用户名: 密码: 验证码:
靶向给药和特异性识别肿瘤细胞的双功能纳米粒子的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过发散法合成了星形和扇形两种PAMAM树枝状分子,并对其光学性质以及光学性质的影响因素进行了详细的研究。通过对这两种树枝状分子进行修饰,得到了10种不同的PAMAM树枝状配体,这些配体含有可以与量子点表面阳离子相作用的基团(氨基或羧基),通过与原始油溶性量子点的配体交换反应,便可以得到水溶性和生物相容性的量子点。得到的PAMAM树枝状配体包覆的量子点保持了原始量子点的光学性质,并且具有较小的粒径,在水溶液或PBS缓冲溶液中均有较好的分散性。由于PAMAM树枝状配体的保护作用,使量子点具有较好的耐热性能、抗光氧化性能、抗化学氧化性以及耐酸性等。在常态下储存数月之久,量子点的水溶液中也未发现沉淀析出,说明这种PAMAM树枝状配体包覆的量子点有很好的稳定性。在合成树枝状配体时,我们将PEG、叶酸和紫杉醇等功能性分子修饰到其表面,得到了多功能性的树枝状配体,这种树枝状配体包覆的量子点也具有多功能性。连接叶酸和紫杉醇的量子点可以作为肿瘤靶向成像和靶向治疗的双功能纳米粒子,同时,还可以通过荧光来实时监测紫杉醇对肿瘤细胞的治疗效果。本论文的研究在癌症早期诊断和靶向治疗领域将有重要意义。本论文是在国家自然科学基金:用树枝状大分子包覆磁性纳米量子点做为双探针分子的构筑(基金号:20574028)的资助下完成的,另外还得到了吉林大学2009年研究生创新研究计划项目:特异性识别肿瘤细胞的探针分子的制备(基金号:20091010)的资助
Semiconductor quantum dots (QDs) have attracted considerable interest for molecular, cellular, and in-vivo imaging applications, due to their unique optical and electrical properties, such as narrow and size-tunable emission spectra (typical full width at half maximum, 30 nm), broad absorption profiles, and superior photostability. However, currently most of the reported syntheses lead to QDs coated with hydrophobic molecules, which make them insoluble in water. QDs with such hydrophobic capping cannot be used directly in applications that require aqueous solubility or an effective charge transport property. This obstacle is usually eliminated by surface ligand exchange reactions where the appropriate functionality is introduced with a new capping ligand.
     Poly(amidoamine) (PAMAM) dendrimers, with numerous functional groups, are more dense than linear ligands. Furthermore, the terminal groups (amine, carboxyl, and hydroxyl) of PAMAM dendrimers can be modified with different functionalities and can be linked with various biomolecules. These unique structural features of PAMAM dendrimers make them ideal nanoplatforms to conjugate biologically important substances (e.g., imaging agents, argeting molecules, and drugs) for subsequent imaging, targeting, and treatment of biological systems.
     This paper is focused on the synthesis of star-shaped structural feature Tetra-dendron polyamidoamine (PAMAM) dendrimers and cone-shaped structural feature di-dendron PAMAM dendrimers with ethylenediamine (EDA) and mono-Boc-protected EDA as a core, respectively. Strong UV absorbance spectra and fluorescence spectra from tetra-dendron dendrimers or di-dendron dendrimers with different terminal groups (-NH2, -COOCH3, -OH) were studied under different conditions by varying experimental parameters such as pH value and concentration. The result shows a rapid increase of fluorescence intensity at low pH. Furthermore, it was confirmed that the concentration of two dendrimers plays an important role in fluorescence intensity. The increase of fluorescence intensity was linear with respect to concentration at low concentration regions, but the intensity increases slowly at high concentration regions.
     We developed eight kinds of PAMAM dendrimer ligands with different functional groups and describe a process for transferring octadecylamine-stabilized CdSe/ZnS core-shell semiconductor nanocrystals (QDs-ODA) from chloroform into water through a ligand exchange process. The resulting dendrimer-coated nanocrystals were soluble in various aqueous media, including all common biological buffer solutions tested. These water-soluble nanocrystals dissolved in water exhibit the same fluorescence and absorption spectra as the ODA-CdSe/ZnS core-shell nanocrystals dissolved in organic solvents such as chloroform. Furthermore, the stability of dendrimer-coated nanocrystals was quantitatively examined against sintering, acid etching, oxidation with H2O2 and photo-oxidation. Under ambient conditions, there is no precipitate out of the solution. In addition to their superior performance, the synthetic chemistry of dendrimer ligands and the corresponding dendrimer-coated nanocrystals is relatively simple and with high yield.
     Pyrene is widely used as a fluorescent probe to measure the hydrophobicity of localized domains and microenvironments because its fluorescence emission spectra are very sensitive to polarity changes. The present research systematically examines the hydrophobicity of localized domains of QDs capping with hydrophilic dendrimer ligands to detect the efficiency of exchange reaction between different hydrophilic ligands and hydrophobic QDs using pyrene as a reporting probe. Furthermore, the ligand exchange kinetics of ligand 2 and ligand 3 has also been researched.
     We report the design and synthesis of folate-poly(ethylene glycol)-polyamidoamine (FPP) functionalized CdSe/ZnS quantum dots (QDs), in which the QD plays a key role in imaging, whereas the folate-poly(ethylene glycol) (PEG) conjugates of polyamidoamine (PAMAM) dendrimer serve as targeted system to folate receptor in tumor cell. Because of membrane expression of FA-receptors in tumor cells, this class of ligand-exchanged QDs is able to target the tumor cells. We have evaluated FPP-coated QDs and QDs without folate in HeLa cells and shown that cellular uptake in case of FPP-coated QDs is significant than non-folate QDs in vivo imaging experiment. These insights are important toward the design and development of nanoparticle agents for optical detection of tumor cells and bio-imaging.
     Because of the unique structural properties of PAMAM dendrimers, dual functional nanoparticles for tumor imaging and targeted therapy using PAMAM dendrimer-coated quantum dots. These dual function of nanoparticles exhibit the same fluorescence and absorption spectra as the dendrimer-coated QDs. The resulting dual function of nanoparticles were found to be soluble in various aqueous solvent, such as PBS buffer solution, and there are no aggregation in the solution. Furthermore, the size of dual function of nanoparticles is very small (around 30nm).
引文
[1]林章碧,苏星光,张家哗,等.纳米粒子在生物分析中的应用[J].分析化学, 2002, 30 (2): 237-241.
    [2]谭翠燕,梁汝强,阮康成.量子点在生命科学中的应用[J].生物化学与生物物理学报. 2002, 34 (1): 1-5.
    [3] ALIVISATOS A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots [J]. Science, 1996, 271 (5251): 933-937.
    [4] WANG Y, HERRON N. Nanometer-sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties [J]. J Phys Chem, 1991, 95 (2): 525-532.
    [5] ALIVISATOS A P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals [J]. J Phys Chem,1996, 100 (31): 13226-13239.
    [6] ROBERTI T W, CHEREPY N J, ZHANG J Z. Nature of the power-dependent ultrafast relaxation process of photoexcited charge carriers in II-VI semiconductor quantum dots: Effects of particle size, surface, and electronic structure [J]. J Chem Phys, 1998, 108 (5): 2143-2151.
    [7] STEIGERWALD M L, BRUS L E. Semiconductor crystallites: a class of large molecules [J]. Acc Chem Res, 1990, 23 (6): 183-188.
    [8] HENGLEIN A. Mechanism of reactions on colloidal microelectrodes and size quantization effects [M]. Top Curr Chem, 1988, 143: 113-180.
    [9] KUZMENKO T, KIKOIN K, AVISHAI Y. Tunneling through triple quantum dots with mirror symmetry [J]. Phys Rev B, 2006, 73 (23): 235310.
    [10] HAASE M, WELLER H, HENGLEIN A. Photochemistry of colloidal semiconductors. 26. Photoelectron emission from cadmium sulfide particles and related chemical effects [J]. J Phys Chem, 1988, 92 (16): 4706-4712.
    [11] WANG Y, SUNA A, MCHUGH J, et al. Optical transient bleaching of quantum-confined CdS clusters: The effects of surface-trapped electron-hole pairs [J]. J Chem Phys, 1990, 92 (11): 6927-6939.
    [12] HILINSKI E, LUCAS P, WANG Y. A picosecond bleaching study of quantum-confined cadmium sulfide microcrystallites in a polymer film [J]. J Chem Phys, 1988, 89 (6): 3435-3441.
    [13] HAN M, GAO X, SU J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J]. Nat Biotech, 2001, 19 (7): 631-635.
    [14] SUTHERLAND A J. Quantum dots as luminescent probes in biological systems [J]. Curr Opin Solid State Mater Sci, 2002, 6 (4): 365-370.
    [15] CHAN W C W, NIE S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection [J]. Science, 1998, 281: 2016-2018.
    [16] WU X, LIU H, LIU J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nat Biotech, 2003, 21: 41-46.
    [17]唐爱伟,滕枫,王元敏,等. II-VI族半导体量子点的发光特性及其应用研究进展[J].液晶与显示, 2005, 20 (4): 302-308.
    [18]孙宝全,徐咏蓝,衣光舜,等.半导体纳米晶体的光致发光特性及在生物材料荧光标记中的应用[J].分析化学, 2002, 30 (9): 113021136.
    [19]阮康成.量子点荧光光谱学与生命科学[J].生命科学, 2003, 15 (2): 84-87.
    [20] WELLER H, Quantized Semiconductor Particles: A novel state of matter for materials science [J]. Adv Mater, 1993, 5 (2): 88-95.
    [21] MURRAY C B, NOMS D J, BAWENDI M G.. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J Am Chem Soc, 1993, 115 (19): 8706-8715.
    [22] TALAPIN D V, ROGACH A L, MEKIS I, et al. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals [J]. Colloids Surf A, 2002, 202 (2-3): 145-154.
    [23] HAO E, SUN H, ZHOU Z, et al. Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles [J]. Chem Mater, 1999, 11 (11): 3096-3102.
    [24] BATTAGLIA D, PENG X. Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent [J], Nano lett, 2002,2(9):1027-1030.
    [25] RAJH T, MICIC O I, NOZIK A J. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots [J]. J Phys Chem, 1993, 97 (46): 11999-12003.
    [26] GAPONIK N, TALAPIN D V, ROGACH A L, et al. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes [J]. J PhysChem B, 2002, 106 (29): 7177-7185.
    [27] ROGACH A L, NAGESHA D, OSTRANDER J W, et al.“Raisin Bun”-Type Composite Spheres of Silica and Semiconductor Nanocrystals [J]. Chem Mater, 2000, 12 (9): 2676-2685.
    [28] WANG Y, TANG Z, CORREA-DUARTE M A, et al. Multicolor Luminescence Patterning by Photoactivation of Semiconductor Nanoparticle Films [J]. J Am Chem Soc, 2003, 125 (10): 2830-2833.
    [29] DUBERTRET B, SKOURIDES P, NORRIS D J, et al. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles [J]. Science, 2002, 298(5599): 1759-1762.
    [30] LARSON D R, ZIPFEL W R, WILLIAMS R M, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo [J]. Science, 2003, 300 (5624): 1434-1436.
    [31] GERION D, PINAUD F, WILLIAMS S C, et al. Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots [J]. J Phys Chem B, 2001, 105 (37): 8861-8871.
    [32] MAMEDOVA N N, KOTOV N A, ROGACH A L, et al. Albumin?CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect [J]. Nano lett, 2001, 1 (6): 281-286.
    [33] MITCHELL G P, MIRKIN C A, LETSINGER R L. Programmed Assembly of DNA Functionalized Quantum Dots [J]. J Am Chem Soc, 1999, 121 (35): 8122-8123.
    [34] ?KERMAN M E, CHAN W C W, LAAKKONEN P, et al. Nanocrystal targeting in vivo [C]. P Natl Acad Sci USA, 2002, 99 (20): 12617-12621.
    [35] SHAN Y, WANG L, SHI Y, et al. NHS-mediated QDs-peptide/protein conjugation and its application for cell labeling [J]. Talanta, 2008, 75 (4): 1008-1014.
    [36] WUISTER S F, SWART I, DRIEL F V, et al. Highly Luminescent Water-Soluble CdTe Quantum Dots [J]. Nano Lett, 2003, 3 (4): 503-507.
    [37] ALDANA J, WANG Y A, PENG X. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols [J]. J Am Chem Soc, 2001, 123 (36): 8844-8850.
    [38] MATTOUSSI H, MAURO J M, GOLDMAN E R, et al. Self-Assembly of CdSe?ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein [J]. J Am Chem Soc, 2000, 122 (49): 12142-12150.
    [39] PATHAK S, CHOI S, ARNHEIM N, et al. Hydroxylated Quantum Dots as Luminescent Probes for in Situ Hybridization [J]. J Am Chem Soc, 2001, 123 (17): 4103-4104.
    [40] MAHTAB R, ROGERS J P, SINGLETON C P, et al. Preferential Adsorption of a "Kinked" DNA to a Neutral Curved Surface: Comparisons to and Implications for Nonspecific DNA-Protein Interactions [J]. J Am Chem Soc, 1996, 118 (30): 7028-7032.
    [41] TORIMOTO T, YAMASHITA M, KUWABATA S, et al. Fabrication of CdS Nanoparticle Chains along DNA Double Strands [J]. J Phys Chem B, 1999, 103 (42): 8799-8803.
    [42] WANG Y A, LI J J, CHEN H, et al. Stabilization of Inorganic Nanocrystals by Organic Dendrons [J]. J Am Chem Soc, 2002, 124 (10): 2293-2298.
    [43] GUO W, PENG X. Nanocrystal in dendron-box: a versatile solution to the chemical, photochemical, and thermal instability of colloidal nanocrystals [J]. C R Chimie, 2003, 6 (8-10): 989-999.
    [44] GUO W, LI J J, WANG Y A, et al. Conjugation Chemistry and Bioapplications of Semiconductor Box Nanocrystals Prepared via Dendrimer Bridging [J]. Chem Mater, 2003, 15 (16): 3125-3133.
    [45]何春萍,傅昕,黄可龙. CdE (E = S ,Se ,Te)量子点的合成、修饰、表征及应用[J].怀化学院学报, 2007, 26 (5): 58-62.
    [46] CHEN Y, ROSENZWEIG Z. Luminescent CdS Quantum Dots as Selective Ion Probes [J]. Anal Chem, 2002, 74 (19): 5132-5138.
    [47] GATTáS-ASFURA K M, LEBLANC R M. Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver(I) [J]. Chem Commun, 2003, 7 (21): 2684-2685.
    [48]严拯宇,庞代文,邵秀芬,等.量子点荧光猝灭法测定中药饮片中的微量铜[J].中国药科大学学报. 2005, 36 (3): 230-233.
    [49]李平,刘梅川,张成林,等.聚乙烯吡咯烷酮/硫化镉量子点修饰电极的制备及其对血红蛋白的测定研究[J].化学学报, 2005, 63 (12): 1075-1080.
    [50]钟萍,俞英,陈波,等.量子点的合成及在生物分析中的应用[J].化学试剂. 2005, 27 (11): 657-661.
    [51] GOLDMAN E R, CLAPP A R, ANDERSON G P, et al. Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents [J]. Anal Chem, 2004, 76 (3): 684-688.
    [52] BRUCHEZ JR M, MORONNE M, GIN P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels [J]. Science, 1998, 281: 2013-2016.
    [53]张春阳,马辉,丁尧,等.量子点标记天花粉蛋白的研究[J].高等学校化学学报. 2001, 22 (1): 34-37.
    [54]林章碧,张皓,陈奇丹,等.利用水相合成的量子点标记木瓜蛋白酶的研究[J].高等学校化学学报. 2003, 24 (4): 609-611.
    [55] GAO X, CUI Y, LEVENSON R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat Biotechnol, 2004, 22 (8): 969-967.
    [56]李步洪,张镇西,谢树森.量子点在生物学中的研究进展[J].激光生物学报. 2006, 15 (2): 214-220.
    [57]曾毅.非共价修饰功能化树枝形聚合物光物理性质研究[D].北京:中国科学院理化技术研究所博士学位论文, 2009年.
    [58] FLORY P J. Molecular Size Distribution in Three Dimensional Polymers. VI. Branched Polymers Containing A-R-Bf-1 Type Units [J]. J Am Chem Soc, 1952, 74 (11): 2718-2723.
    [59] HYATT J A. Octopus molecules in the cyclotriveratrylene series [J]. J Org Chem, 1978, 43 (9): 1808-1811.
    [60] TOMALIA D A, BAKER H, DEWALD J, et al. A New Class of Polymers: Starburst-Dendritic Macromolecules [J]. Polym J, 1985, 17 (1): 117-132.
    [61] LEBRETON S, MONAGHAN S, BRADLEY M. Solid-Phase Dendrimer Chemistry: Synthesis and Applications [J]. Aldrichimica Acta, 2001, 34 (3): 75-82.
    [62] BUHLEIER E, WEHNER W, V?GTLE F.“Cascade”- and“Nonskid-Chain-like”Syntheses of Molecular Cavity Topologies [J]. Synthesis, 1978, 2: 155-158.
    [63] NEWKOME G R, YAO Z, BAKER G R, et al. Chemistry of micelles series. Part2. Cascade molecules. Synthesis and characterization of a benzene[9]3-arborol [J]. J Am Chem Soc, 1986, 108 (4): 849-850.
    [64] TOMALIA D A, FRéCHET J M J. Discovery of dendrimers and dendritic polymers: A brief historical perspective [J]. J Polym Sci A: Polym Chem, 2002, 40 (16): 2719-2728.
    [65] MAITI P K, ?A IN T, WANG G, et al. Structure of PAMAM Dendrimers: Generations 1 through 11. Macromolecules, 2004, 37 (16): 6236-6254.
    [66] HEDDEN R C, BAUER B J. Structure and Dimensions of PAMAM/PEG Dendrimer?Star Polymers. Macromolceules, 2003, 36 (6): 1829-1835.
    [67] MECKE A, LEE I, BAKER JR J R, et al. Deformability of poly(amidoamine) dendrimers. Eur Phys J E, 2004, 14 (1): 7-16.
    [68] LI Y Q, YOU H B. Polymer Architecture and Drug Delivery. Pharm Res, 2006, 23 (1): 1-30.
    [69] ABDELHADY H G, ALLEN S, DAVIES M C, et al. Atomic force microscopy studies of generation 4 poly(amidoamine) (PAMAM) dendrimers on functionalized surfaces. Surf Sci, 2004, 558 (1-3): 99-110.
    [70] TOMALIA D A, HUANG B, SWANSON D R, et al. Structure control within poly(amidoamine) dendrimers: size, shape and regio-chemical mimicry of globular proteins. Tetrahedron, 2003, 59 (22): 3799-3813.
    [71] APPELHANS D, KOMBER H, QUADIR M A, et al. Hyperbranched PEI with Various Oligosaccharide Architectures: Synthesis, Characterization, ATP Complexation, and Cellular Uptake Properties. Biomacromolecules, 2009, 10 (5): 1114–1124.
    [72] KR?MER M, PéRIGNON N, HAAG R, et al. Water-Soluble Dendritic Architectures with Carbohydrate Shells for the Templation and Stabilization of Catalytically Active Metal Nanoparticles. Macromolecules, 2005, 38 (20): 8308–8315.
    [73] BOURY B, CORRIU R J P, NU?EZ R. Hybrid Xerogels from Dendrimers and Arborols. Chem Mater, 1998, 10 (7): 1795–1804.
    [74] ZHOU L L, ROOVERS J. Synthesis of novel carbosilane dendritic macromolecules [J]. Macromolecules, 1993, 26 (5): 963-968.
    [75] VAN DER MADE A W, VAN LEEUWEN P W N M. Silane Dendrimers [J]. JChem Soc, Chem Commun, 1992, 19: 1400-1401.
    [76] ROOVERS J, ZHOU L L, TOPOROWSKI P M, et al. Regular star polymers with 64 and 128 arms. Models for polymeric micelles [J]. Macromolecules, 1993, 26 (16): 4324-4331.
    [77] KNAPEN J W J, VAN DER MADE A W, DE WILDE J C, et al. Homogenous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes [J]. Nature, 1994, 372 (6507): 659-663.
    [78] MILLER T M, NEENAN T X, ZAYAS R, et al. Synthesis and characterization of a series of monodisperse, 1,3,5-phenylene-based hydrocarbon dendrimers including C276H186 and their fluorinated analogs [J]. J Am Chem Soc, 1992, 114 (3): 1018-1025.
    [79] XU Z, MOORE J S. Rapid Construction of Large-size Phenylacetylene Dendrimers up to 12.5 Nanometers in Molecular Diameter [J]. Angew Chem Int Ed Engl, 1993, 32 (9): 1354-1357.
    [80] RENGAN K, ENGEL R. Ammonium cascade molecules [J]. J Chem Soc, Chem Commun, 1992, 10: 757-758.
    [81] JIN R H, AIDA T, INOUE S. Caged porphyrin: the first dendritic molecule having a core photochemical functionality [J]. J Chem Soc, Chem Commun, 1993, 16: 1260-1262.
    [82] HUDSON R H E, DAMHA M J. Nucleic acid dendrimers: novel biopolymer structures [J]. J Am Chem Soc, 1993, 115 (6): 2119-2124.
    [83] BASHIR-HASHEMI A, HART H, WARD D L. Tritriptycene: a D3h C62 hydrocarbon with three U-shaped cavities [J]. J Am Chem Soc, 1986, 108 (21): 6675-6679.
    [84] HART H, BASHIR-HASHEMI A, LUO J, et al. Iptycenes: Extended triptycenes [J]. Tetrahedron, 1986, 42 (6): 1641-1654.
    [85] LIU Y, BRYANTSEV V S, DIALLO M S, et al. J Am Chem Soc, 2009, 131 (8): 2798-2799.
    [86] MARTIN H, KINNS H, MITCHELL N, et al. Nanoscale Protein Pores Modified with PAMAM Dendrimers. J Am Chem Soc, 2007, 129 (31): 9640-9649.
    [87] VENDITTO V J, REGINO C A S, BRECHBIEL M W. PAMAM Dendrimer Based Macromolecules as Improved Contrast Agents. Mol Pharmaceutics, 2005,2 (4): 302–311.
    [88] MAITI P K, MESSINA R. Counterion Distribution andζ-Potential in PAMAM Dendrimer. Macromolecules, 2008, 41 (13): 5002–5006.
    [89] BALOGH L, DE LEUZE-JALLOULI A, DVORNIC P, et al. Architectural Copolymers of PAMAM Dendrimers and Ionic Polyacetylenes. Macromolecules, 1999, 32 (4): 1036–1042.
    [90] DVORNIC P R, HARTMANN-THOMPSON C, KEINATH S E, et al. Organic?Inorganic Polyamidoamine (PAMAM) Dendrimer?Polyhedral Oligosilsesquioxane (POSS) Nanohybrids. Macromolecules, 2004, 37 (20): 7818–7831.
    [91] LEE J W, KIM B, KIM H J, et al. Convergent Synthesis of Symmetrical and Unsymmetrical PAMAM Dendrimers. Macromolecules, 2006, 39 (6): 2418–2422.
    [92] PITTELKOW M, CHRISTENSEN J B. Convergent Synthesis of Internally Branched PAMAM Dendrimers. Org Lett, 2005, 7 (7): 1295–1298.
    [93] CHUNG T, CHNG M L, PRAMODA K P, et al. PAMAM Dendrimer-Induced Cross-Linking Modification of Polyimide Membranes. Langmuir, 2004, 20 (7): 2966–2969.
    [94] DELONG R, STEPHENSON K, LOFTUS T, et al. Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery [J]. J Pharm Sci, 1997, 86 (6): 762-764.
    [95] BIELINSKA A, KUKOWSKA-LATALLO J F, JOHNSON J, et al. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers [J]. Nucleic Acids Res, 1996, 24 (11): 2176-2182.
    [96] CHEN W, TOMALIA D A, THOMAS J L. Unusual pH-Dependent Polarity Changes in PAMAM Dendrimers: Evidence for pH-Responsive Conformational Changes [J]. Macromoleeules, 2000, 33 (25): 9169-9172.
    [97] MILHEM O M, MYLES C, MCKEOWN N B, et al. Polyamidoamine Starburst? dendrimers as solubility enhancers [J]. Int J Pharm, 2000, 197 (1-2): 239-241.
    [98] WATKINS D M, SAYED-SWEET Y, KLIMASH J W, et al. Dendrimers with Hydrophobic Cores and the Formation of Supramolecular Dendrimer?Surfactant Assemblies [J]. Langmuir, 1997, 13 (12): 3136-3141.
    [99] DEVARAKONDA B, HILL R A, MELGARDT M DE V. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine [J]. Int J Pharm, 2004, 284 (1-2): 133-140.
    [100] CHENG Y, XU T. Dendrimers as Potential Drug Carriers. Part I. Solubilization of Non-Steroidal Anti-Inflammatory Drugs in the Presence of Polyamidoamine Dendrimers [J]. Eur J Med Chem, 2005, 40 (11): 1188-1192.
    [101] NEWKOME G R, MOOREFIELD C N, BAKER G R, et al. Unimolecular Micelles [J]. Angew Chem Int Ed Engl, 1991, 30 (9): 1178-1180.
    [102] BEEZER A E, KING A S H, MARTIN I K, et al. Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives [J]. Tetrahedron, 2003, 59 (22): 3873-3880.
    [103]王俊,万家齐,李杰,等.树枝状大分子聚酰胺胺对布洛芬的增溶性能研究[J].应用化工. 2004, 33 (3): 13-14.
    [104] LEI X, JOCKUSCH S, TURRO N J, et al. EPR characterization of gadolinium(III)-containing-PAMAM-dendrimers in the absence and in the presence of paramagnetic probes [J]. J Colloid Interface Sci, 2008, 322 (2): 457-464.
    [105] BULTE J W M, DOUGLAS T, WITWER B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells [J]. Nat Biotechnol, 2001, 19 (12): 1141-1147.
    [106] YANG W, BARTH R F, ADAMS D M, et al. Intratumoral Delivery of Boronated Epidermal Growth Factor for Neutron Capture Therapy of Brain Tumors [J]. Cancer Res, 1997, 57 (19): 4333-4339.
    [107] SINGH P, MOLL F, LIN S H, et al. Starburst dendrimers: enhanced performance and flexibility for immunoassays [J]. Clin Chem, 1994, 40 (9): 1845-1849.
    [108] LUO D, HAVERSTICK K, BELCHEVA N, et al. Poly(ethylene glycol)-Conjugated PAMAM Dendrimer for Biocompatible, High-Efficiency DNA Delivery [J]. Macromoleeules, 2002, 35 (9): 3456-3462.
    [109] YANG H, LOPINA S T. Extended release of a novel antidepressant, venlafaxine, based on anionic polyamidoamine dendrimers and poly(ethylene glycol)-containing semi-interpenetrating networks [J]. J Biomed Mater Res, 2005,72A (1): 107-114.
    [110] KONO K, KOJIMA C, HAYASHI N, et al. Preparation and cytotoxic activity of poly(ethylene glycol)-modified poly(amidoamine) dendrimers bearing adriamycin [J]. Biomaterials, 2008, 29 (11): 1664-1675.
    [111] LIU M, KONO K, FRéCHET J M J. Water-soluble dendritic unimolecular micelles: Their potential as drug delivery agents [J]. J Control Release, 2000, 65 (1-2): 121-131.
    [112] PAN G, LEMMOUCHI Y, AKALA E O, et al. Studies on PEGylated and Drug-Loaded PAMAM Dendrimers [J]. J Bioact Compat Polym, 2005, 20 (1): 113-128.
    [113] BHADRA D, BHADRA S, JAIN S, et al. A PEGylated dendritic nanoparticulate carrier of fluorouracil [J]. Int J Pharm, 2003, 257 (1-2): 111-124.
    [114] YANG H, MORRIS J J, LOPINA S T. Polyethylene glycol–polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water [J]. J Colloid Interface Sci, 2004, 273: 148-154.
    [115] KIM T, SEO H J, CHOI J S, et al. PAMAM-PEG-PAMAM: Novel Triblock Copolymer as a Biocompatible and Efficient Gene Delivery Carrier [J]. Biomacromolecules, 2004, 5 (6): 2487-2492.
    [116] KIM T, BAEK J, YOON J K, et al. Synthesis and Characterization of a Novel Arginine-Grafted Dendritic Block Copolymer for Gene Delivery and Study of Its Cellular Uptake Pathway Leading to Transfection [J]. Bioconjugate Chem, 2007, 18 (2): 309-317.
    [117] KOJIMA C, KONO K, MARUYAMA K, et al. Synthesis of Polyamidoamine Dendrimers Having Poly(ethylene glycol) Grafts and Their Ability To Encapsulate Anticancer Drugs [J]. Bioconjugate Chem, 2000, 11 (6): 910-917.
    [118] KOBAYASHI H, KAWAMOTO S, SAGA T, et al. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents [J]. Magnetic resonance in medicine, 2001, 46 (4): 781-788.
    [119] KOBAYASHI H, KAWAMOTO S, SAGA T, et al. Novel liver macromolecular MR contrast agent with a polypropylenimine diaminobutyl dendrimer core:Comparison to the vascular MR contrast agent with the polyamidoamine dendrimer core [J]. Magnetic resonance in medicine, 2001, 46 (4): 795-802.
    [120] MARGERUM L D, CAMPION B K, KOO M, et al. Gadolinium(III) DO3A macrocycles and polyethylene glycol coupled to dendrimers Effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents [J]. J Alloys Compd, 1997, 249 (1-2): 185-190.
    [1] TOMALIA D A, BAKER H, DEWALD J, et al. A New Class of Polymers: Starburst-Dendritic Macromolecules [J]. Polym J, 1985, 17 (1): 117-132.
    [2] NEWKOME G R, YAO Z, BAKER G R, et al. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol [J]. J Org Chem, 1985, 50 (11): 2003-2004.
    [3] LAM K S, SALMON S E, HERSH E M, et al. A New Type of Synthetic Peptide Library for Identifying Ligand-Binding Activity [J]. Nature, 1991, 354 (6348): 82-84.
    [4] SALMON S E, LAM K S, LEBLO M, et al. Discovery of biologically active peptides in random libraries: solution-phase testing after staged orthogonal release from resin beads [C]. P Natl Acad Sci USA, 1993, 90 (24): 11708-11712.
    [5] BURBAUM J J, OHLMEYER M H J, READER J C, et al. A paradigm for drug discovery employing encoded combinatorial libraries [C]. P Natl Acad Sci USA, 1995, 92 (13): 6027-6031.
    [6] HAAG R. Dendrimers and Hyperbranched Polymers as High-Loading Supports for Organic Synthesis [J]. Chem Eur J, 2001, 7 (2): 327-335.
    [7] WANG D, IMAE T. Fluorescence Emission from Dendrimers and Its pH Dependence. J Am Chem Soc, 2004, 126: 13204-13205.
    [8] WANG D, IMAE T, MIKI M. Fluorescence emission from PAMAM and PPI dendrimers. J Colloid Interface Sci, 2007, 306: 222–227.
    [9] YEMUL O, IMAE T. Synthesis and characterization of poly(ethyleneimine) dendrimers. Colloid Polym Sci, 2008, 286: 747–752.
    [10]王俊,杨锦宗,陈红侠,等.发散法合成树枝状高分子聚酰胺-胺[J].合成化学, 2001, 9 (1): 62-64.
    [11]黄飞. PAMAM树枝状分子的合成及其表面活性研究[D].北京:北京化工大学硕士学位论文. 2004年.
    [12]王冰冰,罗宇飞,贾欣茹,等.扇形PAMAM树枝状高分子的合成与表征.高分子学报. 2004, 2: 304-308.
    [13] WANG J, JIA X, ZHONG H, et al. Cinnamoyl shell-modified poly(amidoamine) dendrimers [J]. J Polym Sci A: Polym Chem, 2000, 38 (22): 4147-4152.
    [14] HU H, FAN X, CAO Z. Thermo- and pH-sensitive dendrimer derivatives with a shell of poly(N,N-dimethylaminoethyl methacrylate) and study of their controlled drug release behavior [J]. Polymer, 2005, 46 (22): 9514-9522.
    [15] GHOSH S, BANTHIA A K, CHEN Z. Synthesis and photoresponsive study of azobenzene centered polyamidoamine dendrimers [J]. Tetrahedron, 2005, 61 (11): 2889-2896.
    [16] KLEINMAN M H, FLORY J H, TOMALIA D A, et al. Effect of Protonation and PAMAM Dendrimer Size on the Complexation and Dynamic Mobility of 2-Naphthol [J]. J Phys Chem B, 2000, 104 (48): 11472-11479.
    [17] MANNA A, IMAE T, AOI K, et al. Synthesis of Dendrimer-Passivated Noble Metal Nanoparticles in a Polar Medium: Comparison of Size between Silver and Gold Particles [J]. Chem Mater, 2001, 13 (5): 1674-1681.
    [18] FUNAYAMA K, IMAE T, AOI K, et al. Small-Angle Neutron Scattering Investigations of Layer?Block Dendrimers in Aqueous Solutions [J]. J Phys Chem B, 2003, 107 (7): 1532-1539.
    [19] CHEN W, TOMALIA D A, THOMAS J L. Unusual pH-Dependent Polarity Changes in PAMAM Dendrimers: Evidence for pH-Responsive Conformational Changes [J]. Macromolecules, 2000, 33 (25): 9169-9172.
    [20] LEE W I, BAE Y, BARD A J. Strong Blue Photoluminescence and ECL from OH-Terminated PAMAM Dendrimers in the Absence of Gold Nanoparticles [J]. J Am Chem Soc, 2004, 126 (27): 8358-8359.
    [21] LEE I, ATHEY B D, WETZEL A W, et al. Structural Molecular Dynamics Studies on Polyamidoamine Dendrimers for a Therapeutic Application: Effects of pH and Generation [J]. Macromolecules, 2002, 35 (11), 4510-4520.
    [1] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics [J]. Science, 2005, 307 (5709): 538-544.
    [2] ALIVISATOS A P, GU W, LARABELL C. Quantum Dots as Cellular Probes [J]. Annu Rev Biomed Eng, 2005, 7 (1): 55-76.
    [3] CHAN W C W, NIE S, Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281 (5385): 2016-2018.
    [4] KLOSTRANEC J M, CHAN W C W, Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges [J]. Adv Mater, 2006, 18 (15): 1953-1964.
    [5] LI J J, WANG Y A, GUO W, et al. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction [J]. J Am Chem Soc, 2003, 125 (41): 12567-12575.
    [6] TALAPIN D V, ROGACH A L, KORNOWSKI A, et al. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture [J]. Nano Lett, 2001, 1 (4): 207-211.
    [7] DUBERTRET B, SKOURIDES P, NORRIS D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J]. Science, 2002, 298 (5599): 1759-1762.
    [8] POTAPOVA I, MRUK R, PREHL S, et al. Semiconductor Nanocrystals with Multifunctional Polymer Ligands [J]. J Am Chem Soc, 2003, 125 (2): 320-321.
    [9] YU W W, CHANG E, FALKNER J C, et al. Forming Biocompatible and Nonaggregated Nanocrystals in Water Using Amphiphilic Polymers [J]. J Am Chem Soc, 2007, 129 (10): 2871-2879.
    [10] PELLIGRINO T, MANNA L, KUDERA S, et al. Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals [J]. Nano Lett, 2004, 4 (4): 703-707.
    [11] BRUCHEZ M J, MORONNE M, GIN P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281 (5385): 2013-2016.
    [12] YANG Y, JING L, YU X, et al. Coating Aqueous Quantum Dots with Silica via Reverse Microemulsion Method: Toward Size-Controllable and RobustFluorescent Nanoparticles [J]. Chem Mater, 2007, 19 (17): 4123-4128.
    [13] GERION D, PARAK W J, WILLIAMS S C, et al. Sorting Fluorescent Nanocrystals with DNA [J]. J Am Chem Soc, 2002, 124 (24): 7070-7074.
    [14] DUBOIS F, MAHLER B, DUBERTRET B, et al. A Versatile Strategy for Quantum Dot Ligand Exchange [J]. J Am Chem Soc, 2007, 129 (3): 482-483.
    [15] WANG Y A, LI J J, CHEN H, et al. Stabilization of Inorganic Nanocrystals by Organic Dendrons [J]. J Am Chem Soc, 2002, 124 (10): 2293-2298.
    [16] LIU Y, KIM M, WANG Y, et al. Highly Luminescent, Stable, and Water-Soluble CdSe/CdS Core?Shell Dendron Nanocrystals with Carboxylate Anchoring Groups [J]. Langmuir, 2006, 22 (14): 6341-6345.
    [17] GUO W, LI J J, WANG Y A, et al. Conjugation Chemistry and Bioapplications of Semiconductor Box Nanocrystals Prepared via Dendrimer Bridging [J]. Chem Mater, 2003, 15 (16): 3125-3133.
    [18] GUO W, LI J J, WANG Y A, et al. Luminescent CdSe/CdS Core/Shell Nanocrystals in Dendron Boxes: Superior Chemical, Photochemical and Thermal Stability [J]. J Am Chem Soc, 2003, 125 (13): 3901-3909.
    [19] KLOEPFER J A, BRADFORTH S E, NADEAU J L. Photophysical Properties of Biologically Compatible CdSe Quantum Dot Structures [J]. J Phys Chem B, 2005, 109 (20): 9996-10003.
    [20] ALDANA J, WANG Y A, PENG X. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols [J]. J Am Chem Soc, 2001, 123 (36): 8844-8850.
    [21] WANG J, JIA X, ZHONG H, et al. Cinnamoyl shell-modified poly(amidoamine) dendrimers [J]. J Polym Sci A: Polym. Chem, 2000, 38 (22): 4147-4153.
    [22] HU H, FAN X, CAO Z. Thermo- and pH-sensitive dendrimer derivatives with a shell of poly(N,N-dimethylaminoethyl methacrylate) and study of their controlled drug release behavior [J]. Polymer, 2005, 46 (22): 9514-9522.
    [23] TOMALIA D A, BAKER H, DEWALD J R, et al. A New Class of Polymers: Starburst-Dendritic Macromolecules [J]. Polym J, 1985, 17 (1): 117–132.
    [24] TOMALIA D A, NAYLOR A M, GADDARD III W A. Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter [J]. Angew Chem Int Ed Engl, 1990, 29 (2): 138–175.
    [1] DUBOIS F, MAHLER B, DUBERTRET B, et al. A Versatile Strategy for Quantum Dot Ligand Exchange [J]. J Am Chem Soc, 2007, 129 (3): 482–483.
    [2] WILHELM M, ZHAO C, WANG W, et al. Poly(styrene-ethylene oxide) Block Copolymer Micelle Formation in Water: A Fluorescence Probe Study [J]. Macromolecules, 1991, 24: 1033–1040.
    [3] RINGSDORF H, VENZMER J, WINNIK F M. Fluorescence Studies of Hydrophobically Modified Poly(N-isopropylacrylamides) [J]. Macromolecules, 1991, 24: 1678–1686.
    [4] SAHU A, BORA U, KASOJU N, et al. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)–palmitate nanocarrier for curcumin delivery to cancer cells [J]. Acta Biomaterialia, 2008, 4: 1752–1761.
    [5] BRUCHEZ M J, MORONNE M, GIN P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281 (5385): 2013-2016.
    [6] GUO W, LI J J, WANG Y A, et al. Conjugation Chemistry and Bioapplications of Semiconductor Box Nanocrystals Prepared via Dendrimer Bridging [J]. Chem Mater, 2003, 15 (16): 3125–3133.
    [7] GUO W, LI J J, WANG Y A, et al. Luminescent CdSe/CdS Core/Shell Nanocrystals in Dendron Boxes: Superior Chemical, Photochemical and Thermal Stability [J]. J Am Chem Soc, 2003, 125 (13): 3901–3909.
    [8] LI J J, WANG Y A, GUO W, et al. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction [J]. J Am Chem Soc, 2003, 125 (41): 12567–12575.
    [9] ALDANA J, WANG Y A, PENG X. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols [J]. J Am Chem Soc, 2001, 123 (36): 8844–8850.
    [10] WANG Y A, LI J J, CHEN H, et al. Stabilization of Inorganic Nanocrystals by Organic Dendrons [J]. J Am Chem Soc, 2002, 124 (10): 2293–2298.
    [11] KLOEPFER J A, BRADFORTH S E, NADEAU J L. Photophysical Properties of Biologically Compatible CdSe Quantum Dot Structures [J]. J Phys Chem B, 2005, 109 (20): 9996–10003.
    [1]阮建明,刘慰东,黄可龙,等.用纳米技术诊断与治疗恶性肿瘤的进展[J].中南工业大学学报. 2002, 33 (2): 160-165.
    [2]许沈华.肿瘤标志物在恶性肿瘤诊断与治疗的应用[J].全科医学临床与教育. 2003, 1 (3): 6-11.
    [3] JAISWAL J K, SIMON S M. Potentials and pitfalls of fluorescent quantum dots for biological imaging [J]. Trends Cell Biol, 2004, 14 (9): 497-504.
    [4] CHAN W C, MAXWELL D J, GAO X, et al. Luminescent quantum dots for multiplexed biological detection and imaging [J]. Curr Opin Biotechnol, 2002, 13 (1): 40-46.
    [5] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271 (5251): 933-937.
    [6] SVENSON S. Dendrimers as versatile platform in drug delivery applications [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71: 445-462.
    [7] KE W, ZHAO Y, HUANG R, et al. Enhanced Oral Bioavailability of Doxorubicin in a Dendrimer Drug Delivery System [J]. Journal of Pharmaceutical Sciences, Vol. 97, 2208-2216 (2008)
    [8] KHANDARE J J, JAYANT S, SINGH A, et al. Dendrimer Versus Linear Conjugate: Influence of Polymeric Architecture on the Delivery and Anticancer Effect of Paclitaxel [J]. Bioconjugate Chem, 2006, 17 (6): 1464-1472.
    [9] MAJOROS I J, MYC A, THOMAS T, et al. PAMAM Dendrimer-Based Multifunctional Conjugate for Cancer Therapy: Synthesis, Characterization, and Functionality [J]. Biomacromolecules, 2006, 7 (2): 572-579.
    [10] LI J J, WANG Y A, GUO W, et al. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction [J]. J Am Chem Soc, 2003, 125 (41): 12567–12575.
    [11] FISHER D, LI Y, AHLEMEYER B, et al. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis [J]. Biomaterials 2003, 24 (7): 1121-1131.
    [12] IPE B I, LEHNIG M, NIEMEYER C M. On the Generation of Free RadicalSpecies from Quantum Dots [J]. Small, 2005, 1 (7): 706-709.
    [13] KIRCHNER C, LIED T, KUDERA S, et al. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles [J]. Nano Lett, 2005, 5 (2): 331-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700