用户名: 密码: 验证码:
二噁英形成及降解过程中重要反应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二噁英是一类典型的持久性有机污染物(POPs),已被列入《斯德哥尔摩公约》中的POPs名单。由于二噁英不是人类故意生产的副产物,因此研究二噁英形成过程中包含的重要基元反应以及二噁英的降解具有十分重要的意义。研究表明氯酚类化合物是形成二噁英的主要前体物,在热解、焚烧、光化学和酶催化条件下都可能形成二噁英。氯酚与H、Cl、OH、O(~3P)是二噁英形成过程中的重要起始步骤。本论文采用量子化学理论密度泛函方法(DFT)在较高精度水平上研究了二噁英形成过程中包含的重要反应以及二噁英的降解,获得了许多有价值的研究成果:
     1.氯代苯氧自由基-自由基的二聚化是二噁英形成的重要途径,氯酚与H原子形成氯代苯氧自由基是二噁英形成的重要起始步骤。本文通过高精度量子化学计算揭示了氯酚与H原子反应形成氯代苯氧自由基的反应机理,并讨论了19种氯酚中O-H键的反应活性。氯酚与H原子的反应势垒为3~7 kcal/mol,且反应是强放热过程。研究表明Cl取代对氯酚中O-H键的强度及反应活性有强烈影响。邻位Cl取代降低了氯酚中O-H键的反应活性,而对位Cl取代增强了氯酚中O-H键的反应活性。在所有氯酚中,4-氯酚、2,3-氯酚、2,4,5-氯酚中O-H键的反应活性最高。2,4,5-氯酚是形成毒性最强的二噁英2,3,7,8-TeCDD的重要前体物。
     2.2-氯酚可以作为模型化合物研究氯酚类物质生成二噁英的机理。本文采用量子化学方法研究了2-氯酚与H原子、Cl原子、OH自由基、O(~3P)反应生成2-氯代苯氧自由基的机理。使用小曲率隧道效应校正的变分过渡态理论研究了这些反应在400~1200 K范围内的反应动力学特性。反应速率常数分别为k_H(T)=(2.22×10~(-12))exp(-2011.15/T)、k_(Cl)(T)=4.46×10~(-11)exp(-68.95/T)、k_(OH)(T)=1.97×10~(-12)exp(-1609.66/T)、k_O(~3p)(T)=7.48×10~(-14)exp(-544.34/T)。
     3.通过较高精度量子化学计算揭示了2,3,7,8-TeCDD在光-Feston试剂作用下的降解机理,提出了几种可能的反应途径。反应驻点(包括反应物、中间体、过渡态和产物)的信息在B3LYP/6-31G(d)水平上计算得到。提出两种反应机理:开环-加成机理和加成-开环机理。根据吉布斯自由能变化计算了液相平衡常数以预测反应趋势,也计算了稳定构型的平衡分布。主要产物是4,5-dichlorinate-o-dihydroxybenzene and 4,5-dichlorinate-o-quinone。验证和补充了实验中提出的降解机理。
Known as the typical persistent organic pollutants.dioxin is lised in the Stockholm convention.And as the high toxic man-made compounds undesignedly, dioxin is paid more and more attention to by environmental chemist nowadays. Researches on the cause,path and mechanism of formation and degradation are increasing throughout the world.Chlorophenols are major precursors of PCDD/Fs' formation.In pyrogenation reactors,incinerators and photolysis process,to ascertain the role which chlorophenols act is the key to find out the formation mechanism of PCDD/Fs.The reactions of chlorophenols with H,Cl,O(~3P)and OH initiate the formation of PCDD/Fs.The reasonable mechanism is important to cut off emission of PCDD/Fs.A series quantum chemistical calculations based on density functional theory have been carried out in the study on the formation and degradation of PCDD/Fs.Major valuable results are listed as follows:
     1.The most direct route to the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs)in combustion and thermal processes is the gas-phase reaction of chemical precursors such as chlorinated phenols.Reactions of chlorophenols with atomic H are important initial steps for the formation of PCDD/Fs.Detailed insight into the mechanism and kinetical properties of crucial elementary steps is a prerequisite for understanding the formation of PCDD/Fs.In this study,the reactions of all 19 chlorophenol congeners with H,which initiated the formation of PCDD/Fs,have been studied theoretically using molecular orbital theory for the first time.Studies show that the Cl substitution has an effect on the strength and reactivity of the O-H bond in chlorophenols.The phenoxyl-hydrogens in 4-chlorophenol(4-CP),2,3-chlorophenol(2,3-DCP)and 2,4,5-chlorophenol (2,4,5-TCP)are most reactive.The formation of PCDD/Fs shows a strong dependency on the substitution pattern of chlorophenol.2,4,5-TCP,which has a Cl atom substituted at its ortho site,has the minimum number of Cl atoms to form 2,3,7,8-TeCDD.
     2.The 2-chlorophenol(2-CP)is a suitable kind of model compound to study the dioxin formation reaction.In this study,the mechanisms the reactions of 2-chlorophenol with H atom,Cl atom,OH radical and O(~3P)were studied by ab initio techniques.The rate constants are deduced using canonical variational transition-state theory(CVT)with small curvature tunneling corrections(SCT)over a wide temperature range 400~1200 K.The reaction rate expressions are K_H(T)= k(T)=(2.22×10~(-12))exp(-2011.15/T),K_(Cl)(T)=4.46×10~(-11)exp(-68.95/T),K_(OH)(T)= 1.97×10~(-12)exp(-1609.66/T)and k_(O(~3P))(T)=7.48×10~(-14)exp(-544.34/T),respectively.
     3.High-level quantum chemical method is adopted to elucidate the degradation mechanism of 2,3,7,8-TeCDD with the photo-Feston reagent.Several possible reaction pathways are proposed.The information of the stationary points including the reactants,intermediates,transition states and products are calculated at the B3LYP/6-31G(d)level.Two degradation mechanisms are proposed:ring-opening and adducting mechanism,adducting and ring-opening mechanism.The equilibrium distribution of the stable geometries and the equilibrium constants in aqueous phase indicating the reaction trend are performed according to the difference of Gibbs free energy.The main products obtained are 4,5-dichlorinate-o-dihydroxybenzene and 4,5-dichlorinate-o-quinone.The degradation mechanism proposed in the experiment is testified and improved.
引文
1.夏立江.环境化学[M].北京:中国环境科学出版社,2003,303.
    2.Kaupp H.,Mclachlan M.S.,Atmos.Environ.,2000,34,73.
    3.余刚.牛军峰,黄俊.持久性有机污染物[M].北京:科学出版社,2005.135.
    4. Campfens J., Mackay D., Environ. Sci. Technol., 1997, 31, 577.
    5. Wania F., Msckay D., Ambio, 1993,22, 10.
    6. Wania F., Msckay D., Envion. Sci. Technol., 1996, 30, 377.
    7. Finizio A., Mackay D., Bidleman T., et al., Atmos. Environ., 1997, 31, 2289.
    8. 李欣, 王玉萍. 二噁英物质的结构性质分析[J]. 哈尔滨工业大学学报, 2004,36,513.
    9. Domingo J. L., Granero S., Schuhmacher M., Chemosphere, 2001,43,517.
    10. Schwetz B. A., Norris J. M., Sparschu G. L., Environ. Health Perspect, 1973, 5, 87.
    11. Henck J. M., New M. A., Kociba R. J., Toxicol. Appl. Pharmacol., 1981, 59, 405.
    12. Kociba R. J., Keeler P. A., Park C. N., et al. Toxicol. Appl. Pharmacol., 1976, 35, 553.
    13. Birnbaum L. S., Tuomisto J., Food Addit. Contain., 2000, 17,275.
    14. Neuberger M., Kundi M., Jager R. Toxicol. Lett., 1998,96,347.
    15. Sweeney M. H., Mocarelli P., 2000, 17, 303.
    16. Kociba R. J., Keeler P. A., Park C. N., et al. Toxicol. Appl. Pharmacol, 1978,46,279.
    17. Bertazzi P. A., Bemucci I., Brambilla G., et al. Environ. Health Perspect., 1998, 106,625.
    18. Nyska A., Yoshizawa K., Jokinen M. P., et al. Toxicol. Pathol., 2005, 33, 371.
    19. Pavuk M., Michalek J. E., Ketchum N. S., J. Expo. Anal. Environ. Epidemiol., 2006, 16, 184.
    20. Yoshizawa K., Walker N. J., Jokinen M. P., et al. Toxicol. Sci., 2005, 83, 64.
    21. Zhao D., Pritts E. A., Chao V. A., et al. Mol. Hum. Reprod., 2002, 8, 849.
    22. Yang J. Z., Agarwal S. K., Foster W. G, Toxicol. Sci., 2000, 56, 374.
    23. Kern P. A., Fishman R. B., Song W., et al. Toxicology, 2002, 171,117.
    24. Eskenazi B., Mocarelli P.. Warner M., et al. Environ. Health Perspect., 2002,110,629.
    25. Clewell H. J., Gentry P. R., Gentry P. R., et al. Toxicol. Sci., 2004, 79, 381.
    26. Michalek J.E., Rahe A. J.. Boyle C A. Epidemiology, 1998,9, 161.
    27. Stellman S. D., Stellman J. M., Sommer J. F., J. Environ. Res., 1988,47, 150.
    28. Mitchell K. A., Lawrence B. P., Toxicol. Sci., 2003, 74, 74.
    29. Kim H. A., Kim E. M., Park Y. C, et al. Ind. Health, 2003, 41, 158.
    30. Camacho I. A., Nagarkatti M.. Nagarkatti P. S.. Toxicol. Sci., 2004,78,96.
    31. UNEP. Regional Assessment of Persistent Toxic Substance, Central and Northeast Asia Regional Report[R].Geneva:UNEP Chemicals,2002.
    32.吴文忠,徐盈,张甬元等.鸭儿湖地区多氯代二苯并二恶/呋喃(PCDD/F)的污染状况及其来源归宿的初步研究[J].环境科学学报.1998,18(4):415-420.
    33.Marvin C.,Stern G.,Reiner E,et al.2002,56,453.
    34.Baker J.R.,Mihelcic J.R.,Shea E.,Chemosphere,2000,41,813,
    35.Paasivirta J.,Sinkkonen P..Rantio T..et al.Chemosphere,1999.39.81.
    36.刘芃岩,郝吉明.氯酚为前生体生成二噁英类的研究进展[J].化学通报.2003,2,78.
    37.Wiskstrom E.,Marklund S.,Environ.Sci.Technol.,2000,34,604.
    38.Dickson L.C.,Lenoir D.,Hutzinger O.,Environ.Sci.Technol.,1992,26,1822.
    39.Sidhu S.,Edwards P.,Int.J.Chem.Kinet.,2002,34,531.
    40.Mulholland J.A.,Akki U.,Yang Y.,et al.Chemosphere,2001,42,719.
    41.Evans C.S.,Dellinger B.,Environ.Sci,Technol.,2005,39,4857.
    42.Skurlatov Y.I..Ernestova L.S.,Vichutinskays E.V.,et al.Acta Hydrochim.Hydrobiol.,1998,26,31.
    43.Svenson A.,Kjeller L.O.,Rappe C.,Environ.Sci.Technol.,1989,23,900.
    44.Oberg L.G.,Glas B.,Swanson S.E.,et al.Arch.Environ.Contain.Toxicol.,1990,19,930.
    45.Oberg L.G.,Rappe C.,Chemosphere,1992,25,49,
    46.Huwe J.K.,Feil V.J.,Zaylskie R.G.,et al.Chemosphere,2000,40,957,
    47.Wittsiepe J.,Kullmann Y.,Schrey P.,et al.Chemosphere,2000,40,963.
    48.Wittsiepe J.,Kullmann Y.,Schrey P.,et al.Toxicol.Lett..1999,106,191.
    49.Hoekstra E.J.,Weerd H.,Leer E.W.B.,et al.Environ.Sci.Technol.,1999,33,2543.
    50.Weber R.,Hagenmaier H.,Chemosphere,1999,38,529.
    51.Khachatryan L.,Burcat A.,Dellingera B.,Combustion and Flame.2003,132,406.
    52.Evans C.S.,Dellinger B.,Environ.Sci.Technol.,2005,39.122.
    53.Evans C.S.,Dellinger B.,Environ.Sci.Technol.,2003,37.1325.
    54.Hohenberg P.,Kohn,W.Phys.Rev.1964,136,B864.
    55. Ricca A., Bauschlicher Jr. C. W., J. Phys. Chem., 1995,99,9003.
    56. Becke, D., J. Chem. Phys. 1993, 98, 5648.
    57. Saebo S., Almlof, J. Chem. Phys. Lett. 1989, 154, 83.
    58. McWeeny R., Dierksen G., J. Chem. Phys. 1968, 49, 4852.
    59. Gonzalez C., Schlegel, H.B. J. Phys. Chem. 1990,94, 5523.
    60. Gonzalez C., and Schlegel H. B., J. Chem. Phys. 1989,90, 2154.
    61. Garrett B. C., Truhlar D. G. J. Phys. Chem. 1979, 83, 1079.
    62. Glastone, S.; Laidler, K.J.; Eyring,H., The theory of rate process[M], Mc-Graw-Hill Book Company, New York, 1941
    63. Laidler, K.J., Theories of Chemical Reaction Rates[M]. Mc-Graw-Hill Book Company, New York, 1969
    64. Eyring H., Lin S. H., Lin ,S. M., Basic Chemical Kinetjcs[M], John Wiley & Sons, 1980 .
    65. 罗渝然, 过渡态理论的进展[J]. 化学通报. 1983,10,8.
    66. Smith I. W. M., Kinetics and Dynamics of Elementary Gas Reactions , Butterworths, London, 1980
    67. Moore J. W., Pearson, R.G, Kinetics and Mechanism, 3rd Ed. [M), Wiley, New York. 1980.
    68. Stem M. J., Persky A., Klein F. S., J. Chem. Phys., 1973, 58,5697.
    69. Garrett B. C., Truhlar D. G., J. Phys. Chem., 1979, 83, 1052.
    70. Garrett B. C., Truhlar D. G., J. Phys. Chem., 1983, 87, 4553.
    71. Herzberg G., In "Molecular Spectra and Molecular Structure Ⅱ" [M], Van Nostrand Reinhold, Pinceton, 1945. p505
    72. Pechukas P., Mclafferty F. J., J. Chem. Phys., 1973, 58, 1622.
    73.丁香兰,包志成,张尊等.工业品五氯酚和五氯酚钠中的PCDDs和PCDFs[J].环境化学.1990.9,33.
    74.包志成.王克欧,康君行等.五氯酚及其钠盐中氯代二噁英类分析[J].环境化学,1995.14.317.
    75.J.A.Mulholland,U.Akki,Y.Yang,Y.;et al.Chemosphere,2001,4,719.
    76.R.Weber,Chemosphere,1999,38,529-549.
    77.T.Sakurai,T.Kobayashi,T.Watanabe,Organohalogen Compd.,1996,27,183.
    78.M.J.Frisch,et al,Gaussian 03,Gaussian,Inc..Pittsburgh PA,2003.
    79.A.D.Becke,J.Chem.Phys.1993,98,5648.
    80.C.Gonzalez,H.B.Schlegel,J.Phys.Chem.1990,94,5523.
    81.K.H.Hellwege,A.M.Hellwege,Landolt-Bornstein:Group Ⅱ:Atomic and Molecular Physics Volume 7:Structure Data of Free Polyatomic Molecules.Springer-Verlag.Berlin.1976.
    82.G.Roussy,F.J.Michel,J.Mol.Struct.1976,30,399.
    83.K..P.Huber,G.Herzberg,Molecular Spectra and Molecular Structure.Ⅳ.Constants of Diatomic Molecules,,Van Nostrand Reinhold Co.,1979.
    84.G.S.Hammmond,J.Am.Chem.Soc.1955,77,334.
    85.D.L.Baulch,C.J.Cobos,R.A.Cox,C.Esser,P.Frank,Th.Just,J.A.Kerr,M.J.Pilling,J.Troe,R.W.Walker,J.Warnatz,J.J.Phys.Chem.Ref.Data 1992,21,411.
    86.Karasek,F.W.;Dickson,L.C.,Science 1987,237,754.
    87.Shaub,W.M.;Tsang,W.,Environ.Sci.Technol.1983,17,721.
    88.Altwicker,E.R.,Chemosphere 1996,33,1897.
    89.Hung,H.;Buekens,A.,Chemosphere 1999,38,1595.
    90.Babushok,V,;Tsang,W.7~(th)International Congress on Combustion By-Products:Origins,Fate,and Health Effects;Research Triangle Park,North Carolina,2001;p36.
    91.Mallard,W.G.(Ed.);NIST Chemistry Web Book;N1ST Standard Reference,Database 69,November 1998.
    92.Khachatryan,L.;Asatryan,R.;Dellinger,B.,Chemosphere,2003,52,695.
    93.Zhao,Y.;Lynch,B.J.;Truhlar,D.G.,J.Phys.Chem.A 2004,108,2715.
    94.P.Ciesla,P.Kocot,P.Mytych,Z.Stasicka,J.Mol.Catal.A Chem.224(2004)17.
    95.H.Katsumata,S.Kawabe,S.Kaneco,T.Suzuki,K.Ohta,J.Photochem.Photobiol.A Chem.162(2004)0297.
    96.H.Katsumata,K.Matsuba,S,Kaneco,T.Suzuki,K.Ohta,Y.Yobiko,J.Photochem.Photobiol.A Chem.170(2005)239.
    97.H.Katsumata,S.Kaneco,T.Suzuki,K.Ohta,Y.Yobiko,Chem.Eng.J.108(2005)269.
    98.C.H.Tong,M.Blanco,W.A.Goddard Ⅲ.J.H.Seinfeld,Environ.Sci.Technol.40(2006)2333.
    99.V.Barone,M.Cossi and J.Tomasi,J.Comp.Chem.19(1998)404.
    100.V.Barone and M.Cossi,J.Phys.Chem.A 102(1998)1995.
    101.J.E.Lee,W.Choi,B.J.Mhin,K.Balasubramanian,J.Phys.Chem.A 108(2004)607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700