用户名: 密码: 验证码:
胞内DNA感受器DAI在慢性鼻—鼻窦炎及鼻息肉发病机制中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     胞内DNA感受器DAI在慢性鼻-鼻窦炎和鼻息肉组织中的表达
     目的
     研究DNA依赖的干扰素调节因子激活物(DNA-dependent activator of IFN-regulatory factors,DAI) mRNA以及蛋白在慢性鼻-鼻窦炎、鼻息肉和正常下鼻甲鼻黏膜组织的表达及表达程度的差异,探讨其在慢性鼻-鼻窦炎、和鼻息肉发病机制中的作用。
     方法
     RT-PCR检测DAI在人类支气管上皮细胞系BEAS-2B细胞及慢性鼻-鼻窦炎、鼻息肉和正常下鼻甲鼻黏膜组织的表达。real time RT-PCR技术和免疫组织化学法(IHC)分别检测慢性鼻-鼻窦炎、鼻息肉和下鼻甲黏膜组织中DAI的表达水平。
     结果
     DAI mRNA及蛋白在BEAS-2B细胞、慢性鼻-鼻窦炎、慢性鼻-鼻窦炎合并鼻息肉和下鼻甲组织中均有表达,real-time RT-PCR及免疫组化显示慢性鼻-鼻窦炎和鼻息肉组织DAI的表达水平明显低于下鼻甲组织,而以慢性鼻-鼻窦炎组织中下降更为明显。
     结论
     DAI mRNA及蛋白在慢性鼻-鼻窦炎、鼻息肉和正常下鼻甲黏膜上皮细胞内均有表达,且表达量不同,差异有统计学意义,提示DAI可能在慢性鼻-鼻窦炎的发病机制中起重要作用。
     第二部分
     双链DNA对BEAS-2B细胞及体外培养的鼻粘膜组织块的影响
     目的
     1观察双链DNA分子poly(dA-dT).poly(dT-dA)是否能够诱导BEAS-2B细胞产生I型干扰素及DAI。
     2了解dsDNA刺激BEAS-2B细胞后所产生各细胞因子的影响,探讨其相互作用。
     3使用鼻粘膜组织块体外培养研究dsDNA对鼻粘膜组织中相关细胞因子的影响,探讨DNA受体DAI分子在慢性鼻-鼻窦炎、鼻息肉急性复发中的作用。
     方法
     1 poly(dA-dT).poly(dT-dA)转染BEAS-2B细胞,real time RT-PCR检测相关细胞因子的表达水平,western blot检测DAI的表达。
     2 dsDNA转染体外培养的鼻粘膜组织块,real time RT-PCR检测相关细胞因子的表达水平。
     结果
     1 poly(dA-dT).poly(dT-dA)能够诱导BEAS-2B细胞产生I型干扰素IFN-β,且具有时间与剂量依赖性。dsDNA刺激BEAS-2B细胞后产生的应答中,早期主要表现为促炎因子的升高,后期则以抗炎因子的高表达为主,且dsDNA对抗炎因子的诱导更为明显。
     2 dsDNA刺激体外培养的鼻粘膜组织块后,表现为IL-6、IL-8、IP-10、IL-1β及MCP-3的高表达主要出现在NP中;TNF-α、IL-17、IL-22及IFN-λ2的高表达主要出现CRS中;而正常下鼻甲粘膜却对dsDNA的反应性较低。
     结论
     用dsDNA刺激BEAS-2B细胞后,机体通过自身负反馈调节,最终表现以抗炎作用为主,对机体起保护性作用。在病原微生物刺激后,慢性鼻-鼻窦炎、鼻息肉比正常下鼻甲粘膜组织可能更容易受到影响,导致慢性鼻-鼻窦炎及鼻息肉的急性发作。而上述这些作用,可能正是通过dsDNA的受体DAI发挥作用的。
PartⅠCytosolic DNA Sensor Expression in Chronic RhinoSinusitis and Nasal Polyps
     Objective
     To study the expression of DAI (DNA-dependent activator of IFN-regulatory factors) mRNA in chronic rhinosinusitis (CRS) and nasal polyps (NPs) ,compared the DAI expression between chronic rhinosinusitis (CRS) and nasal polyps (NPs) patients, and to explored the role of DAI inthepathogenesis of chronic rhinosinusitis (CRS) and nasal polyps (NPs).
     Methods
     The mRNA expression of DAI in human bronchial epithelial cell line BEAS-2B and tissue were detected by RT-PCR. tissue DAI levels were compared among controls,CRS and NPs patients by means of real time RT-PCR and immunohistochemistry.
     Results
     The DAI mRNA were expressed in BEAS-2B cells and tissue. The mRNA and protein expression rates of DAI were significant inhibited in both CRS and NPs patients.There were a significant further decrease of DAI expression in CRS patients.
     Conclusion
     DAI mRNA and protein were expressed in both patients and controls.Significant difference in DAI expression was found between patients and controls.Which may be one of the evidence that DAI may take part in the pathogenesis of CRS and NPs.
     PartⅡThe Effect of Double- Standed DNA on BEAS-2B Cells and Nasal Mucosal Tissue Explant Culture
     Objective
     1 To ensure wherther dsDNA can induced the expression of IFN-βand DAI.
     2 To explore the interaction between cytokines when BEAS-2B cells stimulated with dsDNA.
     3 Use of nasal mucosal Tissue explant culture study the effect of B-DNA on nasal mucosal tissue related cytokines, explore the role of DAI plays in acute exacerbation of CRS and NPs.
     Methods
     1 BEAS-2B cells were transfected with poly(dA-dT).poly(dT-dA). Cellular total RNAs were extracted and detected for related cytokines expression by reverse transcription real-time PCR. The expression level of DAI protein was detected by the techniques of western blot.
     2 Nasal mucosal Tissue explant culture were transfected with B-DNA, and subjected to reverse transcription real-time PCR analysis to evaluate the expression of related cytokines mRNA.
     Results
     1 dsDNA was able to induce type I interferon in BEAS-2B cells in a time- and dose-dependent manner. in the early stages, dsDNA-induced high expression of pro-inflammatory factor, and anti-inflammatory factor reached a much higher level in the late stage in BEAS-2B cells.
     2 After nasal mucosal Tissue explant culture were transfected with dsDNA, IL-6, IL-8, IP-10, IL-1βand MCP-3 mRNA was greatly high expressed in NPs, TNF-α, IL-17, IL-22 and IFN-λ2 was mainly high expressed in CRS, but was not the normal inferior turbinate mucosa, it have a lowest reactive .
     Conclusion
     after BEAS-2B stimulated with dsDNA, the body via a negative feedback effect participates in the regulation of inflammatory responses, the anti-inflammatory is the ultimate representation of the feedback regulation. it provides protective effect on the body. when stimulated with pathogenic microorganisms, CRS and NPs may be more vulnerable than normal turbinate mucosa, leading to acute exacerbation of CRS and NPs. The effects mentioned above, it may work through dsDNA receptors DAI.
引文
1. Scadding GK, Williams A. The burden of allergic rhinitis as reported by UK patients compared with their doctors. Rhinology. 2008; 46(2):99-106.
    2. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol. 2006; 7(1):40-8.
    3. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007; 448(7152):501-5.
    4. Miyahira AK, Shahangian A, Hwang S, Sun R, Cheng G. TANK-binding kinase-1 plays an important role during in vitro and in vivo type I IFN responses to DNA virus infections. J Immunol. 2009; 182(4):2248-57.
    5. Rothenburg S, Schwartz T, Koch-Nolte F, Haag F. Complex regulation of the human gene for the Z-DNA binding protein DLM-1. Nucleic Acids Res. 2002. 30(4): 993-1000.
    6. Fu Y, Comella N, Tognazzi K, Brown LF, Dvorak HF, Kocher O. Cloning of DLM-1, a novel gene that is up-regulated in activated macrophages, using RNA differential display. Gene. 1999. 240(1): 157-63.
    7. Kuehnemund M, Ismail C, Brieger J, Schaefer D, Mann WJ. Untreated chronic rhinosinusitis: a comparison of symptoms and mediator profiles. Laryngoscope. 2004. 114(3): 561-5.
    1. Holgate ST, Holloway J, Wilson S, Bucchieri F, Puddicombe S, Davies DE. Epithelial-mesenchymal communication in the pathogenesis of chronic asthma. Proc Am Thorac Soc. 2004; 1(2):93-8.
    2. Repka-Ramirez S, Naranch K, Park YJ, Clauw D, Baraniuk JN. Cytokines in nasal lavage fluids from acute sinusitis, allergic rhinitis, and chronic fatigue syndrome subjects. Allergy Asthma Proc. 2002; 23(3):185-90.
    3. Yasuda K, Yu P, Kirschning CJ, Schlatter B, Schmitz F, Heit A, et al. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J Immunol. 2005; 174(10): 6129-36.
    4. Holgate ST, Holloway J, Wilson S, Bucchieri F, Puddicombe S, Davies DE. Epithelial-mesenchymal communication in the pathogenesis of chronic asthma. Proc Am Thorac Soc. 2004; 1(2):93-8.
    5. Cromwell O, Hamid Q, Corrigan CJ, Barkans J, Meng Q, Collins PD, et al. Expression and generation of interleukin-8, IL-6 and granulocyte-macrophage colony-stimulating factor by bronchial epithelial cells and enhancement by IL-1 beta and tumour necrosis factor-alpha. Immunology. 1992; 77(3):330-7.
    6. Grossman J. One airway, one disease. Chest. 1997; 111(2 Suppl):11S-16S.
    7. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol. 2006; 7(1):40-8.
    8. Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity. 2006; 24(1):93-103.
    1. Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197-216.
    2. Isaacs A, Cox RA, Rotem Z. Foreign nucleic acids as the stimulus to make interferon. Lancet 1963; 2:113-6.
    3. Jensen DD. Effects of Plant Viruses on Insects. Ann N Y Acad Sci 1963; 105:685-712.
    4. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2005; 17:1-14.
    5. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 2005; 175:2851-8.
    6. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI(DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 2007; 448:501-5.
    7. Beutler B, Rehli M. Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr Top Microbiol Immunol 2002; 270:1-21.
    8. Akira S. TLR signaling. Curr Top Microbiol Immunol 2006; 311:1-16.
    9. Uematsu S, Akira S. The role of Toll-like receptors in immune disorders. Expert Opin Biol Ther 2006; 6:203-14.
    10. Netea MG, van der Graaf C, Van der Meer JW, Kullberg BJ. Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system. J Leukoc Biol 2004; 75:749-55.
    11. Ashkar AA, Rosenthal KL. Toll-like receptor 9, CpG DNA and innate immunity. Curr Mol Med 2002; 2:545-56.
    12. Takeda K, Akira S. TLR signaling pathways. Semin Immunol 2004; 16:3-9.
    13. Xagorari A, Chlichlia K. Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol J 2008; 2:49-59.
    14. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303:1529-31.
    15. Sheu JJ, Chang LT, Chiang CH, Youssef AA, Wu CJ, Lee FY, et al. Prognostic value of activated toll-like receptor-4 in monocytes following acute myocardial infarction. Int Heart J 2008; 49:1-11.
    16. Yoneyama M, Fujita T. [RIG-I: critical regulator for virus-induced innate immunity]. Tanpakushitsu Kakusan Koso 2004; 49:2571-8.
    17. Andrejeva J, Childs KS, Young DF, Carlos TS, Stock N, Goodbourn S, et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad SciU S A 2004; 101:17264-9.
    18. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006; 314:994-7.
    19. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006; 314:997-1001.
    20. Lee WI, Liang FC, Huang JL, Jaing TH, Wang CH, Lin TY, et al. Immunologic Analysis of HIV-Uninfected Taiwanese Children with BCG-Induced Disease. J Clin Immunol 2008.
    21. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 2005; 6:981-8.
    22. Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005; 122:669-82.
    23. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 2005; 437:1167-72.
    24. Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 2006; 439:208-11.
    25. Koyama S, Ishii KJ, Kumar H, Tanimoto T, Coban C, Uematsu S, et al. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol 2007; 179:4711-20.
    26. Takahashi H, Sawai H, Matsuo Y, Funahashi H, Satoh M, Okada Y, et al. Reactive lymphoid hyperplasia of the liver in a patient with colon cancer: report of two cases. BMC Gastroenterol 2006; 6:25.
    27. Kawai T, Akira S. Antiviral signaling through pattern recognition receptors. J Biochem 2007; 141:137-45.
    28. Saito M, Matsuura T, Nagatsuma K, Tanaka K, Maehashi H, Shimizu K, et al. The functional interrelationship between gap junctions and fenestrae in endothelial cells of the liver organoid. J Membr Biol 2007; 217:115-21.
    29. Ishii KJ, Akira S. Innate immune recognition of, and regulation by, DNA. Trends Immunol 2006; 27:525-32.
    30. Agarwal R. Supervised atenolol therapy in the management of hemodialysis hypertension. Kidney Int 1999; 55:1528-35.
    31. Takaoka A, Taniguchi T. Cytosolic DNA recognition for triggering innate immune responses. Adv Drug Deliv Rev 2008; 60:847-57.
    32. Ishii KJ, Kawagoe T, Koyama S, Matsui K, Kumar H, Kawai T, et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 2008; 451:725-9.
    33. Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 2006; 24:93-103.
    34. Travassos LH, Girardin SE, Philpott DJ, Blanot D, Nahori MA, Werts C, et al. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep 2004; 5:1000-6.
    35. Avagyan H, Goldenson B, Tse E, Masoumi A, Porter V, Wiedau-Pazos M, et al. Immune blood biomarkers of Alzheimer disease patients. J Neuroimmunol 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700