用户名: 密码: 验证码:
联合抑制IGF-1R和NF-κB信号通路逆转吉非替尼耐药的人肺癌细胞株H1650耐药的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分靶向IGF-1R的siRNA逆转吉非替尼耐药的人非小细胞肺癌细胞株H1975和H1650耐药的研究
     目的:研究IGF-1R特异性的siRNA对逆转吉非替尼耐药的人非小细胞肺癌细胞H1975和H1650耐药的作用,并探讨其可能存在的机制。
     方法:不同浓度的吉非替尼分别处理吉非替尼耐药的肺癌细胞株(H1975和H1650),吉非替尼敏感的肺癌细胞株(HCC827),以及RNAi的表达载体分别转染后的H1975和H1650细胞,采用MTT法检测吉非替尼对各处理组细胞的生长抑制作用;AnnexinV-FITC和PI双标法标记细胞后,在流式细胞仪上检测吉非替尼浓度为0、0.01、0.1和1uM的条件下,处理24h和48h后各组细胞的凋亡水平;Western blot法检测细胞内EGFR、IGF-1R通路相关蛋白和凋亡相关蛋白的表达。
     结果:HCC827、H1975和H1650细胞株的IC50值分别为0.006±0.0003uM、24.62±0.3uM和18.39±0.2uM。经1uM吉非替尼处理48h后,H1975和H1650细胞中均检出了p-IGF-1R的高表达,而HCC827细胞中则未见明显的p-IGF-1R。当用siRNA技术分别沉默H1975和H1650细胞中的IGF-1R后,吉非替尼在两种细胞中的ICso值分别下降至7.94±0.1uM和9.42±0.4uM,明显低于IGF-1R未沉默的相应细胞(P<0.05)。作用24h和48h时,吉非替尼在IGF-1R沉默后的H1975和H1650细胞中诱导的凋亡比例均明显高于IGF-1R未沉默的相应细胞株(P<0.05)。IGF-1RsiRNA联合吉非替尼作用时明显抑制了H1975和H1650细胞中的p-IGF-1R(?)(?)p-Akt的表达。
     结论:IGF-1R siRNA能有效增强吉非替尼在耐药的人肺癌细胞株H1975和H1650中诱导的生长抑制和凋亡效应。IGF-1R siRNA技术或可成为逆转EGFR-TKIs耐药的新策略。
     第二部分
     联合抑制IGF-1R和NF-KB信号通路逆转吉非替尼耐药的人肺癌细胞株H1650耐药的研究
     目的:在第一部分研究中我们证明,ⅠGF-1R siRNA能够在EGFR-TKIs耐药的肿癌细胞中提高吉非替尼诱导的生长抑制和凋亡水平。然而,临床试验显示,联合使用IGF-1R印制剂(?)(?)EGFR-TKIs并未能在肺癌治疗中取得显效。新近发现,NF-KB通路是影响肺癌细胞对EGFR-TKIs敏感性的因素。我们旨在探索联合抑制(?)IGF-1R和NF-KB通路能否提高耐药细胞对吉非替尼的敏感性,并探讨其可能的机制。
     方法:分别用吉非替尼和NF-KB特异性抑制齐(?)JPDTC处理IGF-1R未沉默和沉默的细胞H1650-sictrl和H1650-siIGF-1R。用MTT实验检测(?)PDTC和吉非替尼对各组细胞的生长抑制作用,流式细胞术检测细胞的凋亡水平,EMSA实验检测细胞内NF-kB的DNA结合能力,Western blot法检测细胞内EGFR、IGF-1R和NF-kB信号通路的相关蛋白表达,并检测凋亡相关蛋白PARPcl的水平。
     结果:IkB在吉非替尼敏感的肺癌细胞HCC827中的水平高于吉非替尼耐药的H1975和H1650细胞,其表达因吉非替尼的作用而上调。在IGF-1R未沉默的H1650-sictrl细胞中,IKB的表达水平低于其在H1650-siIGF-1R细胞中的表达,且两种细胞中IKB水平均随吉非替尼浓度增加而出现上调。与H1650-sictrl细胞相比,PDTC在H1650-siIGF-1R细胞中明显增强了吉非替尼诱导的生长抑制和凋亡效应(P<0.05)。IGF-1R的沉默降低了NF-KB p65在H1650-siIGF-1R细胞核中的累积,NF-κB的DNA结合能力随着IGF-1R和EGFR同时受到抑制而减弱,但仍然具有活性。PDTC对EGFR、IGF-1R、Akt、ERK、p-EGFR、p-IGF-1R、p-Akt和p-ERK等蛋白的表达均无明显影响。
     结论:在IGF-1R激活的吉非替尼耐药的肺癌细胞H1650中,NF-KB信号通路也处于活化的状态,NF-KB作为下游因子其活性部分受到IGF-1R的调控。联合抑制IGF-1R和NF-kB信号通路能够有效提高吉非替尼在H1650细胞中所诱导的生长抑制和促凋亡作用。
Part One IGF-1R siRNA enhances the effects of gefitinib in H1650 and H1975: Non small cell lung cancer cell lines with acquried resistance to EGFR-TK inhibitors
     Purpose:H1975 and H1650 are non small cell lung cancer (NSCLC) cells lines which display resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). We investigated the effect of silencing insulin like growth factor 1 receptor (IGF-1R) on the sensitivity of H1650 and H1975 to Gefitinib by siRNA considering that IGF1R signaling has been involved in the development of EGFR-TKIs acquired resistance in lung cancer.
     Methods:Three human NSCLC cell lines with EGFR mutations of HCC827, H1975 and H1650 were used for this part of experiment. Cell viability and proliferative activity were assessed by MTT. The expression of EGFR- and IGFR-related proteins was examined by western blots.
     Results:H1650 and H1975 cells were much more resistant to gefitinib than HCC827 cells, respectively. In spite of gefitinib treatment, phosphatase and tensin homolog loss and sustained phosphorylation of Akt were evident in H1650 and H1975 cells, but not in HCC827 cells. When the tumor cells were treated with gefitinib, IGF-1R phosphorylation, which was decreased in HCC827 cells, maintained in H1650 and H1975 cells. Combined treatment with IGF1R siRNA enhanced growth inhibition and apoptosis induced by gefitinib, and down-regulated phosphorylated Akt, EGFR and IGF1R.
     Conclusion:Combined inhibition of IGF1R signaling by si RNA enhances the growth inhibitory and apoptosis-inducing effects of gefitinib, suggesting that this approach could be useful to overcome the aquired resistance to EGFR-TKIs in lung cancer.
     Part Two Combined inhibition of IGF-1R and NF-κB enhances the effects of gefitinib in EGFR-TK inhibitors resistant lung cancer cells line H1650
     Purpose:We have previously demonstrated that IGF-1R siRNA is a crucial regulator in mediating gefitinib-induced cell death, which upregulates apoptosis-related molecules. Nevertheless, the clinical trials that evaluated the addition of IGF-1R inhibition to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in lung cancer have not demonstrated improvements in outcomes. There is increasing evidence suggests that NF-κB pathway is a determinant of sensitivity of non-small cell lung cancer (NSCLC) cells to EGFR-TKIs. Since the interactions of IGF-1R and NF-κB pathways were demonstrated in types of cells and tissues, we try to explore the effect of combined inhibition of NF-κB and IGF-1R on EGFR-TKIs resistant lung cancer cell line H1650.
     Methods:The expression of IGF-1R in H1650 was silenced using an IGF-1R specific siRNA. PDTC was taken as NF-κB specifitic inhibitor in this study. Cell viability was assessed by MTT. The apoptosis of cells was measured and analysed by flow cytometry. The expression and activity of EGFR-, IGFR-and NF-κB-related proteins were detected by western blots and EMSA.
     Results:We found that H1650, with resistance to Gefitinib exhibited a high level activity of both IGF-1R and NF-κB. The DNA binding activity of NF-κB in H1650 was partly reduced by the silencing of IGF-1R, suggesting the activation of NF-κB was not totally IGF-1R dependent in lung cancer. In addition, the silencing of IGF-1R expression together with NF-κB inhibition made the lung cancer cells more sensitive to gefitinib-mediated apoptosis than it did alone, suggesting the involvement of both IGF-1R and NF-κB pathways in gefitinib acquired resistance in H1650 cells.
     Conclusion:These results suggest that NF-κB is potentially involved in promoting gefitinib resistance even when the IGF-1R pathway was inhibited in lung cancer cell line H1650. Our findings also suggest that NF-κB activation was partially IGF-1R dependent, thus, combined inhibition of both NF-κB and IGF-1R may provide an effective way to overcome EGFR-TKIs resistance.
引文
1. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin 2011; 61:69-90.
    2. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med2008;359: 1367-1380.
    3. Blackhall F, Ranson M, Thatcher N. Where next for gefitinib in patients with lung cancer? Lancet Oncol2006;7:499-507.
    4. Suda K, Onozato R, Yatabe Y, et al. EGFR T790M mutation:a double role in lung cancer cell survival? J Thorac Oncol2009;4:1-4.
    5. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med350:2129-2139.
    6. Jackman D, William P, Gregory JR, et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol2010;28:357-360.
    7. LeRoith D, Roberts CT Jr. The insulin like growth factor system and cancer. Canc-er Lett2003;195:127-137.
    8. Tai YT, Podar K, Catley L, et al. Insulin like growth factor 1 induces adhesion and migration in human multiple myeloma cells via activation of β1 intergrin and phosph atidylinostitol 3'-kinase/AKT signaling. Cancer Res2003;63:5850-5858.
    9. Del Valle L, Enam S, Lassak A, et al. Insulin like growth factor 1 receptor activity in human medulloblastomas. Clin Cancer Res2002;8:1822-1830.
    10. Jones HE, Goddard L, Gee JM, et al. Insulin like growth factor-1 receptor signalin-g and acquired resistance to gefitinib(ZD1839, Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer2004;11:793-814.
    11. Sangha R, Lara PN Jr, Mack PC, et al. Beyond antiepidermal growthfactor recept-ors and antiangiogenesis strategies for nonsmall cell lung cancer:exploring a new fro-ntier. Curr Opin Oncol2009; 21:116-123.
    12. Karp DD, Paz-Ares LG, Novello S, et al. Phase II study of the anti-insulin like growth factor type 1 receptor antibody CP-751,871 in combination with paclitaxel and carboplatin in previously untreated, locally advanced, or metastatic nonsmall-cell lung cancer. J.Clin Oncol2009; 27:2516-2522.
    13. Gualberto A, Pollak M. Emerging role of insulin-like growth factor receptor inhib-itors in oncology:early clinical trial results and future directions. Oncogene2009; 28:3009-3021.
    14. Golan T, Javle M.Targeting the insulin growth factor pathway in gastrointestinal cancers. Oncology (Williston Park) 2011; 25:518-26,529.
    15. Delafontaine P, Song YH, Li Y. Expression, regulation, and function of IGF-1, IG F-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol 20 04; 24:435-444.
    16. Jiang Y, Rom WN, Yie TA, et al. Induction of tumor suppression and glandular differentiation of A549 lung carcinoma cells by dominant negative IGF-I receptor.On-cogene 1999; 18:6071-6077.
    17. Julie LW, Qian Z, Lora AT et al. Insulin like growth factor-1 receptor and ErbB ki-nase inhibitor combinations block proliferation and induce apoptosis through Cyclin D1 reduction and Bax activation. J Biol Chem2008;283:23721-23730.
    18. Kulik G, KlippelA, WeberMJ. Antiapoptotic signaling by the insulin like growth factor-1 receptor, phosphatedylinositol 3-kinase, and Akt. Mol Cell Biol1997,17: 1595-1606.
    19. Gallagher EJ, LeRoith D. Insulin, insulin resistance, obesity, and cancer. Curr Diab Rep.2010; 10:93-100.
    20. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA inteference in culture in culure mammalian cells. Nature2001; 411: 494-498.
    21. Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase dom-ain. PLoS Med 2005;2:e73.
    22. Choi YJ, Rho JK, Jeon BS, et al. Combined inhibition of IGFR enhances theeffec ts of gefitinib in H1650:a lung cancer cell line with EGFR mutation and primary resis-tance to EGFR-TK inhibitors. Cancer Chemother Pharmacol2010; 66:381-388.
    23. Sos ML, Koker M, Weir BA, et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res2009; 69: 3256-3261.
    24. Cappuzzo F, Magrini E, Ceresoli GL, et al. Akt phosphorylation and gefitinib efficacy in patients with advanced non small cell lung cancer. J Natl Cancer Inst2004 96:1133-1141.
    1. Sequist LV, Bell DW, Lynch TJ, et al. Molecular predictors of response to epidermal growth factor receptor antagonists in non small cell lung cancer. J Clin Oncol 2007;25:587-595.
    2. Jackman D, William P, Gregory JR, et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol2010;28:357-360.
    3. Choi YJ, Rho JK, Jeon BS, et al. Combined inhibition of IGFR enhances the effects of gefitinib in H1650:a lung cancer cell line with EGFR mutation and primary resistance to EGFR-TK inhibitors. Cancer Chemother Pharmacol2010; 66:381-388.
    4. Ramalingam SS, Spigel DR, Chen D, et al. Randomized phase II study of erlotinib in combination with placebo or R1507, a monoclonal antibody to insulin like growth factor-1 receptor, for advanced-stage non small cell lung cancer. J Clin Oncol2011; 29: 4574-4580.
    5. Bivona TG, Hieronymus Haley, Parker J, et al. FAS and NF-κB signallingmodulate-dependence of lung cancers on mutant EGFR. Nature2011;471:523-526.
    6. Lewis DA, Spandau DF. UVB-induced activation of NF-κB is regulated by the IG-F-1R and dependent on p38 MAPK. J Invest Dermatol 2008:128:1022-1029.
    7. Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev2004; 18:2195-2224.
    8. Chen W, Wang X, Bai L, et al. Blockage of NF-κB by Iκκβ-or Re1A-siRNA rather than the NF-κB super-supperssor IκBα mutant potentiates adriamycin-induced cytotoxicity in lung cancer cells. J Cell Biochem2008;105:554-561.
    9. Hur GM, Lewis J, Yang Q, et al. The death domain kinase RIP has an essential role in DNA damage-induced NF-κB activation. Genes Dev2003; 17:873-882.
    10. Naugler WE, Karin M. NF-kB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev2008; 18:19-26.
    11. Cau SB, Guimarases DA, Rizzi E, et al. Pyrrolidine dithiocarbamate down-regulates vascular matrix metalloproteinases and ameliorates vascular dysfunction and remodeling in renovascular hypertension. Br J Pharmacol 2011;164:372-381.
    12. Zhao D, Bakirtzi K, Zhan Y, et al. Insulin like growth factor-1 receptor transactivation modulates the inflammatory and proliferative responses of neurotensin in human colonic epithelial cells. J Biol Chem2011; 286:6092-6099.
    13. Wu CM, Li TM, Hsu SF, et al. IGF-1 enhances α5β1 integrin expression and cell motility in human chondrosarcoma cells. J Cell Physiol2011;226:3270-3277.
    14. Tsurutani J, Castillo SS, Brognard J, et al. Tobacco components stimulate Akt-dependent proliferation and NF-κB-dependent survival in lung cancer cells. Carcinogenesis 2005;26:1182-1195.
    15. http://www.atcc.org
    16. Janssens S, Tschopp J. Signals from within:the DNA-damage-induced NF-κB response. Cell Death Differ 2006; 13(5):773-784.
    1. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncologyTM. Non-Small Cell Lung Cancer. V.3.2011. Available at: http://www.nccn.org/professionals/phvsician_gls/PDF/nscl.pdf.
    2. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med2008;359: 1367-1380.
    3. Surveillance Epidemiology and End Results, National Cancer Institute. SEER stat fact sheets:Lung and Bronchus.2010. Available at:http://seer.cancer.gov/ statfacts/html/lungb.html.
    4. AstraZeneca. IRESSA (Gefitinib) receives marketing authorisation for the treatment of non-small cell lung cancer in Europe. Available at:http://www. astrazeneca.com/Media/Press-releases/Article/20090701--IRESSA-Gefitinib-Receives-Marketing-Authorisation-f.
    5. Roche's Tarceva gains positive CHMP opinion for first-line use in genetically distinct type of lung cancer. Available at:http://www.roche.com/media/media_releases/med-cor-2011-07-22.htm.
    6. Jackman D, William P, Gregory JR, et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol2010;28:357-360.
    7. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol2001;2:127-137.
    8. Bazley LA, Gullick WJ. The epidermal growth factor receptor family. Endocr Relat Cancer2005;12:S17-27.
    9. Olayioye MA, Neve RM, Lane HA, et al. The ErbB signaling network:receptor heterodimerization in development and cancer. EMBO J2000; 19:3159-67.
    10. Ciardiello F, Tortora G EGFR antagonists in cancer treatment. N Engl J Med 2008;358:1160-74.
    11. Klapper LN, Glathe S, Vaisman N, et al. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc Natl Acad Sci USA1999;96:4995-5000.
    12. Hynes NE, Lane HA. ERBB receptors and cancer:the complexity of targeted inhibitors. Nat Rev Cancer2005;5:341-354.
    13. Baselga J, Swain SM. Novel anticancer targets:revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer2009;9:463-475.
    14. Guy PM, Platko JV, Cantley LC, et al. Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci USA1994;91:8132-8136.
    15. Wallasch C, Weiss FU, Niederfellner G, et al. Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J1995; 14: 4267-4275.
    16. Marmor MD, Skaria KB, Yarden Y. Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys2004;58:903-913.
    17. Blackhall F, Ranson M, Thatcher N. Where next for gefitinib in patients with lung cancer? Lancet Oncol2006;7:499-507.
    18. Suda K, Onozato R, Yatabe Y, et al. EGFR T790M mutation:a double role in lung cancer cell survival? J Thorac Oncol2009;4:1-4.
    19. Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer2007;7:169-181.
    20. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer:a phase III trial-INTACT 1. J Clin Oncol2004;22:777-784.
    21. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced nonsmall-cell lung cancer:a phase III trial-INTACT 2. J Clin Oncol2004;22:785-794.
    22. Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet2005; 366:1527-1537.
    23. Iressa(?) (gefitinib tablets) [package insert]. Wilmington, DE:AstraZeneca Pharmaceuticals LP 2005.
    24. Johnson JR, Cohen M, Sridhara R, et al. Approval summary for erlotinib for treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of at least one prior chemotherapy regimen. Clin Cancer Res2005;11: 6414-6421.
    25. Erlotinib (Tarceva) for advanced non-small cell lung cancer. Med Lett Drugs Ther 2005; 47:25-26.
    26. Takimoto CH, Calvo E. "Principles of Oncologic Pharmacotherapy" in Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ (Eds) Cancer Management:A Multidisciplinary Approach.11 ed.2008.
    27. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected].J Clin Oncol2003;21:2237-2246.
    28. Perez-Soler R, Chachoua A, Hammond LA, et al. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol 2004;22:3238-3247.
    29. Hepherd FA, Pereira JR, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med2005;353:123-132.
    30. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer:a randomized trial. JAMA2003;290:2149-2158.
    31.Kim ES, Hirsh V, Mok T, et al. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST):a randomised phase III trial. Lancet 2008;372:1809-1818.
    32. Jackman D, Pao W, Riely GJ, et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol2010; 28:357-60.
    33. Kumar A, Petri ET, Halmos B, et al. Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J Clin Oncol2008;26:1742-1751.
    34. Costa DB, Kobayashi S, Tenen DG, et al. Pooled analysis of the prospective trials of gefitinib monotherapy for EGFR-mutant non-small cell lung cancers. Lung Cancer 2007;58:95-103.
    35. Sequist LV, Martins RG, Spigel D, et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol2008;26:2442-2449.
    36. Asahina H, Yamazaki K, Kinoshita I, et al. A phase II trial of gefitinib as first-line therapy for advanced non-small cell lung, cancer with epidermal growth factor receptor mutations. Br J Cancer2006;95:998-1004.
    37. Rosell R, Moran T, Queralt C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med2009;361:958-967.
    38. Shigematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst2005;97:339-346.
    39. Tokumo M, Toyooka S, Kiura K, et al. The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin Cancer Res2005;11:1167-1173.
    40. Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med2005;2:e73.
    41. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med2005;352:786-792.
    42. Yun CH, Mengwasser KE, Toms AV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 2008; 105:2070-2075.
    43. Balak MN, Gong Y, Riely G J, et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res2006; 12:6494-6501.
    44. Kosaka T, Yatabe Y, Endoh H, et al. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res2006;12:5764-5769.
    45. Maheswaran S, Sequist LV, Nagrath S, et al.Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med2008; 359:366-377.
    46. Shih JY, Gow CH, Yang PC. EGFR mutation conferring primary resistance to gefitinib in non-smallcell lung cancer. N Engl J Med2005;353:207-208.
    47. Bell DW, Gore I, Okimoto RA, et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet2005; 37: 1315-1316.
    48. Bean J, Riely GJ, Balak M, et al. Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin Cancer Res2008;14:7519-7525.
    49. Cappuzzo F, Ciuleanu T, Stelmakh L, et al. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer:a multicentre, randomised, placebo-controlled phase 3 study. Lancet Onco 12010; 11:521-529
    50. Ahrendt SA, Decker PA, Alawi EA, et al. Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung. Cancer2001;92:1525-1530.
    51. Pao W, Wang TY, Riely GJ, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med2005;2:e17.
    52. Miller VA, Riely GJ, Zakowski MF, et al. Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol2008;26:1472-1478.
    53. Massarelli E, Varella-Garcia M, Tang X, et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res2007;13:2890-2896.
    54. Mitsudomi T, Steinberg SM, Oie HK, et al. Ras gene mutations in non-small cell lung cancers are associated with shortened survival irrespective of treatment intent. Cancer Res 1991;51:4999-5002.
    55. Rodenhuis S, van de Wetering ML, Mooi WJ, et al. Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med1987;317:929-935.
    56. Hirsch FR, Dziadziuszko R, Varella-Garcia L, et al. Randomized phase Ⅱ study of erlotinib (E) or intercalated E with carboplatin/paclitaxel (CP) in chemotherapy-naive advanced NSCLC:correlation of biomarker status and clinical benefit. J Clin Oncol 2009;27:8026.
    57. Miller VA, Wakelee HA, Lara PN, et al. Activity and tolerance of XL647 in NSCLC patients with acquired resistance to EGFR-TKIs:preliminary results of a phase II trial. J Clin Oncol2008;26:8028.
    58. Bar J, Onn A. Overcoming molecular mechanisms of resistance to first-generation epidermal growth factor receptor tyrosine kinase ilnhibitors. Clin Lung Cancer2011 Dec 7. [Epub ahead of print]
    59. Thomson S, Buck E, Petti F, et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res2005;65:9455-9462.
    60. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007;316:1039-1043.
    61. Bean J, Brennan C, Shih JY, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA2007; 104:20932-20937.
    62. Yano S, Wang W, Li QI, et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res2008;68:9479-9487.
    63. Turke AB, Zejnullahu K, Wu YL, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell2010; 17:77-88.
    64. Onitsuka T, Uramoto H, Nose N, et al. Acquired resistance to gefitinib:the contribution of mechanisms other than the T790M, MET, and HGF status. Lung Cancer2010;68:198-203.
    65. She QB, Solit D, Basso A, et al. Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3'-kinase/Akt pathway signaling. Clin Cancer Res2003;9:43404346.
    66. Tang JM, He QY, Guo RX, et al. Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer2006;51:181-191.
    67. Lim WT, Zhang WH, Miller CR, et al. PTEN and phosphorylated Akt expression and prognosis in early- and late-stage non-small cell lung cancer. Oncol Rep2007; 17:853-857.
    68. Sos ML, Koker M, Weir BA, et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res2009; 69: 3256-3261.
    69. Camp ER, Summy J, Bauer TW, et al. Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin Cancer Res2005; 11: 397-405.
    70. Guix M, Faber AC, Wang SE, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest 2008; 118:2609-2619.
    71. Chakravarti A, Loeffler JS, Dyson NJ. Insulin-like growth factor receptor 1 mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res2002;62:200-207.
    72. Morgillo F, Kim WY, Kim ES, et al. Implication of the insulin-like growth factor-IR pathway in the resistance of non-small cell lung cancer cells to treatment with gefitinib. Clin Cancer Res2007;13:2795-2803.
    73. Choi YJ, Rho JK, Jeon B, et al. Combined inhibition of IGFR enhances the effects of gefitinib in H1650:a lung cancer cell line with EGFR mutation and primary resistance to EGFR-TK inhibitors. Cancer Chemother Pharmacol2010;66:381-388.
    74. Bivona TG, Hieronymus Haley, Parker J, et al. FAS and NF-kB signalling modulate dependence of lung cancers on mutant EGFR. Nature2011;471:523-526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700