Choi H., Chen Y., et al. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water:The effect of support, cobalt precursor, and UV radiation [J]. Applied Catalysis B:Environmental,2008,77(3-4):300-307.
    [125]Yu z., Bensimon M., Laub D., et al. Accelerated photodegradation (minute range) of the commercial azo-dye Orange Ⅱ mediated by Co3O4/Raschig rings in the presence of oxone [J]. Journal of Molecular Catalysis A:Chemical,2007,272(1-2):11-19.
    [126]Abraham J. L., Hunt A. Environmental contamination by cobalt in the vicinity of a cemented tungsten carbide tool grinding plant [J]. Environmental Research,1995,69(1):67-74.
    [127]Kolthoff I. M., Medalia A. I., Raaen H. P. The reaction between Ferrous Iron and Peroxides. IV. Reaction with Potassium Persulfate [J]. Journal of the American Chemical Society,1951,73(4): 1733-1739.
    [128]Liang C., Bruell C. J., Marley M. C., et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple [J]. Chemosphere, 2004,55(9):1213-1223.
    [129]Liang C., Bruell C. J., Marley M. C., et al. Persulfate oxidation for in situ remediation of TCE. Ⅱ. Activated by chelated ferrous ion [J]. Chemosphere,2004,55(9):1225-1233.
    [130]Liang C., Lee I.-L., Hsu I.-Y., et al. Persulfate oxidation of trichloroethylene with and without iron activation in porous media [J]. Chemosphere,2008,70(3):426-435.
    [131]Liang C., Lee I.-L. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination-A proof of concept study [J]. Journal of Contaminant Hydrology,2008,100(3-4): 91-100.
    [132]Liang C., Wang Z.-S., Bruell C. J. Influence of pH on persulfate oxidation of TCE at ambient temperatures [J]. Chemosphere,2007,66(1):106-113.
    [133]Liang C., Huang C.-F., Chen Y.-J. Potential for activated persulfate degradation of BTEX contamination [J]. Water Research,2008,42(15):4091-4100.
    [134]Rastogi A., Al-Abed S. R., Dionysiou D. D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols [J]. Water Research,2009, 43(3):684-694.
    [135]Rastogi A., Al-Abed S. R.,. Dionysiou D. D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems [J]. Applied Catalysis B: Environmental,2009,85(3-4):171-179.
    [136]Huang Y.-F., Huang Y.-H. Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(Ⅱ,Ⅲ) two-stage oxidation process [J]. Journal of Hazardous Materials,2009,162(2-3):1211-1216.
    [137]郑伟,杨曦,张金凤等.Fe(II)/K2S2O8对水体中As(Ⅲ)的氧化研究[J].环境科学与技术,2007,30(11):41-42.
    [138]张金凤,杨曦,郑伟等.水体系中Fe(II)/K2S2O8降解敌草隆的研究[J].环境化学,2008,27(1):15-18.
    [139]郑伟,张金凤,王联红等.柠檬酸-Fe(II)/K2S2O8对敌草隆降解的研究[J].环境化学,2008,27(1):19-22.
    [140]张金凤,杨曦,郑伟等.水体系中EDTA-Fe(Ⅱ)/K2S2O8降解敌草隆的研究[J].环境科学,2008,29(5):1239-1243.
    [141]Cao J., Zhang W.-X., Brown D. G., et al. Oxidation of Lindane with Fe(II)-activated Sodium Persulfate [J]. Environmental Engineering Science,2008,25(2):221-228.
    [142]Fernandez J., Maruthamuthu P., Renken A., et al. Bleaching and photobleaching of Orange Ⅱ within seconds by the oxone/Co2+reagent in Fenton-like processes [J]. Applied Catalysis B:Environmental, 2004,49(3):207-215.
    [143]Crimi M. L., Taylor J. Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants [J]. Soil& Sediment Contamination,2007,16(1): 29-45.
    [144]Salem M. A., Gemeay A. H. Kinetics of the oxidation of Tartrazine with peroxydisulfate in the presence and absence of catalysts [J]. Monatshefte fur Chemie,2000,131(2):117-129.
    [145]Killian P. F., Bruell C. J., Liang C., et al. Iron (Ⅱ) activated persulfate oxidation of MGP contaminated soil [J]. Soil& Sediment Contamination,2007,16(6):523-537.
    [146]Nadim F., Huang K.-C., Dahmani A.Remediation of soil and ground water contaminated with PAH using Heat and Fe(II)-EDTA catalyzed persulfate oxidation [J]. Water, Air,& Soil Pollution:Focus, 2005,6(1):227-232.
    [147]Matta R., Hanna K., Chiron S. Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals [J]. Science of The Total Environment,2007,385(1-3):242-251.
    [148]Woods R., Kolthoff I. M., Meehan E. J. Arsenic(IV) as an intermediate in the induced oxidation of Arsenic(III) by the Iron(II) persulfate reaction and the photoreduction of Iron(III). Ⅱ. Presence of oxygen [J]. Journal of the American Chemical Society,1963,85(21):3334-3337.
    [149]Woods R., Kolthoff I. M., Meehan E.J. Arsenic(IV) as an intermediate in the induced oxidation of Arsenic(III) by the Iron(II)-persulfate reaction and the photoreduction of Iron(III). Ⅰ. Absence of oxygen [J]. Journal of the American Chemical Society,1963,85(16):2385-2390.
    [150]Allen T. L. The oxidation of Oxalate Ion by peroxydisulfate [J]. Journal of the American Chemical Society,1951,73(8):3589-3593.
    [151]Anderson J. M., Kochi J. K. Silver(I)-catalyzed oxidative decarboxylation of acids by peroxydisulfate. The role of silver(II) [J]. Journal of the American Chemical Society,1970,92(6): 1651-1659.
    [152]Zhang N. D., Kong X. P., Zhang M. X., et al. Study on treatment of methyl-orange in water by derivable oxidation of peroxydisulfate [J]. Journal of Advanced Oxidation Technologies,2007,10(1): 193-195.
    [153]张乃东,张曼霞,孙冰.硫酸根自由基处理水中甲基橙的初步研究[J].哈尔滨工业大学学报,2006,38(4):636-638.
    [154]张乃东,张曼霞,彭永臻.S2O82-派生氧化法催化降解水中的甲基橙[J].催化学报,2006,27(5):445-448.
    [155]Ravera M., Ciccarelli C., Gianotti V., et al. Electroassisted methods for waste destruction:Silver (II) and peroxydisulfate reagents in the electrochemically mediated oxidation of polyaromatic sulfonates [J]. Chemosphere,2004,57(7):587-594.
    [156]Gemeay A. H., Habib A. F. M., El-Din M. A. B. Kinetics and mechanism of the uncatalyzed and Ag(I)-catalyzed oxidative decolorization of Sunset Yellow and Ponceau 4R with peroxydisulphate [J]. Dyes and Pigments,2007,74(2):458-463.
    [157]Andal P., Murugavelu M., Shailaja S., et al. Studies on the oxygen atom transfer reactions of peroxomonosulfate:oxidation of Lactic Acid [J]. International Journal of Chemical Kinetics,2009, 41(7):449-454.
    [158]Thendral P., Shailaja S., Ramachandran M. S. Nickel peroxide:A more probable intermediate in the Ni(II)-catalyzed decomposition of peroxomonosulfate [J]. International Journal of Chemical Kinetics, 2007,39(6):320-327.
    [159]Shailaja S., Ramachandran M. S. Studies on the oxygen atom transfer reactions of peroxomonosulfate:oxidation of Glycolic Acid [J]. International Journal of Chemical Kinetics,2009, 41(3):160-167.
    [160]Kerezsi I., Lente G., Fabian I. Highly Efficient photoinitiation in the Cerium(III)-catalyzed aqueous autoxidation of Sulfur(IV). An example of comprehensive evaluation of photoinduced chain reacions [J]. Journal of the American Chemical Society,2005,127(13):4785-4793.
    [161]Walling C., El-Taliawi G. M., Zhao C. Oxidation of arylalkanols by S2O82--CuⅡ [J]. The Journal of Organic Chemistry,1983,48(25):4914-4917.
    [162]Walling C., Zhao C., El-Taliawi G. M. Oxidation of alkylbenzenes by S2O82--CuⅡ in acetic acid and acetonitrile [J]. The Journal of Organic Chemistry,1983,48(25):4910-4914.
    [163]Wei S.-K., Yeh A. Kinetic study of the Ru(II) catalyzed oxidation of pentacyanoferrate(II) complexes by peroxydisulfate [J]. Journal of the Chinese Chemical Society,1999,46(6):905-910.
    [164]Thompson R. C. Reduction of peroxomonosulfate by oxovanadium(IV) in acidic solution. Role of the sulfate radical anion [J]. Inorganic Chemistry,1981,20(11):3745-3748.
    [165]Lau T. K., Chu W., Graham N. J. D. The aqueous degradation of butylated hydroxyanisole by UV/S2O82-:Study of reaction mechanisms via dimerization and mineralization [J]. Environmental Science& Technology,2007,41(2):613-619.
    [166]Kim Y.-H., Carraway E. R. Dechlorination of pentachlorophenol by Zero Valent Iron and modified Zero Valent Irons [J]. Environmental Science& Technology,2000,34(10):2014-2017.
    [167]Orth W. S., Gillham R. W. Dechlorination of trichloroethene in aqueous solution using Fe0 [J]. Environmental Science& Technology,1996,30(1):66-71.
    [168]Liu T., Tsang D. C. W., Lo I. M. C. Chromium(VI) reduction kinetics by Zero-Valent Iron in moderately hard water with Humic Acid:Iron dissolution and Humic Acid adsorption [J]. Environmental Science& Technology,2008,42(6):2092-2098.
    [169]Agrawal A., Tratnyek P. G. Reduction of nitro aromatic compounds by Zero-Valent Iron metal [J]. Environmental Science& Technology,1996,30(1):153-160.
    [170]陈郁,全燮.零价铁处理污水的机理及应用[J].环境科学研究,2000,13(5):24-26.
    [171]全燮,刘毅慧,杨凤林等.零价铁对水中氯代烃还原脱氯的研究进展[J].环境科学进展,1997,12(s1):25-29.
    [172]Chen J.-L., Al-Abed S. R., Ryan J. A., et al. Effects of pH on dechlorination of trichloroethylene by zero-valent iron [J]. Journal of Hazardous Materials,2001,83(3):243-254.
    [173]Farrell J., Kason M., Melitas N., et al. Investigation of the long-term performance of Zero-Valent Iron for reductive dechlorination of Trichloroethylene [J]. Environmental Science& Technology, 2000,34(3):514-521.
    [174]Matheson L. J., Tratnyek P. G. Reductive dehalogenation of chlorinated methanes by Iron metal [J]. Environmental Science& Technology,1994,28(12):2045-2053.
    [175]Keenan C. R., Sedlak D. L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen [J]. Environmental Science& Technology,2008,42(4): 1262-1267.
    [176]Joo S. H., Feitz A. J., Sedlak D. L., et al. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron [J]. Environmental Science& Technology,2005,39(5):1263-1268.
    [177]Lee C., Keenan C. R., Sedlak D. L. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen [J]. Environmental Science& Technology,2008,42(13):4921-4926.
    [178]Lee J., Kim J., Choi W. Oxidation on Zerovalent Iron promoted by polyoxometalate as an electron shuttle [J]. Environmental Science& Technology,2007,41(9):3335-3340.
    [179]Joo S. H., Feitz A. J., Waite T. D. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron [J]. Environmental Science& Technology,2004,38(7):2242-2247.
    [180]Leupin O. X., Hug S. J. Oxidation and removal of arsenic (Ⅲ) from aerated groundwater by filtration through sand and zero-valent iron [J]. Water Research,2005,39(9):1729-1740.
    [181]Bremner D. H., Burgess A. E., Houllemare D., et al. Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide [J]. Applied Catalysis B:Environmental, 2006,63(1-2):15-19.
    [182]Raja P., Bozzi A., Jardim W. F., et al. Reductive/oxidative treatment with superior performance relative to oxidative treatment during the degradation of 4-chlorophenol [J]. Applied Catalysis B: Environmental,2005,59(3-4):249-257.
    [183]Zhou T., Li Y., Ji J., et al. Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system:Kinetic, pathway and effect factors [J]. Separation and Purification Technology, 2008,62(3):551-558.
    [184]周涛,陆晓华,李耀中.4-CP在零价铁/H202体系中的降解研究[J].环境科学与技术,2009,32(7):60-63.
    [185]Chu W., Law C. K. Treatment of trichlorophenol by catalytic oxidation process-[J]. Water Research, 2003,37(10):2339-2346.
    [186]Karlsson S., Kaugare S., Grimvall A., et al. Formation of 2,4,6-trichlorophenol and 2,4,6-trichloroanisole during treatment and distribution of drinking water [J]. Water Science and Technology,1995,31(11):99-103.
    [187]Annachhatre A. P., Gheewala S. H. Biodegradation of chlorinated phenolic compounds [J]. Biotechnology Advances,1996,14(1):35-56.
    [188]Xia C., Xu J., Wu W., et al. Pd/C-catalyzed hydrodehalogenation of aromatic halides in aqueous solutions at room temperature under normal pressure [J]. Catalysis Communications,2004,5(8): 383-386.
    [189]Alonso F., Beletskaya I. P., Yus M. Metal-mediated reductive hydrodehalogenation of organic halides [J]. Chemical Reviews,2002,102(11):4009-4092.
    [190]Pera-Titus M., Garcia-Molina V., Banos M. A., et al. Degradation of chlorophenols by means of advanced oxidation processes:a general review [J]. Applied Catalysis B:Environmental,2004, 47(4):219-256.
    [191]Kolthoff I. M., Miller I. K. The chemistry of persulfate. I. the kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium [J]. Journal of the American Chemical Society,1951,73(7):3055-3059.
    [192]Tsao M.-S., Wilmarth W. K. The aqueous chemistry of inorganic free radicals. I. the mechanism of the photolytic decomposition of aqueous persulfate ion and evidence regarding the sulfate-hydroxyl radical interconversion equilibrium [J]. The Journal of Physical Chemistry,1959,63(3):346-353.
    [193]Liang C., Su H.-W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate [J]. Industrial& Engineering Chemistry Research,2009,48(11):5558-5562.
    [194]Li S.-X., Wei D., Mak N.-K., et al. Degradation of diphenylamine by persulfate:Performance optimization, kinetics and mechanism [J]. Journal of Hazardous Materials,2009,164(1):26-31.
    [195]Hayon E., Treinin A., Wilf J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-,SO3-, SO4-, and SO5- radicals [J]. Journal of the American Chemical Society,1972,94(1):47-57.
    [196]齐文启,孙宗光.痕量有机污染物的监测[M].北京:化学工业出版社,2001.
    [197]国家环境保护总局《水和废水监测分析方法》编委会编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [198]Liang C., Lai M.-C. Trichloroethylene degradation by Zero Valent Iron activated persulfate oxidation [J]. Environmental Engineering Science,2008,25(7):1071-1077.
    [199]Bergendahl J. A., Thies T. P. Fenton's oxidation of MTBE with zero-valent iron [J]. Water Research, 2004,38(2):327-334.
    [200]Oh S.-Y., Kim H.-W., Park J.-M., et al. Oxidation of Polyvinyl Alcohol by persulfate activated with Heat, Fe2+, and Zero-Valent Iron [J]. Journal of Hazardous Materials,2009,168(1):346-351.
    [201]Huang Y. H., Zhang T. C. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+ [J]. Water Research,2005,39(9):1751-1760.
    [202]Li X., Cubbage J. W., Jenks W. S. Photocatalytic degradation of 4-Chlorophenol.2. The 4-Chlorocatechol pathway [J]. The Journal of Organic Chemistry,1999,64(23):8525-8536.
    [203]Li X., Cubbage J. W., Tetzlaff T. A., et al. Photocatalytic degradation of 4-Chlorophenol.1. The Hydroquinone pathway [J]. The Journal of Organic Chemistry,1999,64(23):8509-8524.
    [204]Neta P. Electron spin resonance study of irradiated aqueous solutions of fumarate ion. Use of fumarate for radical trapping [J]. The Journal of Physical Chemistry,1971,75(17):2570-2574.
    [205]Timmins G. S., Liu K. J., Bechara E. J., et al. Trapping of free radicals with direct in vivo EPR detection:a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO·and SO4·-[J]. Free Radical Biology& Medicine,1999,27(3-4):329-333.
    [206]Gilbert B. C., Norman R. O. C. Radical reactions in aqueous solutions:use of aci-anion of nitromethane as a spin trap [J]. Canadian Journal of Chemistry,1982,60:1379-1381.
    [207]Kirino Y., Ohkuma T., Kwan T. Spin trapping with 5,5-dimethylpyrroline-N-oxide in aqueous solution [J]. Chemical& Pharmaceutical Bulletin,1981,29(1):29-34.
    [208]雷乐成,汪大翚.水处理高级氧化技术[M].北京:化学工业出版社,2001.
    [209]Ouardaoui A., Steren C. A., Willigen H. van, et al. FT-EPR Study of the Photolysis of 4-Chlorophenol [J]. Journal of the American Chemical Society,1995,117(25):6803-6804.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700