用户名: 密码: 验证码:
重组人ADAM15去整合素结构域蛋白的制备及其作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ADAM (A Disintegrin And Metalloproteinase)是一类含有七个功能结构域并在细胞间相互识别和相互作用中发挥重要作用的跨膜糖蛋白家族。ADAM15作为该家族唯一在去整合素结构域(disintegrin)含有RGD(Arg-Gly-Asp)基序的成员,在细胞外基质降解、细胞粘附、细胞内信号转导和肿瘤的病理变化等过程中发挥重要作用,但是其抗肿瘤机理需进一步阐释。本文在成功获取高表达水平的重组人ADAM15去整合素结构域蛋白片段(rhddADAM15)的基础上,以小鼠黑色素瘤细胞(B16)为研究模型,研究rhddADAM15对B16细胞体外增殖、粘附和迁移等细胞行为的影响,通过筛选rhddADAM15特异结合的12肽以及rhddADAM15在B16细胞上相互作用的靶点蛋白,探讨rhddADAM15干预肿瘤细胞行为的生理机制。主要研究结果如下:
     1)为获得大量具有生物活性的rhddADAM15蛋白,在详尽分析目标蛋白的cDNA序列的基础上,(1)选择能为大肠杆菌稀有密码子提供额外tRNA的大肠杆菌Escherichia coli Rosetta(DE3)作为宿主菌,将目标蛋白以GST(Glutathione-S-transferase)融合蛋白形式表达,在最佳诱导表达条件下融合蛋白GST-ADAM15浓度为298 mg/L,最佳凝血酶酶切条件下,rhddADAM15浓度为42 mg/L; (2)采用PCR体外定点突变技术将凝血酶识别序列附近稀有密码子GGA(Gly)替换为GGC,同时消除Pro-Glu-Phe残基,构建突变表达质粒,提高凝血酶酶切效率。在相同的表达和酶切条件下获得GST-△-ADAM15和rhddADAM15蛋白浓度分别为326 mg/L和68mg/L,比野生型分别提高9.4%和61.9%。这一结果表明,在充分认识目标蛋白特性的基础上定向选择表达宿主并改造表达质粒能实现外源蛋白高水平表达;
     2)采用MTT法测定rhddADAM15对B16、MCF-7/W以及HMEC-1细胞体外增殖的作用,采用创伤愈合实验、Matrigel基质胶以及Transwell侵袭小室法观察rhddADAM15对B16细胞体外迁移、粘附和侵袭的影响;采用台盼蓝染色法分析细胞活力、流式细胞仪检测rhddADAM15对B16细胞周期的影响。结果表明rhddADAM15对肿瘤细胞和正常内皮细胞生长均有一定的抑制作用(其IC50分别为9.5、11.8和14.9μg/mL),且明显抑制B16细胞的体外增殖、迁移、粘附和侵袭。台盼蓝染色法表明低剂量的rhddADAM15并不能导致B16细胞出现坏死,且rhddADAM15并不导致B16细胞出现典型的凋亡峰,而是将细胞阻滞于G2/ M期,并且这种作用呈剂量依赖关系;
     3)采用亲和甄别磁珠技术筛选rhddADAM15在B16细胞上的结合蛋白。将rhddADAM15采用蛋白生物素化方法标记生物素,借助生物素-亲和素系统,将生物素化的rhddADAM15固定于亲和素标记的免疫磁珠。从B16细胞裂解液中钓出与之相互作用的蛋白,经浓缩富集后,采用双向电泳分离技术分离获得主要的结合蛋白点,然后对这些蛋白点进行电喷雾串联质谱技术(ESI-MS)分析,在蛋白数据库中检索,共鉴定了8个蛋白质,按功能可分为如下三类:(1)临床应用的肿瘤标志物(苹果酸脱氢酶、磷酸甘油醛脱氢酶和谷氨酸脱氢酶);(2)能量代谢相关蛋白(烯醇酶、磷酸丙糖异构酶、原肌球蛋白和血红蛋白);(3)信号转导通路成员(p38MAPK激酶)等。在此基础上通过分子对接软件molsoft ICM模拟计算获得rhddADAM15与p38激酶相互作用的最佳模式和重要的结合位点;
     4)采用噬菌体展示技术筛选与rhddADAM15特异性相互作用的多肽序列。采用噬菌体随机十二肽库对固定有rhddADAM15的亲和磁珠系统进行生物淘洗,获得4条与rhddADAM15特异结合的12肽。将获得的12肽与蛋白质库进行序列比对,发现细胞周期相关蛋白如Cdc25和p53,信号通路相关蛋白/受体,如整合素αvβ3的胞外区,丝裂原活化蛋白激酶p38α等与所获得的4条12肽具有高度同源性;
     5)基于上述研究所获得的rhddADAM15在B16细胞上潜在的靶点蛋白,进一步研究rhddADAM15与p38MAPK激酶的体外相互作用,结合rhddADAM15对B16细胞行为的抑制作用,采用蛋白点杂交和激酶活性测定方法分析rhddADAM15在体外与重组p38激酶蛋白的结合情况,同时研究不同剂量rhddADAM15对B16细胞中p38MAPK激酶磷酸化水平的影响,并观察rhddADAM15对p38激酶活性受到部分抑制的B16细胞的增殖和细胞周期抑制作用的变化。发现:(1)rhddADAM15在离体低温条件下能够和重组p38激酶蛋白结合,但rhddADAM15(0-10μg/mL)在体外对p38MAPK激酶活性没有影响;(2)同样剂量的rhddADAM15作用于B16细胞24 h后,细胞中p38MAPK激酶的磷酸化水平提高(被激活);(3)p38激酶的特异性抑制剂SB203580(0.5 mmol/L)预处理B16细胞30 min后,rhddADAM15对细胞增殖的抑制作用减弱(IC50由未经处理的9.5μg/mL增加到11.4μg/mL),对细胞周期的阻滞作用也减弱(G2/M期细胞比率从未经处理的的28.77%降到16.59%)。上述结果表明,p38MAPK信号转导通路参与了rhddADAM15对B16细胞增殖和细胞周期的抑制作用,同时也表明生理条件下rhddADAM15与p38MAPK激酶相互作用的复杂性。
A Disintegrin And Metalloproteases (ADAM) proteins are a family of multifunctional proteins containing disintegrin and metalloproteinase domains that perform both adhesive and proteolytic functions in cell-cell and cell-matrix interactions. ADAM15 is unique among these proteins in having an Arg-Gly-Asp (RGD) motif in its disintegrin-like domain. This dissertation chose the B16 murine melanoma cell as a model, to investigate the effect of the recombinant human ADAM15 disintegrin domain (rhddADAM15) on B16 cells gowth, and the target protein of rhddADAM15 on B6 cells, and further study the involvement of the target protein in the anti-cancer effect of rhddADAM15. The main results were described as follows:
     1) In order to enhance the production and bioactivity of rhddADAM15 in Escherichia coli, two different strategies were examined based on the genetic analysis of coding sequence of rhddADAM15: to select the suitable host strain, and to optimize the rare codons and delete the amino acids residues. It was found that (1) when choosing E. coli Rosetta (DE3) as the expression host that supplys additional tRNA for rare codons, 298 mg/L GST-ADAM15 and 42 mg/L rhddADAM15 were achieved under the optimal expression and thrombin digestion conditions, respectively; (2) when introducing E. coli preferred codon GGC and deleting“Pro-Glu-Phe”residues by PCR-based site-directed mutagenesis, 326 mg/L GST-△-ADAM15 and 68 mg/L rhddADAM15 were achieved under the same condition, respectively, higher 19.4% and 61.9% than that of the wide type strain. The data presented here demonstrated that high expression of heterologous protein could be achieved by releasing rare codon usage and amino acids residues restriction.
     2) The effect of rhddADAM15 on the proliferation of B16, MCF-7/W and HMEC-1 cells were examined by MTT assay. The effect of rhddADAM15 on B16 cell migration, adhesion and invention were tested by the wound migration assay, cell-Matrigel adhesion assay and the Transwell chambers, respectively; The growth and activity of B16 cells were explored by using trypan blue staining. The cell cycle and apoptosis were determined by flow cytometry. The results demonstrated that rhddADAM15 could inhibit the proliferation of normal cells, but exhibit stronger inhibitory effect on the tumor cells. Moreover, rhddADAM15 inhibited B16 cell migration, adhesion and invasion in the dose/time-dependent mode and the necrosis could not be observed in the low concentration of rhddADAM15. The apoptotic peaks were not found in cell cycle analyses and the cells are arrested in G2/M phase.
     3) The protein pull-down assay using the biotin-avidin system supported by the immol/Lunomagnetic beads was used to capture the binding protein of rhddADAM15 from the cell lysis buffer of B16. The mixture of the binding protein was concentrated and separated by the two-dimensional eletrophoresis (2DE) and eight of the protein spots were identified by the ESI-MS/MS. By using the software BIOWORKS and the protein database ipi MOUSE v3.26, the binding proteins were mainly identified as follows: (1) Tumor markers in the clinical application: malate dehydrogenase, phosphate dehydrogenase and glutamate dehydrogenase; (2) Enzymes in glycolytic pathway: alpha-enolase and triosephosphate isomerase; (3) The important components in cytoskeleton: tropomyosin-3; (4) Proteins in oxygen transportation: hemoglobin subunit beta-1; (5) Members in signal transduction: p38MAPK. In addition, the interaction modes between rhddADAM15 and p38MAPK were preliminarily analyzed using the molecular docking program, molsoft ICM-PRO-3.5.
     4) The target peptides of rhddADAM15 were explored by the phage display technique. Firstly, the rhddADAM15 was biotinylated and immol/Lobilized on the immol/Lunomagnetic beads with avidin labeled. Secondly, four specific binding peptides (peptide A, B, C and D) were screened from a phage display-12 peptide library by a screening protocol towards immol/Lobilized rhddADAM15. By using the software BLAST and the relevant protein database, some target proteins were screened, such as the Cdc25 phosphatase, tyrosine kinase p56, integrinαvβ3, and the p38 mitogen activated protein kinase (p38MAPK), related with the cell cycles and the signal transduction.
     5) The p38MAPK was selected for further investigation of the involvement in the anti-proliferative effect of rhddADAM15 on melanoma cells. Firstly, the effect of rhddADAM15 on activity of p38 MAPK in vitro was observed. Secondly, phosphorylation of p38 kinase in melanoma cells was detected by Western blot analysis upon treatment with rhddADAM15 (0-10μg/mL). Thirdly, the specific inhibitor of p38 kinase (SB203580) was employed to partly suppress the activity of p38 kinase in B16 cells, and the inhibitory effect of rhddADAM15 was then observed. The results were demonstrated as follows: (1) rhddADAM15 could bind to the recombinant p38 kinase at 4 oC but had no effect on the activity of p38 kinase in vitro; (2) rhddADAM15 had inhibitory effect on the activity of p38 kinase in B16 cells; (3) A decrease in the rhddADAM15 inhibitory effect on melanoma cell proliferation, and the value of IC50 was increased from 9.5μg/mL to11.4μg/mL, when the activity of p38 kinase was partly suppressed; (4) A release in the cell cycle arrest, the cell ratio in G2/M phase was decreased from 28.77% to16.59%, under the condition of suppressing the p38 kinase. These results provided evidences that rhddADAM15 inhibiting the proliferation and the cell cycle of the melanoma cells was partly through p38 kinase activation and the p38MAPK signal transduction pathway was involved in the effect of rhddADAM15 on B16 cells.
引文
1.Oldham R K. Cancer biotherapy: the field matures [J]. Cancer Biother, 1995,10(2):91-93
    2. Ramírez de Molina A, Gallego-Ortega D, Sarmentero-Estrada J, et al. Choline kinase as a link connecting phospholipid metabolism and cell cycle regulation: Implications in cancer therapy[J]. Int J Biochem Cell Biol ,2008,19(1):876-886
    3.Buzzai M, Licht J D. New molecular concepts and targets in acute myeloid leukemia [J]. Curr Opin Hematol, 2008, 15(2):82-87
    4. Gridelli C, Maione P, Rossi A. The Potential Role of mTOR Inhibitors in Non-Small Cell Lung Cancer [J]. Oncologist, 2008,13(2):139-147
    5.Ghosh A. CML: imatinib mesylate (Glivec) or something else? [J]. Nepal Med Coll J, 2007, 9(4):292
    6. Lewko W M, Good R W, Bowman D, et al. Growth of tumor derived activated T-cells for the treatment of cancer [J]. Cancer Biother, 1994, 9(3):211-224
    7. Seals D F, Courtneidge S A. The ADAMs family of metalloproteases:multidomain proteins with multiple functions [J]. Genes Dev, 2003,17(1):7-30
    8. Trochon-Joseph V, Martel-Renoir D, Mir L M, et al. Evidence of antiangiogenic and antimetastatic activities of the recombinant disintegrin domain of metargidin [J]. Cancer Res, 2004,64(6):2062-2069
    9.Moss M L, Bartsch J W. Therapeutic benefits from targeting of ADAM family members [J]. Biochemistry, 2004,43(23):7227-7235
    10. Haidl I D, Huber G, Eichmann K. An ADAM family member with expression in thymic epithelial cells and related tissues [J]. Gene, 2002, 283(1-2):163-170
    11. Mochizuki S, Okada Y. ADAMs in cancer cell proliferation and progression [J]. Cancer Sci, 2007,98(5):621-628
    12. White J M. ADAMs: modulators of cell-cell and cell-matrix interactions [J]. Curr Opin Cell Biol, 2003,15(5):598-606
    13. Cruz A C, Frank B T, Edwards S, et al. Tumor necrosis factor-alpha-converting enzyme controls surface expression of c-Kit and survival of embryonic stem cell-derived mast cells[J]. J Biol Chem, 2004,279(7):5612-5620
    14. Grutzmann R, Luttges J, Sipos B, et al. ADAM9 expression in pancreatic cancer is associated with tumor type and is a prognostic factor in ductal adenocarcinoma[J]. Br J Cancer, 2004,90(5):1053-1058
    15. Kodama T, Ikeda E, Okada A, et al. ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor[J]. Am J Pathol, 2004,165(5):1743-1753
    16. Wildeboer D, Naus S, Amy Sang Q X, et al. Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness[J]. J Neuropathol Exp Neurol, 2006,65(5):516-527
    17. Ishikawa N, Daigo Y, Yasui W, et al. ADAM8 as a novel serological and histochemical marker for lung cancer[J]. Clin Cancer Res, 2006, 10(24):8363-8370
    18. Shintani Y, Higashiyama S, Ohta M, et al. Overexpression of ADAM9 in non-small cell lung cancer correlates with brain metastasis [J]. Cancer Res, 2004, 64(12):4190-4196
    19. Ohtsuka T, Shiomi T, Shimoda M, et al. ADAM28 is overexpressed in human non-small cell lung carcinomas and correlates with cell proliferation and lymph node metastasis [J]. Int J Cancer, 2006,118(2):263-273
    20. Carl-McGrath S, Lendeckel U, Ebert M, et al. The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer [J]. Int J Oncol, 2005,26(1):17-24
    21. Ding X, Yang L Y, Huang G W, et al. ADAM17 mRNA expression and pathological features of hepatocellular carcinoma [J]. World J Gastroenterol, 2004,10(18):2735-2739
    22. Roemer A, Schwettmann L, Jung M, et al. Increased mRNA expression of ADAMs in renal cell carcinoma and their association with clinical outcome [J]. Oncol Rep, 2004,11(2):529-536
    23. Peduto L, Reuter V E, Shaffer D R, et al. Critical function for ADAM9 in mouse prostate cancer [J]. Cancer Res, 2005,65(20):9312-939
    24. Kveiborg M, Frohlich C, Albrechtsen R, et al. A role for ADAM12 in breast tumor progression and stromal cell apoptosis [J]. Cancer Res, 2005, 65(11):4754-4761
    25. Lendeckel U, Kohl J, Arndt M, et al. Increased expression of ADAM family members in human breast cancer and breast cancer cell lines [J]. J Cancer Res Clin Oncol, 2005,131(1):41-48
    26. McGowan P M, Ryan B M, Hill A D, et al. ADAM-17 expression in breast cancer correlates with variables of tumor progression [J]. Clin Cancer Res, 2007,13(8):2335-2343
    27. Mitsui Y, Mochizuki S, Kodama T, et al. ADAM28 is overexpressed in human breast carcinomas: implications for carcinoma cell proliferation through cleavage of insulin-like growth factor binding protein-3[J]. Cancer Res, 2006,66 (20):9913-9920
    28. O’Shea C, McKie N, Buggy Y, et al. Expression of ADAM-9 mRNA and protein in human breast cancer[J]. Int J Cancer, 2003,105(6):754-761
    29. Arribas J, Bech-Serra JJ, Santiago-Josefat B. ADAMs, cell migration and cancer [J]. Cancer Metastasis Rev, 2006,25(1):57-68
    30. Izumi Y, Hirata M, Hasuwa H, et al. A metalloprotease-disintegrin, MDC9/meltrin-gammol/La/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor [J]. EMBO J ,1998,17(24):7260-7272
    31. Ludwig A, Hundhausen C, Lambert MH, et al. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules [J]. Comb Chem High Throughput Screen, 2005,8(2):161-171
    32. Borrell-Pages M, Rojo F, Albanell J, et al. TACE is required for the activation of the EGFR by TGF-αin tumors [J]. EMBO J, 2003,22(5):1114-1124
    33. Kenny P A. Tackling EGFR signaling with TACE antagonists: a rational target for metalloprotease inhibitors in cancer [J]. Expert Opin Ther Targets, 2007,11(10):1287-1298
    34. Zhou B B, Peyton M, He B, et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer [J]. Cancer Cell, 2006,10(1):39-50
    35. Kenny P A, Bissell M J. Targeting TACE-dependent EGFR ligand shedding in breast cancer [J]. J Clin Invest, 2007,117(2):337-345
    36. Blanchot-Jossic F, Jarry A, Masson D, et al. Up-regulated expression of ADAM17 in human colon carcinoma: co-expression with EGFR in neoplastic and endothelial cells.[J]. J Pathol, 2005,207(2):156-163
    37. G?oz M, G?oz P, Luttrell LM, Raymond JR. 5-HT2A receptor induces ERK phosphorylation and proliferation through ADAM-17 tumor necrosis factor-alpha-converting enzyme (TACE) activation and heparin-bound epidermal growth factor-like growth factor (HB-EGF) shedding in mesangial cells[J]. J Biol Chem, 2006,281(30):21004-210012
    38. Tanaka M, Nanba D, Mori S, et al. ADAM binding protein Eve-1 is required for ectodomain shedding of epidermal growth factor receptor ligands[J]. J Biol Chem, 2004,279(40):41950-41959
    39. Huovila A P, Turner A J, Pelto-Huikko M, et al. Shedding light on ADAM metalloproteinases [J]. Trends Biochem Sci, 2005,30(7):413-422
    40. Sos M L, Zander T, Thomas R K, et al. Expression of signaling mediators downstream of EGF-receptor predict sensitivity to small molecule inhibitors directed against the EGF-receptor pathway[J]. J Thorac Oncol, 2008,3(2):170-173
    41. Ohtsu H, Dempsey P, Eguchi S. ADAMs as mediators of EGF receptor transactivation byG protein-coupled receptors [J]. Am J Physiol Cell Physiol, 2006,291(1):C1-10
    42. Ohtsu H, Dempsey P, Frank G D, et al. ADAM17 mediates epidermal growth factor receptor transactivation and vascular smooth muscle cell hypertrophy induced by angiotensin II[J]. Arterioscler Thromb Vasc Biol, 2006, 26(9):e133-137
    43. Tanaka Y, Miyamoto S, Suzuki SO, et al. Clinical significance of heparinbinding epidermal growth factor-like growth factor and a disintegrin and metalloproteinase 17 expression in human ovarian cancer [J]. Clin Cancer Res, 2005,11(13):4783-4792
    44. Sternlicht M D, Sunnarborg S W, Kouros-Mehr H, et al. Mammol/Lary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin[J]. Development, 2005,132(17):3923-3933
    45. Sahin U, Blobel CP. Ectodomain shedding of the EGF-receptor ligand epigen is mediated by ADAM17 [J]. FEBS Lett, 2007,581(1):41-44
    46. Forsyth C B, Banan A, Farhadi A, et al. Regulation of oxidant-induced intestinal permeability by metalloprotease-dependent epidermal growth factor receptor signaling[J]. J Pharmacol Exp Ther, 2007, 321(1):84-97
    47. Sch?fer B, Marg B, Gschwind A, et al. Distinct ADAM metalloproteinases regulate G protein-coupled receptor-induced cell proliferation and survival[J]. J Biol Chem, 2004 279(46):47929-47938
    48. McCulloch D R, Akl P, Samaratunga H, et al. Expression of the disintegrin metalloproteinase, ADAM-10, in prostate cancer and its regulation by dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor in the prostate cancer cell model LNCaP [J]. Clin Cancer Res, 2004,10(1):314-323
    49. Anastassiou G, Duensing S, Steinhoff G, et al. In vivo distribution of integrins in renal cell carcinoma: integrin-phenotype alteration in different degrees of tumor differentiation and VLA-2 involvement in tumor metastasis [J]. Cancer Biother, 1995,10(4):287-292
    50. Bridges L C, Bowditch R D. ADAM-Integrin Interactions: potential integrin regulated ectodomain shedding activity [J]. Curr Pharm Des, 2005,11(7):837-847
    51. Mechtersheimer S, Gutwein P, Agmon-Levin N, et al. Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins[J]. J Cell Biol, 2001,155(4):661-673
    52. Zhou M, Graham R, Russell G, et al. MDC-9 (ADAM-9/Meltrin gammol/La) functions as an adhesion molecule by binding the alpha(v)beta(5) integrin [J]. Biochem Biophys Res Commol/Lun, 2001,280(2):574-580
    53. Mazzocca A, Coppari R, De Franco R, et al. A secreted form of ADAM9 promotes carcinoma invasion through tumor–stromal interactions [J]. Cancer Res,2005,65(11):4728-4738
    54. Al-Fakhri N, Wilhelm J, Hahn M, et al. Increased expression of disintegrin-metalloproteinases ADAM-15 and ADAM-9 following upregulation of integrins alpha5beta1 and alphavbeta3 in atherosclerosis[J]. J Cell Biochem, 2003,89(4):808-823
    55. Sundberg C, Thodeti C K, Kveiborg M, et al. Regulation of ADAM12 cellsurface expression by protein kinase C epsilon [J]. J Biol Chem, 2004,279(49):51601-51611
    56. Bridges L, Tani P H, Hanson K R, et al. The lymphocyte metalloprotease MDC-L (ADAM 28) is a ligand for the integrin alpha4beta1 [J]. J Biol Chem, 2002,277(5):3784-3792
    57. Gutwein P, Oleszewski M, Mechtersheimer S, et al. Role of Src kinases in the ADAM-mediated release of L1 adhesion molecule from human tumor cells[J]. J Biol Chem, 2000,275(20):15490-15497
    58. Kang Q, Cao Y, Zolkiewska A. Metalloprotease-disintegrin ADAM 12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells[J]. Biochem J, 2000,352(3):883-892
    59. Kang Q, Cao Y, Zolkiewska A. Direct interaction between the cytoplasmic tail of ADAM
    12 and the Src homology 3 domain of p85alpha activates [J]. J Biol Chem, 2001,276(27):24466-24472
    60. Howard L, Nelson K K, Maciewicz R A, et al. Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1.[J]. J Biol Chem, 1999, 274(44):31693-31699
    61. Dyczynska E, Sun D, Yi H, et al. Proteolytic processing of delta-like 1 by ADAM proteases[J]. J Biol Chem, 2007, 282(1):436-444
    62. Muraguchi T, Takegami Y, Ohtsuka T, et al. RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity[J]. Nat Neurosci, 2007,10(7):838-845
    63. Hartmann D, de Strooper B, Serneels L, et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts [J]. Hum Mol Genet, 2002,11(21):2615-2624
    64. Moss M L, Bomar M, Liu Q, et al. The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events[J]. J Biol Chem, 2007,282(49):35712-35721
    65. Zigrino P, Mauch C, Fox J W, et al. Role of ADAM-9 disintegrin-cysteine-rich domains in human keratinocyte migration[J]. J Biol Chem, 2007,282(42):30785-30793
    66. Schwettmann L, Tschesche H. Cloning and expression in Pichia pastoris of metalloprotease domain of ADAM 9 catalytically active against fibronectin [J]. Protein Expr Purif, 2001,21(1):65-70
    67. Brachvogel B, Reichenberg D, Beyer S, et al. Molecular cloning and expression analysis of a novel member of the Disintegrin and Metalloprotease-Domain (ADAM) family[J]. Gene, 2002,288(1-2):203-212
    68. Jeon O H, Kim D, Choi Y J, et al. Novel function of human ADAM15 disintegrin-like domain and its derivatives in platelet aggregation [J]. Thromb Res, 2007,119(5):609-619
    69. Zigrino P, Mauch C, Fox J W, et al. ADAM-9 expression and regulation in human skin melanoma and melanoma cell lines [J]. Int J Cancer, 2005,116(6):853-859
    70. Charrier L, Yan Y, Driss A, et al. Sitaraman SV, Merlin D. ADAM-15 inhibits wound healing in human intestinal epithelial cell monolayers[J]. Am J Physiol Gastrointest Liver Physiol, 2005,288(2):G346-G353
    71. Kr?tzschmar J, Lum L, Blobel C P. Metargidin, a membrane-anchored metalloprotease-disintegrin protein with an RGD integrin binding sequence [J]. J Biol Chem, 1996,271(9):4593-4596
    72. Kuefer R, Day K C, Kleer C G, et al. ADAM15 disintegrin is associated with aggressive prostate and breast cancer diseases[J]. Neoplasia 2006,8(4):319-329
    73. K?rkk?inen I, Karhu R, Huovila A P. Assignment of the ADAM15 gene to human chromosome band 1q21.3 by in situ hybridization[J]. Cytogenet Cell Genet, 2000,88(3-4):206-217
    74. Schutz A, Hartig W, Wobus M, et al. Expression of ADAM15 in lung carcinomas [J]. Virchows Arch, 2005, 446(4):421-429
    75. Horiuchi K, Weskamp G, Lum L, et al. Potential role for ADAM15 in pathological neovascularization in mice[J]. Mol Cell Biol, 2003,23(16):5614-5624
    76. Beck V, Herold H, Benge A, et al. ADAM15 decreases integrinαvβ3/ vitronectin-mediated ovarian cancer cell adhesion and motility in an RGDdependent fashion[J]. Int J Biochem Cell Biol, 2005,37(3):590-603
    77. Lu D, Chung K F, Xia M, et al. Integrin binding characteristics of the disintegrin-like domain of ADAM-15 [J]. Thromb Haemost, 2006,96(5):642-651
    78. Nath D, Slocombe P M, Stephens P E, et al. Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5beta1 integrins on different haemopoietic cells [J]. J Cell Sci, 1999,112(Pt 4): 579-587
    79. Yasui A, Matsuura K, Shimizu E, et al. Expression of splice variants of the human ADAM15 gene and strong interaction between the cytoplasmic domain of one variant andSrc family proteins Lck and Hck[J]. Pathobiology, 2004,71(4):185-192
    80. K?rkk?inen S, Hiipakka M, Wang J H, et al. Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome [J]. EMBO Rep, 2006,7(2):186-191
    81. Poghosyan Z, Robbins S M, Houslay M D, et al. Phosphorylation-dependent interactions between ADAM15 cytoplasmic domain and Src family protein-tyrosine kinases[J]. J Biol Chem, 2002,277(7):4999-5007
    82. Shimizu E, Yasui A, Matsuura K, et al. Structure and expression of the murine ADAM 15 gene and its splice variants, and difference of interaction between their cytoplasmic domains and Src family proteins[J]. Biochem Biophys Res Commol/Lun, 2003,309(4):779-785
    83. B?hm B B, Aigner T, Blobel C P, et al. Highly enhanced expression of the disintegrin metalloproteinase MDC15 (metargidin) in rheumatoid synovial tissue[J]. Arthritis Rheum, 2001,44(9):2046-2054
    84. B?hm B B, Aigner T, Roy B, et al. Burkhardt H. Homeostatic effects of the metalloproteinase disintegrin ADAM15 in degenerative cartilage remodeling [J]. Arthritis Rheum, 2005,52(4):1100-1109
    85. Yamada D, Ohuchida K, Mizumoto K, et al. Increased expression of ADAM 9 and ADAM 15 mRNA in pancreatic cancer[J]. Anticancer Res, 2007,27(2):793-799
    86. B?hm B B, Aigner T, Gehrsitz A, et al. Up-regulation of MDC15 (metargidin) messenger RNA in human osteoarthritic cartilage[J]. Arthritis Rheum, 1999,42(9):1946-1950
    87. Lu D, Xie S, Sukkar M B, et al. Inhibition of airway smooth muscle adhesion and migration by the disintegrin domain of ADAM-15 [J]. Am J Respir Cell Mol Biol, 2007,37(4):494-500
    88. Martin J, Eynstone L, Davies M, et al. The role of ADAM 15 in glomerular mesangial cell migration [J]. J Biol Chem, 2002,277(37):33683-33689
    89. Zhang X P, Kamata T, Yokoyama K, et al. Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alphavbeta3[J]. J Biol Chem, 1998,273(13):7345-7350
    90. Ham C, Levkau B, Raines E W, et al. ADAM15 is an adherens junction molecule whose surface expression can be driven by VE-cadherin[J]. Exp Cell Res, 2002,279(2):239-247
    91. Charrier L, Yan Y, Nguyen H T, et al. ADAM-15/metargidin mediates homotypic aggregation of human T lymphocytes and heterotypic interactions of T lymphocytes with intestinal epithelial cells[J]. J Biol Chem, 2007,282(23):16948-16958
    92. Mosnier J F, Jarry A, Bou-Hanna C, et al. ADAM15 upregulation and interaction withmultiple binding partners in inflammol/Latory bowel disease [J]. Lab Invest, 2006, 86(10):1064-1073
    93. Kane J F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli [J]. Curr Opin Biotechnol, 1995,6(5):494-500
    94. Kurland C, Gallant J. Errors of heterologous protein expression [J]. Curr Opin Biotechnol, 1996,7(5):489-493
    95. Cabrita L D, Dai W, Bottomley S P. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production [J]. BMC Biotechnol, 2006, 6(12):1472-1479
    96. Martinez-Martinez I, Kaiser C, Rohde A, et al. High-level production of bacillus subtilis glycine oxidase by fed-batch cultivation of recombinant Escherichia coli Rosetta (DE3)[J]. Biotechnol Prog, 2007,23(3):645-651
    97. Rabhi-Essafi I, Sadok A, Khalaf N, et al. A strategy for high-level expression of soluble and functional human interferon alpha as a GST-fusion protein in E. coli [J]. Protein Eng Des Sel, 2007,20(5):201-209
    98. Trochon-Joseph V, Bouquet C, Thomaidis A, et al. he recombinant disintegrin domain of human ADAM15 has anti-angiogenic anti-invasive and anti-proliferative properties in vitro [J]. Hum Gene Ther, 2008,19(4):404
    99. Jeon O H, Kim D, Choi Y J, et al. Novel function of human ADAM15 disintegrin-like domain and its derivatives in platelet aggregation [J]. Thromb Res, 2007,119(5):609-619
    100. Ham C, Levkau B, Raines E W, et al. ADAM15 is an adherens junction molecule whose surface expression can be driven by VE-cadherin [J]. Exp Cell Res, 2002,279(2):239-247
    101.萨姆布鲁克,弗里奇,曼尼阿蒂斯,金冬雁,黎孟枫.分子克隆实验指南[M].北京,科学出版社:98-102
    102. Rabhi I, Guedel N, Chouk I, et al. A novel simple and rapid PCR-based site-directed mutagenesis method [J]. Mol Biotechnol, 2004, 26(1):27-34
    103. Bradford M M. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976,72(7):248-254
    104. Liobikas J, Polianskyte Z, Speer O, et al. Expression and purification of the mitochondrial serine protease LACTB as an N-terminal GST fusion protein in Escherichia coli [J]. Protein Expr Purif, 2006,45(2):335-342
    105. Choi A H, Basu M, McNeal M M, et al. Intranasal administration of an Escherichia coli-expressed codon-optimized rotavirus VP6 protein induces protection in mice [J].Protein Expr Purif, 2004,38(2):205-216
    106. Rosenberg A H, Goldman E, Dunn J J, et al. Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system [J]. J Bacteriol, 1993,175(3):716-722
    107. Liu J, Hu T, Hou X. High-level expression of functional tumor suppressor LKB1 in Escherichia coli[J]. Acta Biochim Biophys Sin (Shanghai), 2007, 39(10):779-786
    108. Fu W, Lin J, Cen P. 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain[J]. Appl Microbiol Biotechnol, 2007, 75(4): 777-782
    109. Rabhi-Essafi I, Sadok A, Khalaf N, et al. A strategy for high-level expression of soluble and functional human interferon alpha as a GST-fusion protein in E. coli [J]. Protein Eng Des Sel, 2007, 20(5):201-209
    110. Tawbi H A, Kirkwood J M. Management of metastatic melanoma [J]. Semin Oncol, 2007,34(6) :532-545
    111. Romijn J C, Verkoelen C F, Schroeder F H. Application of the MTT assay to human prostate cancer cell lines in vitro: establishment of test conditions and assessment of hormone-stimulated growth and drug-induced cytostatic and cytotoxic effects [J]. Prostate, 1988, 12(1):99-110
    112. Hwang E S, Kim G H. Allyl isothiocyanate influences in vitro invasion, adhesion and gene expression in SK-Hep1 cells [J]. J Nutr Biochem, 2006, 231(23):421-430
    113. Albini A, Iwamoto Y, Kleinman H K, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells [J]. Cancer Res, 1987,47(12):3239-3245
    114. Kastan M B, Bartek J. Cell-cycle checkpoints and cancer [J]. Nature, 2004,432(12):316-323.
    115. Bucher N, Britten C D. G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer [J]. Br J Cancer, 2008, 98(3):523-528
    116. Park C, Kim G Y, Kim G D, et al. Induction of G2/M arrest and inhibition of cyclooxygenase-2 activity by curcumin in human bladder cancer T24 cells [J]. Oncol Rep, 2006,15(5):1225-1231
    117. Aoyagi Y, Masuko N, Ohkubo S, et al. A novel cinnamic acid derivative that inhibits Cdc25 dual-specificity phosphatase activity [J]. Cancer Sci, 2005, 96(9):614-619
    118. Azzazy H M, Highsmith W E Jr. Phage display technology: clinical applications and recent innovations [J]. Clin Biochem, 2002,35(6):425-445
    119. Pameijer C R J, Navanjo A, Meechoovet B, et al. Conversion of a tumor-binding peptide identified by phage display to a functional chimeric T cell antigen receptor[J]. CancerGene Ther, 2007,14(1):91-97
    120. Zhang Y, Chen J, Zhang Y, et al. Panning and identification of a colon tumor binding peptide from a phage display peptide library [J]. J Biomol Screen, 2007,12(3):429-435
    121. Feinmesser M, Raiter A, Hardy B. Prevention of melanoma metastases in lungs of BAT treated and peptide immol/Lunized mice [J]. Int J Oncol, 2006,29(4):911-917
    122. Karkkainen S, Hiipakka M, Wang J H, et al. Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome[J]. EMBO, 2006,7(2):186-191
    123.余冰,倪明,雷萍等.与肝癌细胞系HepG2特异性结合单链抗体的筛选与序列分析[J].中国免疫学杂志, 2005 21(3):179-182
    124. Erdag B, Balcioglu K B, Kumbasar A, et al. Novel short peptides isolated from phage display library inhibit vascular endothelial growth factor activity [J]. Mol Biotechnol, 2007,35(1):51-63
    125. Heitzmann H, Richards F M. Use of the avidin-biotin complex for specific staining of biological membranes in electron microscopy[J]. Proc Natl Acad Sci U S A 1974,71(9):3537-3541
    126.吕会田,乐家昌,陈存社.克伦特罗小分子半抗原偶联比率的测定方法的研究[J].中国饲料, 2005,7(6):33-35
    127. Kar S, Wang M, Carr B I, et al. 2-Methoxyestradiol inhibits hepatocellular carcinoma cell growth by inhibiting Cdc25 and inducing cell cycle arrest and apoptosis [J]. Cancer Chemother Pharmacol, 2008 (In print)
    128. Brisson M, Foster C, Wipf P, et al. Independent mechanistic inhibition of cdc25 phosphatases by a natural product caulibugulone [J]. Mol Pharmacol, 2007, 71(1):184-92.
    129. Tang L, Li G, Tron V A, et al. Expression of cell cycle regulators in human cutaneous malignant melanoma [J]. Melanoma Res, 1999,9(2):148-154
    130. Jiang W, Mikochik P, Ra J H, et al. HIV protease inhibitor nelfinavir inhibits growth of human melanoma cells by induction of cell cycle arrest [J]. Cancer Res, 2007, 67(3):1221-1227
    131. de Groot R P, Coffer P J, Koenderman L. Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family [J]. Cell Signal 1998,10(9):619-628
    132. Dhillon A S, Hagan S, Rath O, et al. MAP kinase signalling pathways in cancer[J]. Oncogene, 2007,26(12):3279-3290
    133. Kondo A, Hirayama N, Sugito Y, et al. Coupling of Grb2 to Gab1 mediates hepatocyte growth factor-induced high intensity ERK signal required for inhibition of HepG2hepatoma cell proliferation[J]. J Biol Chem, 2008,283(3):1428-1446
    134. Schmidt I, F?hling M, Nafz B, et al. Induction of translationally controlled tumor protein (TCTP) by transcriptional and post-transcriptional mechanisms [J]. FEBS J, 2007,274(20):5416-5424
    135. Khan J A, Tao X, Tong L. Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents [J]. Nat Struct Mol Biol, 2006,13(7):582-588
    136. Menchise V, De Simone G, Alterio V, et al. Carbonic anhydrase inhibitors: stacking with Phe131 determines active site binding region of inhibitors as exemplified by the X-ray crystal structure of a membrane-impermeant antitumor sulfonamide complexed with isozyme I I[J]. J Med Chem, 2005,48(18):5721-5727
    137.韩全利,丁杰.应用噬菌体肽库筛选胃癌相关抗原模拟表位[J].第四军医大学学报2000,21(9):1162-1164
    138. Wang M, Yi XY, Li XP, Zhou DM, Larry M, Zeng X. Phage displaying peptides mimic schistosoma antigenic epitopes selected by rat natural antibodies and protective immol/Lunity induced by their immol/Lunization in mice[J]. World J Gastroenterol, 2005,11(19):2960-2966
    139.陶永辉.重组人血管抑素的制备及其作用特异性的研究[D]:[博士学位论文].无锡:江南大学,2008
    140. Ha G H, Lee S U, Kang D G, et al. Proteome analysis of human stomach tissue: separation of soluble proteins by two-dimensional polyacrylamide gel electrophoresis and identification by mass spectrometry[J]. Electrophoresis, 2002, 23(15):2513-2524
    141.Fernández-Recio J, Totrov M, Abagyan R, et al. Soft protein-protein docking in internal coordinates[J]. Protein Sci, 2002,11(12):280-291
    142.Holmes W F, Soprano D R, Soprano K J. Early events in the induction of apoptosis in ovarian carcinoma cells by CD437: activation of the p38 MAP kinase signal pathway[J]. Oncogene, 2003,22(41):6377-6386
    143.孙劲旅,张宏誉,应万涛等.大籽蒿花粉变应原提取液双向电泳蛋白质组分分析[J].中华微生物学和免疫学杂志, 2001,21(增刊):16-19
    144.Wasinger V C, Cordwell S J, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium[J]. Electrophoresis, 1995,16(7):1090-1094
    145. Zimmol/Lermann U, Woenckhaus C, Teller S, et al. Expression of annexin AI in conventional renal cell carcinoma (CRCC) correlates with tumour stage, Fuhrman grade, amount of eosinophilic cells and clinical outcome [J]. Histol Histopathol, 2007, 22(5):527-534
    146.Verrills N M, Walsh B J, Cobon G S, et al. Proteome analysis of vinca alkaloid response resistance acute lymphoblastic leukemia reveals novel cytoskeletal alterations[J]. J Biol Chem, 2003,278(46):45082-45093
    147.李征宇,霞赵,杨金亮等.顺铂作用卵巢癌细胞株的蛋白质组学研究[J].中国科学C辑生命科学, 2005,35(3):254-261
    148. Lichtenfels R, Kellner R, Atkins D, et al. Identification of metabolic enzymes in renal cell carcinoma utilizing PROTEOMEX analyses[J]. Biochim Biophys Acta, 2003,1646(1-2):21-31
    149. Chen G, Gharib T G, Huang C C, et al. Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors[J]. Clin Cancer Res, 2002,8(7):2298-2305
    150. Svasti J, Srisomsap C, Subhasitanont P, et al. Proteomic profiling of cholangiocarcinoma cell line treated with pomiferin from Derris malaccensis[J]. Proteomics, 2005,5(17):4504-4509
    151. Peebles K A, Duncan M W, Ruch R J, et al. Proteomic analysis of a neoplastic mouse lung epithelial cell line whose tumorigenicity has been abrogated by transfection with the gap junction structural gene for connexin 43, Gja1[J]. Carcinogenesis, 2003,24(4):651-657
    152. Ordan O, Rotem R, Jaspers I, et al. Stress-responsive JNK mitogen-activated protein kinase mediates aspirin-induced suppression of B16 melanoma cellular proliferation[J]. Br J Pharmacol, 2003,138(6):1156-1162
    153. Bandyopadhyay S, Hartley D M, Cahill C M, et al. Interleukin-1alpha stimulates non-amyloidogenic pathway by alpha-secretase (ADAM-10 and ADAM-17) cleavage of APP in human astrocytic cells involving p38 MAP kinase[J]. J Neurosci Res, 2006,84(1):106-118
    154. Karadag A, Zhou M, Croucher P I. ADAM-9 (MDC-9/meltrin-gammol/La), a member of the a disintegrin and metalloproteinase family, regulates myeloma-cell-induced interleukin-6 production in osteoblasts by direct interaction with the alpha(v)beta5 integrin[J]. Blood, 2006,107(8):3271-3278
    155. Matsuo M, Sakurai H, Ueno Y, et al. Activation of MEK/ERK and PI3K/Akt pathways by fibronectin requires integrin alphav-mediated ADAM activity in hepatocellular carcinoma: a novel functional target for gefitinib[J]. Cancer Sci, 2006,97(2):155-162
    156.Yang K, Jiang Y, Han J H, et al. The binding of actin to p38 MAPK and inhibiting its kinase activity in vitro[J]. SCIENCE IN CHINA (Series C), 2003,46(1):87-94
    157.刘爱华,邓鹏,姜勇.肿瘤坏死因子α通过丝裂原活化蛋白激酶激酶6诱导LA795肺腺癌细胞凋亡[J].中华结核和呼吸杂志: 2003, 26(2): 88-91.
    158. Afrasiabi E, Blom T, Balthasar S, et al. Antiproliferative effect of sphingosylphosphorylcholine in thyroid FRO cancer cells mediated by cell cycle arrest in the G2/M phase[J]. Mol Cell Endocrinol, 2007,274(1-2):43-52.
    159. Shih R S, Wong S H, Schoene N W, et al. Suppression of Gadd45 Alleviates the G2/M Blockage and the Enhanced Phosphorylation of p53 and p38 in Zinc Supplemented Normal Human Bronchial Epithelial Cells [J]. Exp Biol Med (Maywood) 2008,233(3):317-327.
    160. Bigini P, Repici M, Cantarella G, et al. Recombinant human TNF-binding protein-1 (rhTBP-1) treatment delays both symptoms progression and motor neuron loss in the wobbler mouse [J]. Neurobiol Dis, 2008, 29(3):465-476
    161. Weir N M, Selvendiran K, Kutala V, et al. Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and p38 MAPK[J]. Cancer Biol Ther, 2007,6(2):178-184
    162.郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,1999.70-74
    163. GombosováA, Valent M. Dot-immol/Lunobinding assay with monoclonal antibody for detection of Trichomonas vaginalis in clinical specimens[J].Genitourin Med,1990,66(6):447-450
    164.闫文生,姜勇,黄巧冰等. p38丝裂原活化蛋白激酶活性放射自显影测定方法的建立和应用[J].生物化学与生物物理进展, 2001,28(3):410-413.
    165. Han J, Lee J D, Jiang Y, et al. Characterization of the structure and function of a novel MAP kinase kinase (MKK6) [J]. J Biol Chem,1996, 271(9):2886-2891
    166. Muniyappa H, Das K C. Activation of c-Jun N-terminal kinase (JNK) by widely used specific p38 MAPK inhibitors SB202190 and SB203580: a MLK-3-MKK7-dependent mechanism[J].Cell Signal, 2008, 20(4):675-683
    167. Ogata T. Egr-1 mRNA induction by medium flow involves mRNA stabilization and is enhanced by p38 inhibitor SB203580 in osteoblast-like cells[J]. Acta Physiol (Oxf). 2008 (in print)
    168. Bulavin D V, Higashimoto Y, Popoff I J, et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase[J]. Nature, 2001,411(6833):102-107.
    169. Yuan J P, Wang G H, Ling H, et al. Diallyl disulfide-induced G2/M arrest of human gastric cancer MGC803 cells involves activation of p38 MAP kinase pathways[J]. World J Gastroenterol, 2004,10(18):2731-2734
    170.Sato H, Kasai K, Tanaka T, et al. Role of Tumor Necrosis Factor-alpha and Interleukin-1beta on lung dysfunction following hemorrhagic shock in rats [J]. Med SciMonit, 2008, 14(5):BR79-87
    171.Studer R K, Gilbertson L G, Georgescu H, et al. p38 MAPK inhibition modulates rabbit nucleus pulposus cell response to IL-1[J]. J Orthop Res, 2008 (in print)
    172. Chen Q, Meng L H, Zhu C H, et al. ADAM15 suppresses cell motility by driving integrin alpha5beta1 cell surface expression via Erk inactivation[J]. Int J Biochem Cell Biol, 2008 (in print)
    173.Ahn J H, Jin S H, Kang H Y. LPS induces melanogenesis through p38 MAPK activation in human melanocytes[J]. Arch Dermatol Res, 2008 (in print)
    174. Vitte A L, Jalinot P. Intracellular delivery of peptides via association with ubiquitin or SUMO-1 coupled to protein transduction domains[J]. BMC Biotechnol, 2008, 29(8):24
    175. Nichols J T, Miyamoto A, Olsen S L, et al. DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur[J]. J Cell Biol, 2007, 176(4):445-458

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700