用户名: 密码: 验证码:
紧凑重频脉冲导引磁场电源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用重频脉冲磁场作为重频高功率微波源的导引磁场,该磁场的初级能源具有功耗低、发热量小、结构紧凑等优点,符合当代高功率微波装置朝紧凑化、重频方向的发展要求,近年来在国内外受到了广泛关注。本文通过对产生磁场的螺线管、初级能源(为螺线管供电)的功率电路和智能控制系统三个关键子系统进行理论分析、工程设计和实验研究,完整地提出了脉冲磁场的设计方法和步骤,并研制出一台平均输出功率达4.65kW的磁场初级能源,利用它为实验室某Ka波段返波管(BWO)的螺线管脉冲放电,可获得所需的2.21T的峰值磁场,在10Hz重频下运行稳定可靠。本文的研究结果对重频脉冲磁场在低重频高功率微波领域的应用具有一定的指导意义。论文研究内容主要包括以下几个方面:
     1.分析了螺线管的设计
     和直流磁场不同,脉冲磁场需要考虑微波管的涡流损耗问题。对产生重频脉冲磁场的电路进行了简单分析。从产生重频脉冲磁场的电流表达式出发,根据涡流损耗不能太大、品质因数要高和电容储能要小的原则,给出了脉冲磁场产生系统的储能电容和充电电压的最优设计方法,最后举例说明了螺线管的设计方法。
     2.对初级能源的功率电路部分进行了详细的研究
     初级能源对螺线管重频脉冲放电,故要求其充电速度快,能量效率高。本文首先通过对电容器充电方式的简单分析,得出了高频恒流充电充电速度快,能量利用效率高。对几种常见的高频恒流充电方式进行了介绍和比较,选取了串联谐振恒流充电电路作为初级能源的电路工作方式,再从理论上利用等效电路模型推导了恒流充电电流的表达式。对设计的功率电路工作过程进行了理论分析,对电路的相关参数进行了公式的推导,给出了电路参数的设计方法和设计实例。最后,对变压器的设计进行了介绍。
     3.对智能控制系统进行了介绍
     对智能控制系统的工作原理进行了简单的分析,给出了硬件系统的工作框图和软件流程图,对主控板上的主要子电路进行了介绍,讨论了抗干扰措施。随后对触发板电路工作原理进行了分析,最后简单介绍了软件系统的设计。
     4.重频脉冲磁场系统的实验研究
     开展了初级能源的低压和高压的电路仿真和实验研究,最后研制出一台结构紧凑的初级能源,输出电压在0-2.5kV范围内可调,最大平均输出功率达4.65kW,达到了设计要求。利用第二章设计的螺线管,在储能电容C=200μF、充电电压U=1350V时,能输出脉冲峰值电流750A,对应2.21T的导引磁场,重频10Hz下运行稳定可靠。
Some repetitive high-power microwave sources adopting the rep-rate pulsed magnetic field can reduce the energy consumption of the solenoid, decrease heating and make it more compact. It conforms to modern high-power microwave (HPM) of being compact and repetitive. Nowadays, rep-rate pulsed magnetic field has attracted extensive attention. In this thesis, the method to design rep-rate pulsed magnetic fields is obtained and a Primary energy source which the average power can reach 4.65kW is developed based on the theoretical analyses, engineering designs and experimental investigations of the three key subsystems:solenoid which can produce magnetic fields, power circuit of Primary energy source and intelligent controller system (ICS). Based on it, with the designed solenoid, the magnetic fields can reach 2.21T which is perfect for Ka-BWO. The research results set basis for the wide application of rep-rate pulsed magnetic fields to repetitive HPM. The main content of this dissertation is presented as follows:
     1. The design of solenoid is presented
     Pulsed magnetic field needs to take the eddy current loss of micromave tube into account, so it is different from the direct current magnetic fields. The circuit which can output repetitive HPM has been analyzed. The paper started from the expression of current which producing the pulsing magnetic fields. The design is based on the following principle:the eddy current loss, capacitive energy store and circuit energy consumption couldn't be too more. The optimization of the capacitive storage and its voltage for pulsing magnetic fields producing system are designed. At last, the design method of solenoid is presented by an example.
     2. The power circuit of Primary energy source is investigated in detail.
     Primary energy source which affords energy for solenoid should have fast charging rate and high efficiency. Three familiar charging methods for capacitor are analyzed and discussed, high frequency and constant circuit charging method which has fast rate and high efficiency is suitable for the demand. Several high frequency and constant circuit charging method are presented and contrast, series resonant constant current charging circuit is selected for Primary energy source. Constant current expression is deduced by an equivalent circuit model for series resonant topologies. The main power circuit has been analyzed theoretically and the correlative parameter of circuit is deduced. The design method of the circuit parameter is given and a designed example is present. At last, the design of high frequency transformer is introduced simply.
     3. The design of ICS is presented
     The working principle of ICS is analyzed and discussed. The framework for hardware system and flow chart for software are presented. The main chips in master control panel are introduced simply, and the anti-jamming measure is discussed in stress. The working principle of trigger circuit is analyzed in detail. At last the design of software system is introduced simply.
     4. The designed RHPM system is experimentally investigated
     Simulation and experiments of low voltage and high voltage on Primary energy source have been conducted. A compact Primary energy source with output voltage 0-2.5kV and average power 4.65kW is developed, and it is experimentally investigated across a 200μF energy store capacitor and 1350V charging voltage, at 10 Hz repetition rate, the output can reach 750A peak value pulsed current which can bring 2.21T leading magnetic fields.
引文
[1]樊玉伟.磁绝缘线振荡器及其相关技术研究[D].长沙:国防科技大学博士学位论文,2007.
    [2]李传胪.脉冲功率技术及其应用[J].国防科技大学学报增刊,1995,17:1-8.
    [3]王淦昌.高功率粒子束及其应用[J].强激光与粒子束,1989,1(1):1-21.
    [4]张军.新型过模慢波高功率微波发生器研究[D].长沙:国防科技大学博士学位论文,2004.
    [5]李国林.强流相对论电子束传输特性的研究[D].长沙:国防科技大学硕士学位论文,2005.
    [6]朱俊.米波低磁场慢波结构高功率微波发生器研究[D].长沙:国防科技大学硕士学位论文,2005.
    [7]Shamiloglu E, Barker R. J, Gundersen M, and Neuber A. Modern Pulsed Power[C]. Charlie Martin and Beyond, Proceedings of the IEEE,2004,2(7): 1014-1020.
    [8]Mesyats G. A. Pulsed power[M]. New York:Kluwer Academic/Plenum Publishers,2005.
    [9]Sarjeant W. G, and Rohwein G. J. A review of repetitive pulse power component technology[C].4th IEEE International Pulsed Power Conf,1983:303-308.
    [10]Mesyats G. A, Korovin S. D, Gunin A. V, et al. Repetitively pulsed high-current accelerators with transformer charging of forming lines[J]. Laser and Particle Beams,2003,21:197-209.
    [11]Andreev Yu. A, Gubanov V. P, Efremov A. M, Koshelev V. I, Korovin S. D, Kovalchuk B. M, Kremnev V. V, Plisko V. V, Stepchenko A. S and Sukhushin K. N. High-power ultrawideband radiation source[J]. Laser Part Beams,2003, 21:211-217.
    [12]Gunin A. V, Klimov A. I, Korovin S. D, Pegel I. V, Polevin S. D, Roitman A. M, Rostov V. V, Stepchenko A. S, and Totmeninov E. M. Relativistic X-band BWO with 3 GW output power[J]. IEEE Trans. Plasma Sci,1998,26(3): 326-331.
    [13]张军,钟辉煌,杨汉武.高功率微波脉冲功率驱动源研究进展[J].高电压技术,2004,30(6):45-48.
    [14]D.M.Grishin, V.P. Cubanov, A.V. Gunin. A Power Supply For One-Second Source Of Highly-Stable Magnetic Field[C]. IEEE Pulsed Power Plasma Science Conference, Las Vegas, NE, pp,1638-1641,2001.
    [15]Buttram M. Some future directions for repetitive pulsed power[J]. Pulsed Power Plasma Science,2001,1:3-8.
    [16]刘锡三.高功率脉冲技术[M].北京:国防工业出版社,2005.
    [17]杨汉武.脉冲功率及其诊断技术讲义[M].长沙:国防科技大学,2003.
    [18]郭硕鸿.电动力学[M].北京:高等教育出版社,2000.
    [19]G.A.Mesyats, S.D.Korovin, V.V.Rostov, V.G.Shpak, and M.I.Yalandin.The RADANSeries of Compact Pulsed Power Generators and Their Applications[C]. Proceedings of the IEEE, vol.92, Issue 7, pp.1166-1179, July 2004.
    [20]Michael Yalandin, et al. Highly Effective Generation of Powerful Ka-Band MicrowavePulses in the Relativistic BWO with the Decreased Guding Magnetic Field[C]. Reported atl6-th Int. Conf. on High-Power Particle Beams, BEAMS 2006, Oxford, UK,9-13 July2006.
    [21]V.G.Shpak, S.A.Shunailov, M.R.Ulmaskulov, M.I.Yalandin, A.E.Ermakov, S.V.Zhakov, V.G.Gass, A.Yu.Korobeinicov. A 70-GHz High-Power Repetitive Backward WaveOscillator with a Permanent Magnet Based Electron-Optical System[C]. In:Proc, BEAMS'96,llth Int. Conference on High Power Particle Beams, June 10-14,1996, Prague, Czech Republic,473-476.
    [22]A.I. Klimov, S.D. Korovin, V.V. Rostov, M.R. Ulmaskulov, V.G. Shpak, S.A. Shunailov, and M.I. Yalandin. Highly Efficient Generation of Subnanosecond Microwave Pulses in Ka-Band Relativistic BWO[J]. IEEE Transactions on Plasma Science, June 2002, vol.30, No 3, pp.1120-1125.
    [23]微波电子管磁路设计手册[M].北京:国防工业出版社,1984.
    [24]H.Bluhm著,江伟华,张弛译.脉冲功率系统的原理与应用[M].北京:清华大学出版社,2008.
    [25]李网生.脉冲调制器新型充电电源的研究[D].南京:南京理工大学硕士学位论文,2005.
    [26]邱关源.电工原理(第三版)[M].北京:高等教育出版社,1990.
    [27]李爱文,张承慧.现代逆变技术及其应用[M].科学出版社,2000.
    [28]张文利.高压大功率开关电源技术的研究[D].北京:中国科学院研究生院硕士学位论文,2003.
    [29]丁卫东,王霞,邱毓昌,等.电容器恒流充电电源的通用谐振电路模型[J].高电压技术,2002,28(2):21-23.
    [30]丁卫东.可控高压恒流充电和稳压技术的研究[D].西安:西安理工大学硕士学位论文,2005.
    [31]B C Pollard, R M Nelms.Using the series-parallel resonant converter in capacitor charging applications[C].7th Applied Power Electronics Conference and Exposition. Boston, USA,1992.245-252.
    [32]郭亮,尚雷,刘超.并联谐振电路在调制器充电电源中的应用[J].Chinese Physics C (HEP & NP),32 (增刊 Ⅰ):31-33,2008.
    [33]孟志鹏,杨汉武,张自成,李达,钱宝良.紧凑高重频加速器初级能源的研究[J].强激光与粒子束,20(12),2008.
    [34]王晓明,侯召政,方辉,孙兆冲.LCC谐振充电IGBT开关Marx发生器[J].电工技术学报,2007,22(7),87-92.
    [35]许高斌.具有T-L-C变换器高精度高重复率充电电源的设计和研究[D].合肥:合肥工业大学硕士学位论文,2001.
    [36]吴团结,刘淳.串联谐振型激光器用开关电源的研制[J].电子与自动化,2000,(3):28-30.
    [37]刘胜魁,张春喜.基于软开关的高压恒流充电电源的研究[J].黑龙江工程学院学报(自然科学版),2005,19(4):60-62.
    [38]陈警,徐至新,钟和清,激光电源充电技术[J].通信电源技术,2002.
    [39]任青毅,曹科峰,黄斌,李素江.20kV零电流开关的电容器充电电源[J].电力电子技术,2006,40(3):103-104.
    [40]钟和清,徐至新,邹云屏,潘垣,李劲.软开关高压开关电源设计方法研究[J].高电压技术,2005,31(1):20-22.
    [41]曾江涛,孙凤举,许日,邱爱慈.50kV/4A输出高压恒流电源[J].强激光与粒子束,2000,12(1):111-114.
    [42]王莹.高功率脉冲电源[M].北京:原子能出版社,1991.
    [43]邵建设,严萍.高压电容器充电电源谐振变换器的定频控制[J].高电压技术,2006,32(11):107-110.
    [44]杨小卫,严萍,孙鹞鸿,龚金水,邵建设.35 kV/0.7A高压变频恒流充电电源[J].高电压技术,2006,32(5):54-56.
    [45]尚雷,王相綦,裴元吉,等.新型软开关高压脉冲电容恒流充电分析[J].强激光与粒子束,2001,13(2):241-244.
    [46]Bees G. L. and Tydeman A. Capacitor Charging Power Supply Design for High Pulse Repeatability Applications[C]. Proc 12th IEEE Pulsed Power Conference, 1999, pp.397-398.
    [47]C H Kang, H Sakamoto, K Harada, et al. A half-bridge converter using series resonant technology and saturable inductor commutation[C]. IEEE PESC, 2001(2):1051-1056.
    [48]Souda M, Endo F, Yamazaki C et al. Development of high power capacitor charging power supply for pulsed power application[C]. IEEE Pulsed Power Conference,1999(2):1414-1416.
    [49]C Q Lee, S Sooksatra, R Liu. Constant frequency controlled full-bridge LCC-type parallel resonant converter[C].6th Applied Power Electronics Conference and Exposition, Dallas, USA,1991:587-593.
    [50]Strickland B E, Garbi M, Cathell F, et al.2kJ/sec 25kV high-frequency capacitor charging power supply using MOSFET switches [A]. Power Modulator Symposium, IEEE Conference Record of the 1990 Nineteenth[C].1990:531-534.
    [51]Lopincott A C, Nelms R M. A capacitor-charging power supply using a series-resonant topology, constant on-time/variable frequency control and zero-current switching[J]. IEEE Trans on Industrial Electronics,1991,38 (6): 438-446.
    [52]Lopincott A C, Nelms R M, Garbi M, et al. A series resonant converter with constant on-time control for capacitor charging application[C]. Applied Power Electronics Conference and Exposition, APEC 90, Conference Proceedings 1990,147-154.
    [53]Nelms R M, Schats J E. A capacitor charging power supply utilizing a ward converter [J]. IEEE Trans on Industrial Electronics,1992,39 (5):421-427.
    [54]苏建仓,王利民,丁永忠,等.串联谐振充电电源分析及设计[J].强激光与粒子束,2004,16(12):1611-1614.
    [55]孟志鹏,张自成,杨汉武,钱宝良.半导体开关在脉冲功率技术中的应用[J].Chinese Physics C (HEP & NP),32 (增刊Ⅰ):277-279,2008.
    [56]王松松,传输线脉冲变压器的设计[D].长沙:国防科技大学硕士学位论文, 2008
    [57]王瑞华.脉冲变压器设计[M].科学出版社,1987,ISBN:15031-816.
    [58]张占松,蔡宣三.开关电源的原理与设计[M].电子工业出版社,2004.
    [59]张自成.紧凑重频Tesla变压器型吉瓦脉冲发生器[D].长沙:国防科技大学博士学位论文,2008.
    [60]陈曾平,刘平,马云.电路设计基础与专用系统构成[M].北京:科学出报社,2006:248-250.
    [61]顾良翠.一种高功率开关电源控制系统[J].高电压技术,2005,31(12):35-41.
    [62]田青,戴文峰,李洪涛,计策.高功率脉冲能源装置监控系统的研制[J].高电压技术,2006,32(4):68-70.
    [63]刘海涛,周永强.低功耗12位串行数模转换器MAX539及其应用[J].国外电子元器件,2002,8:58-60.
    [64]朱祥贤,葛素娟.单片机应用系统的抗干扰技术[J].现代电子技术,2007,11:151-153.
    [65]付卓,段仁君.开关电源电磁干扰的抑制[J].采矿技术,2007,7(2):78-80.
    [66]马忠梅,籍顺心,张凯,马岩.单片机的C语言应用程序设计[M].北京:北京航空航天大学出版社,2003.
    [67]Shpak V.G, Shunailov S. A, Yalandin M. I, and Dyad'kov A. N. The RADAN SEF-303A, a small high-current pulsed power supply[J]. IET,1993,36: 106-111.
    [68]S.K.Lybutin, G.A.Mesyats, S.N.Rukin, B.G.Slovikovsky, V.G.Shpak, S.A.Shunailov, M.R.Oulmascoulov, and M.I.Yalandin. Nanosecond Microwave Generator Based on the Relativistic 38-GHz Backaward-Wave Oscillator and All-Solid-State Pulsed Power Modulator[C]. In Digest of Technical Papers of the 12th IEEE Int. Pulsed Power Conference,1999, June 27-30, Monterey, California, USA, V.1, pp.202-205.
    [69]Shpak V. G, Shunailov S. A, and Yalandin M. I. Investigations of compact high-current accelerators RADAN 303 synchronization with nanosecond accuracy[C]. Proc.10th IEEE Int. Pulsed Power Conf,1995:666-671.
    [70]Korovin S. D. Tesla transformer in a high-current repetitive accelerator[C]. Tomsk:Institute of High Current Electronics (IHCE), Siberian Division (SD), Russian Academy of Sciences (RAS), Preprint Technical Report 47,1988 (in Russia).
    [71]Mesyats G. A, Shpak V. G, Yalandin M. I, and Shunailov S. A. Compact high-current accelerators based on the RADAN SEF-303 pulsed power source[C]. Proc.9th IEEE Int. Pulsed Power Conf,9th IEEE International Pulsed Power Conference, Albuquerque, New Mexico,1993:835-838.
    [72]ShpakV.G, Shunailov S.A, Oulmascoulov M. R, and Yalandin M. I. Synchronously operated nano-and subnanosecond pulsed power modulators[C]. Dig. Tech. Papers of 12th IEEE Int. Pulsed Power Conf,1999, vol.2: 1472-1475.
    [73]张自成,张建德,杨汉武,杨建华,钱宝良.脉冲功率加速器重频运行的稳压理论分析[J].强激光与粒子束,20(9):1580-1584,2008.
    [74]高景明.陡化前沿Marx发生器及其应用研究[D].长沙:国防科技大学博士 学位论文,2009.
    [75]陈俊,杨建华,舒挺,等.储能电容方式驱动强流脉冲加速器重频运行的研究[J].强激光与粒子束,2008,20(8):1405-1408.
    [76]Shpak V. G, Yalandin M. I, Oulmascoulov M. R, Shunailov S. A.1000 pps subnanosecond high-voltage generator[C].11th IEEE International Pulsed Power Conference, Baltimore, Maryland USA,1997, Digest of Technical Papers, 1575-1580.
    [77]Song X. X, Liu G. Z, Peng J. C, et al. TPG400:a compact short pulse electron beam accelerator[C]. The 1st Euro-Asian Pulsed Power Conference (EAPPC'06), Mianyang,2006:316-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700