用户名: 密码: 验证码:
功能超分子有机凝胶与精细化学品ESO、DS6000的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学主要研究两种或两种以上化学物质(分子、离子等)通过分子间相互作用力组合形成的超分子实体。1987年诺贝尔化学奖授给三位超分子化学研究领域的科学家:法国的莱恩(J. M. Lehn)、美国的卡拉姆(D. J. Cram)和佩德森(C. J. Pederson)以表彰他们在超分子化学方面的成就。超分子白组装广泛存在于生物体中,与人们的生活有千丝万缕的联系,对其的研究对于了解发生在生物体内的许多现象具有重要意义。2005年美国的Science杂志在其创刊125周年纪念专辑中提出的21世纪亟待解决的25个重大科学问题中唯一与化学有关的问题就是“我们能够推动化学自组装走多远?”,说明超分子化学在化学界的重要地位。小分子凝胶作为分子自组装的一个分支,主要研究小分子作为凝胶因子(LMMGs)的凝胶,LMMGs先通过氢键、范德华力等超分子作用力形成三维网络结构,然后通过毛细管作用力、界面张力包裹大量的溶剂分子形成凝胶。
     环氧大豆油(ESO)是一种国内外开发较早的环保型的增塑剂兼稳定剂,广泛应用于涂料、塑料、橡胶、新型高分子材料等工业领域;聚乙二醇双硬脂酸酯(DS6000)是一种非离子表面活性剂,具有优异的去污、乳化、增稠等作用,作为增稠剂广泛应用于日用化工产品及纺织印染行业。
     本论文主要包括两部分内容:
     a)基于p一环糊精(p-CD)的超分子凝胶:此部分主要介绍了两种凝胶体系:β-CD/双酚A (BPA)/LiCl/DMF(或DMAc)与β-CD/LiCI/DMF(或DMAc)体系,前一种体系常温下为澄清溶液,在高温下为凝胶,此过程可逆,常温下向溶液中加入液体一元醇,可形成常温凝胶,并且常温凝胶的微观形貌会随着醇的加入量以及搅拌时间的变化而变化。我们用傅里叶变换红外光谱(FT-IR)、光学显微镜(OM)、扫描电子显微镜(SEM). X-射线粉末衍射(XRD)、流变、热重量分析和导数热重分析(TG/DTG)对试样进行了分析,此凝胶在多形貌功能材料的设计与构筑方面具有广泛的应用前景。后一种体系在常温下也为澄清溶液,在高温下为凝胶,此过程也可逆,此体系对不同醇有不同的响应:类冰晶态、溶液、常温凝胶、热致凝胶,样品通过傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线粉末衍射(XRD)、热重量分析和导数热重分析(TG/DTG)、1H核磁共振测试(1H NMR)和2D ROESY测试进行分析,此凝胶体系在分子识别方面具有广泛的应用前景,对人们深入了解发生在生物体内的分子识别行为具有重要意义。
     b)化学品环氧大豆油(ESO)、聚乙二醇双硬脂酸酯(DS6000)的制备:环氧大豆油的开发主要通过改进生产工艺,得到颜色较浅的环氧大豆油,扩大其应用范围;增稠剂聚乙二醇双硬脂酸酯的开发主要是通过改进生产工艺,得到不易降解、性能超过国外产品的增稠剂。
Supramolecular chemistry is mainly focused on supramolecular entities and formed by two or more chemical species, such as molecules and ions, by molecular interactions.1987Nobel Prize in Chemistry was awarded to three scientists in the field of supramolecular chemistry:J. M. Lehn (France), D. J. Cram (America) and C. J. Pederson (America), to commend their achievements in the field of supramolecular chemistry. Supramolecular self-assembly existed widely in vivo and linked closely with our life. The research on supramolecular self-assembly is of great significance for understanding many phenomena happened in vivo. In2005, Science magazine proposed25important scientific problems in the anniversary album in which the only one problem related to chemistry was "How Far Can We Push Chemical Self-Assembly", which suggested the importance of superamolecular chemistry in chemistry. Low molecular gel, a branch of supramolecular self-assembly mainly studies the gels formed by low molecular gelater (LMMGs). LMMGs can form three-dimensional networks through intermolecular forces such as hydrogen bonding, Van der Waals'force, and then the networks can trap a large amount of solvents through capillary forces and interfacial tension to form gels.
     Epoxidized soybean oil (ESO) is an environmental friendly plasticizer and stabilizer which is researched and developed early at domestic and overseas. It is widely used in the fields of coating, plastics, rubber, new-type macromolecule materials and so on. Polyethylene glycol double stearic acid ester (DS6000) is a kind of nonionic surfactants, and is an excellent decontamination, emulsification and thickening effect at the same time. DS6000is widely used in the fields of household chemicals, fabric printing and dyeing as a thickening.
     This thesis is consisted of two parts:functional supramolecular organogel based on (3-CD and the preparation of fine chemicals including ESO and DS6000.
     a) Functional Supramolecular Organogel based on β-CD. There were two systems in this part,β-CD/bisphenol A (BPA)/LiCl/N,N-dimethyl formamide (DMF)(or N,N-dimethylacetamide (DMAc)) system and β-CD/LiCl/DMF (or DMAc) system. The former one was a clear solution at room temperature and a heat-set organogel at high temperature, and this process was reversible. When some liquid monohydric alcohols were added into the solution at room temperature, a semitransparent organogel (room-temperature organogel) was formed. Interestingly, the morphologies of the room-temperature organogel could be varied as the amount of alcohols and the stirring time changed. The xerogels were characterized by optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), rheology measurements, thermal gravity analysis and differential thermal gravity (TG/DTG). These organogels exhibiting a succession of micro-morphologies has a potential application in the design and construction of functional materials as soft templates. The later one was also a clear solution at room temperature and a heat-set organogel at high temperature. This process was also reversible. This system could exhibit different phenomena for different alcohols:ice-like crystal, solution, room-temperature organogel and heat-set organogel. the samples were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), thermal gravity analysis and differential thermal gravity (TG/DTG),'H nuclear magnetic resonance (1H NMR) and2D rotating frame overhauser effect spectroscopy (2D ROESY). This system has a potential application in the field of molecular recognition, and paves the way for people to get an insight understanding of the phenomena occurred in vivo.
     b) Preparation of fine chemicals ESO and DS6000. In order to open a broad application scope for ESO, we improved the production technique, and obtained lighter color products. We also improved the production technique of DS6000which was a kind of thickener. This thickener was not easy to be degraded and its thickening performance was better than the abroad sample.
引文
[1]Pitha, J.; Rao, C. T. Distribution of substituents in 2-hydroxypropyl ethers of cyclomaltoheptaose, Carbohyd. Res.,1990,200 (25),429-435.
    [2]Szejtli, J. Cyclodextrin technology, Kluwer Academic, Dordrecht,1988.
    [3]Gillet, B.; Nicole, D. J.; Delpuech, J. J. The hydroxyl group protonation rates of α, β and γ-cyclodextrins in dimethyl sulphoxide, Tetrahedron Lett.,1982,23 (1),65-68.
    [4]Lach, J. L.; Chin, T. F. Schardinger dextrin interaction IV. Inhibition of hydrolysis by means of molecular complex formation, J. Pharm. Sci.,1964,53 (8),924-927.
    [5]Saenger, W.; Noltemeyer, M.; Manor, P. C.; Hingerty, B.; Klar, B. "Induced-fit"-type complex formation of the model enzyme a-cyclodextrin, Bioorg. Chem.,1976,5(2),187-195.
    [6]Bender, M. L.; Komiyama, M. Cyclodextrin chemistry, Springer-Verlag Berlin, 1979.
    [7]Szejtli, J. Cyclodextrins and Their Inclusion Complexes, Akademiai Kiado, Budapest,1982.
    [8]Palepu, R.; Reinsborough, V. C. (3-cyclodextrin inclusion of adamantane derivatives in solution, Aust. J. Chem.,1990,43 (12),2119-2123.
    [9]Isnin, R.; Salam, C.; Kaifer, A. E. Bimodal cyclodextrin complexation of ferrocene derivatives containing n-alkyl chains of varying length, J. Org. Chem.,1991, 56(1),35-41.
    [10]Nelson, G.; Patonay, G.; Warner, I. M. Fluorescence lifetime study of cyclodextrin complexes of substituted naphthalenes, Appl. Spectrosc.,1987,41 (7), 1235-1238.
    [11]Ueno, A.; Suzuki, I.; Osa, T. Host-guest sensory systems for detecting organic compounds by pyrene excimer fluorescence, Anal. Chem.,1990,62 (22),2461-2466.
    [12]Munoz De La Pena, A.; Ndou, T.; Zung, J. B.; Warner, I. M. Stoichiometry and formation constants of pyrene inclusion complexes with. beta.-and. gamma.-cyclodextrin, J. Phys. Chem.,1991,95 (8),3330-3334.
    [13]Vogtle, F.; Muller, W. M. Complexes of y-cyclodextrin with crown ethers, cryptands, coronates and crypatates, Angew. Chem. Int. Ed.,1979,18 (8),623-624.
    14. Saenger, W. Cyclodextrin inclusion compounds in research and industry, Angew. Chem. Int. Ed.,2003,19 (5),344-362.
    [15]Suzuki, I.; Chen, Q.; Ueno, A.; Osa, T. Ferrocene-Appended Cyclodextrins. The Effects of Temperature, Organic Solvent, Length of Spacer, and Cavity Size on the Complexation Behavior, B. Chem. Soc. Jpn.,1993,66 (5),1472-1481.
    [16]VanEtten, R. L.; Sebastian, J. F.; Clowes, G. A. Acceleration of phenyl ester cleavage by cycloamyloses. A model for enzymic specificity, J. Am. Chem. Soc., 1967,89,3242-3253.
    [17]Popik, V. V.; Nikolaev, V. A. Stereochemistry and thermal stability of diazodiketones, J. Chem. Soc, Perkin Trans.2,1993,1791-1793.
    [18]Lach, J. L.; Chin, T. F. Interaction of pharmaceuticals with schardinger dextrins III. Interactions with mono-halogenated benzoic acids and aminobenzoic acid, J. Pharm. Sci.,1964,53 (1),69-73.
    [19]Connors, K. A.; Lipari, J. M. Effect of cycloamyloses on apparent dissociation constants of carboxylic acids and phenols:Equilibrium analytical selectivity induced by complex formation, J. Pharm. Sci.,1976,65 (3),379-383.
    [20]Gelb, R. I.; Schwartz, L. M.; Cardelino, B.; Fuhrman, H. S.; Johnson, R. F.; Laufer, D. A. Binding mechanisms in cyclohexaamylose complexes, J. Am. Chem. Soc.,1981,103(7),1750-1757.
    [21]Osa, T.; Matsue, T.; Fujihira, M. Cyclodextrin-nitro phenol system studied by polarography, Heterocycles,1977,6,1833-1839.
    [22]Matsui, Y.; Sawada, H.; Mochida, K. The adsorption of ALPHA.-and. BETA.-cyclodextrins on the dropping mercury electrode in an aqueous solution, B. Chem. Soc. Jpn.,1975,48,3446-3449.
    [23]Matsue, T.; Osa, T.; Evans, D. H. Determination of some physical constants of cyclodextrin complexes by electrochemical methods, J. Incl. Phenom. Macro.,1984,2 (3),547-554.
    [24]Lagrost, C.; Aeiyach, S.; Jouini, M.; Chane-Ching, K. I.; Lacaze, P. C. Host-guest complexation:a new strategy for electrodeposition of processable polythiophene composites from aqueous medium, Chem. Commun.,1998,489-490.
    [25]Matsui, Y.; Mochida, K. Binding forces contributing to the association of cyclodextrin with alcohol in an aqueous solution, B. Chem. Soc. Jpn.,1979,52, 2808-2814.
    [26]Szejtli, J. Past, Cyclodextrin and their Inclusion Complexes, Akademiai Kiado, Budapest,1982.
    [27]Rymden, R.; Carlfors, J.; Stilbs, P. Substrate binding to cyclodextrins in aqueous solution:a multicomponent self-diffusion study, J. Incl. Phenom. Macro.,1983,1, 159-167.
    [28]Vikmon, M.; Stadler-Szoke, A.; Szejtli, J. Solubilization of amphotericin B with y-cyclodextrin, J. Antibiot.,1985,38 (12),1822-1824.
    [29]Ruppert, S.; Knittel, D.; Buschmann, H. J.; Wenz, G.; Schollmeyer, E. Fixierung von β-Cyclodextrinderivaten auf Polyesterfasermaterial, Starch-Starke,1997,49 (4), 160-164.
    [30]Couthon, F.; Clottes, E.; Vial, C. Refolding of SDS-and thermally denatured MM-creatine kinase using cyclodextrins, Biochem. Bioph. Res. Co.,1996,227 (3), 854-860.
    [31]Martic, P. A.;9Skochdopole, T. R. Polyolefin composition containing optical brighteners having reduced migration, U. S. Patent,1994,5340854.
    [32]Suhonen, P.; Jarvinen, T.; Lehmussaari, K.; Lehmussaari, K.; Reunamaki, T.; Urtti 1, A. Ocular absorption and irritation of pilocarpine prodrug is modified with buffer, polymer, and cyclodextrin in the eyedrop, Pharmaceutical research,1995,12 (4),529-533.
    [33]吴文娟;陈育珍;谭载友.水溶性高聚物对药物-环糊精包合作用的影响, 中国药学杂志,1999,34(2),99-101.
    [34]Wolf, K. L.; Frahm, H.; Harms, H. The state of arrangement of molecules in liquids, Z. Phys. Chem., Abt. B,1937,36,237-287.
    [35]Lehn, J. M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture), Angew. Chem. Int. Edit., 1988,27(1),89-112.
    [36]Diederich, F. Molecular recognition in aqueous solution:Supramolecular complexation and catalysis, J. Chem. Educ,1990,67 (10),813-820.
    [37]Pedersen, C. J. Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc.,1967,89 (10),2495-2496.
    [38]Pedersen, C. J. Macrocyclic polyethers for complexing metals, J. Am. Chem. Soc.,1967,89 (26),7017-7036.
    [39]Cram, D. J.; Cram, J. M. Host-Guest Chemistry:Complexes between organic compounds simulate the substrate selectivity of enzymes, Science,1974,183 (4127), 803-809.
    [40]Sogah, G. D. Y.; Cram, D. J. Host-guest complexation.14. Host covalently bound to polystyrene resin for chromatographic resolution of enantiomers of amino acid and ester salts, J. Am. Chem. Soc.,1979,101 (11),3035-3042.
    [41]Lehn, J. M.; Rigault, A. Helicates:Tetra-and Pentanuclear Double Helix Complexes of Cul and Poly (bipyridine) Strands, Angew. Chem. Int. Edit.,1988,27 (8),1095-1097.
    [42]Lehn, J. M.; Rigault, A. Helicate:Vier-und funfkernige Doppelhelix-Komplexe aus Cul und Poly (bipyridin)-Liganden, Angew. Chem.,1988,100 (8),1121-1122.
    [43]Terech, P.; Weiss, R. G. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels, Chem. Rev.,1997,97 (8),3133-3160.
    [44]Harada, A.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H. Macroscopic self-assembly through molecular recognition, Nat. Chem.,2010,3, 34-37.
    [45]Yamaguchi, H.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Harada, A. Self-assembly of gels through molecular recognition of cyclodextrins:Shape selectivity for linear and cyclic guest molecules, Macromolecules,2011,44 (8), 2395-2399.
    [46]Zheng, Y.; Hashidzume, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. Temperature-Sensitive Macroscopic Assembly Based on Molecular Recognition, ACS Macro. Lett.,2012,1 (8),1083-1085.
    [47]Zheng, Y.; Hashidzume, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. Macroscopic Observations of Molecular Recognition:Discrimination of the Substituted Position on the Naphthyl Group by Polyacrylamide Gel Modified with β-Cyclodextrin, Langmuir,2011,27 (22),13790-13795.
    [48]Krishnan, R.; Gopidas, K. R. β-Cyclodextrin as an End-to-End Connector, J. Phys. Chem. Lett.,2011,2 (17),2094-2098.
    [49]Maeda, K.; Mochizuki, H.; Osato, K.; Yashima, E. Stimuli-Responsive Helical Poly (phenylacetylene) s Bearing Cyclodextrin Pendants that Exhibit Enantioselective Gelation in Response to Chirality of a Chiral Amine and Hierarchical Super-Structured Helix Formation, Macromolecules,2011,44 (9),3217-3226.
    [50]De Rango, C.; Charpin, P.; Navaza, J.; Keller, N.; Nicolis, I.; Villain, F.; Coleman, A. W..beta.-cyclodextrin/pyridine gel systems. The crystal structure of a first, beta.-cyclodextrin-pyridine water compound, J. Am. Chem. Soc.,1992,114 (13), 5475-5476.
    [51]Sun, S.; Chen, X.; Liu, J.; Yan, J.; Fang, Y. A novel two-component physical gel based on interaction between poly (acrylic acid) and 6-deoxy-6-amino-β-cyclodextrin, Polym. Eng. Sci.,2009,49 (1),99-103.
    [52]Kida, T.; Marui, Y.; Miyawaki, K.; Kato, E.; Akashi, M. Unique organogel formation with a channel-type cyclodextrin assembly, Chem. Commun.,2009, 3889-3891.
    [53]Marui, Y.; Kikuzawa, A.; Kida, T.; Akashi, M. Unique Organogel Formation with Macroporous Materials Constructed by the Freeze-Drying of Aqueous Cyclodextrin Solutions, Langmuir,2010,26 (13),11441-11445.
    [54]Li, Y.; Liu, J.; Du, G.; Yan, H.; Wang, H.; Zhang, H.; An, W.; Zhao, W.; Sun, T.; Xin, F.; Kong, L.; Li, Y.; Hao, A.; Hao, J. Reversible heat-set organogel based on supramolecular interactions of β-cyclodextrin in N, N-dimethylformamide, J. Phys. Chem. B,2010,114 (32),10321-10326.
    [55]Kong, L.; Sun, T.; Xin, F.; Zhao, W.; Zhang, H.; Li, Z.; Li, Y.; Hou, Y.; Li, S.; Hao, A. Lithium chloride-induced organogel transformed from precipitate based on cyclodextrin complexes, Colloid. Surface A,2011,392 (1),156-162.
    [56]Zhao, W.; Li, Y.; Sun, T.; Yan, H.; Hao, A.; Xin, F.; Zhang, H.; An, W.; Kong, L.; Li, Y. Heat-set supramolecular organogels composed of β-cyclodextrin and substituted aniline in N, N-dimethylformamide, Colloid. Surface A,2011,374,115-120.
    [57]Xin, F.; Zhang, H.; Hao, B.; Sun, T.; Kong, L.; Li, Y.; Hou, Y.; Li, S.; Zhang, Y.; Hao, A. Controllable transformation from sensitive and reversible heat-set organogel to stable gel induced by sodium acetate, Colloid. Surface A,2012,410,18-22.
    [58]Liu, W.; Xing, P.; Xin, F.; Hou, Y.; Sun, T.; Hao, J.; Hao, A. Novel Double Phase Transforming Organogel Based on β-Cyclodextrin in 1,2-Propylene Glycol, J. Phys. Chem. B,2012,116(43),13106-13113.
    [59]Li, Y. Y.; Zhao, W. J.; Zhang, H. C.; Sun, T.; An, W.; Xin, F. F.; Hao, A. Y. Triple-transforming gel prepared by β-cyclodextrin, diphenylamine and lithium chloride in N,N-dimethylacetamide, Chinese Chem. Lett.,2010,21 (10),1251-1254.
    [60]Liu, Z. S.; Erhan, S. Z.; Calvert, P. D. Solid freeform fabrication of epoxidized soybean oil/epoxy composites with di-, tri-, and polyethylene amine curing agents, J. Appl. Polym. Sci.,2004,93 (1),356-363.
    [61]Lu, J.; Khot, S.; Wool, R. P. New sheet molding compound resins from soybean oil. I. Synthesis and characterization, Polymer,2005,46 (1),71-80.
    [62]Samuelsson, J.; Sundell, P. E.; Johansson, M. Synthesis and polymerization of a radiation curable hyperbranched resin based on epoxy functional fatty acids, Prog. Org. Coat.,2004,50 (3),193-198.
    [63]Adhvaryu, A.; Erhan, S. Z. Epoxidized soybean oil as a potential source of high-temperature lubricants, Ind. Crop. Prod.,2002,15 (3),247-254.
    [64]Song, B.; Chen, W.; Liu, Z.; Erhan, S. Compressive properties of epoxidized soybean oil/clay nanocomposites, Int. J. Plasticity,2006,22 (8),1549-1568.
    [65]Liu, Z. S.; Erhan, S. Z.; Calvert, P. D. Solid freeform fabrication of epoxidized soybean oil/epoxy composite with bis or polyalkyleneamine curing agents, Compos. Part A-Appl. S.,2007,38 (1),87-93.
    [66]崔玉民;范少华.3,3’—二氯联苯胺的合成,精细化工,2001,236-238.
    [67]徐克勋.精细有机化工原料及中间体手册,化学工业出版社,1998.
    [68]邓芳;魏俊发;石先莹.无羧酸条件下清洁合成环氧大豆油,石油化工2006,35(3),281-283.
    [69]程争.无溶剂法合成环氧大豆油新工艺的研究,辽宁化工,1997,26(1),37-40.
    [70]郭学阳.环氧大豆油生产新技术,辽宁化工,1995,(3),41-45.
    [71]曹卫东.由硫酸铝催化合成环氧大豆油,辽宁化工,1994,(5),36-37.
    [72]曹玮;马新启.环氧大豆油新工艺的研究,化工时刊,2002,16(2),49-51.
    [73]于兵川;吴洪特;向罗京.改进型无溶剂法工艺合成环氧大豆油的研究,中国油脂,2005,30(4),42-44.
    [74]Sobczak, J. M.; Ziolkowski, J. J. Molybdenum complex-catalysed epoxidation of unsaturated fatty acids by organic hydroperoxides, Appl. Catal. A-Gen.,2003,248 (1),261-268.
    [75]Bouh, A. O.; Espenson, J. H. Epoxidation reactions with urea-hydrogen peroxide catalyzed by methyltrioxorhenium (Ⅶ) on niobia, J. Mol. Catal. A-Chem., 2003,200 (1),43-47.
    [76]吴亚;魏俊发;张敏;苗延青.过氧钨配合物催化过氧化氢制备环氧大豆油的研究,应用化工,2005,34(2),119-120.
    [77]蒋登高;章亚东;周彩荣.精细有机合成反应及工艺,化学工业出版社,2001.
    [78]汪多仁.聚乙二醇硬脂酸酯的合成与应用,四川化工,1996,(2),58-59.
    [79]杨剑鹏;郭志宇.增稠剂DS6000的制备和在日用化学品中的应用,信阳师范学院学报:自然科学版,1997,10,50-53.
    [80]孙建军.聚乙二醇硬脂酸酯的合成,精细石油化工进展,2000,1(7),20-21.
    [81]郑开耕.聚氧乙烯型非离子洗涤剂,轻工业出版社,1980.
    [82]赵鸿斌;刘淑萍.非离子型增稠剂聚乙二醇脂肪酸酯的制备,湘潭大学自然科学学报,1995,17(1),82·84.
    [83]孙芳;徐群;孙贵友;刘郁芬.新型高分子表面活性剂的合成,精细石油化工,1994,6,12-14.
    [84]林江顺.增稠剂PGE的研制,矿冶,1995,4(2),42-44.
    [85]陈国宝.增稠剂PEGS的合成及其在纺织品中的应用,广东化工,2005,16(8),60-61.
    [86]陈红.聚乙二醇双硬脂酸酯的合成,江苏化工,1997,25(6),21.22.
    [87]毛二林.聚乙二醇双硬脂酸酯的制备及其增稠性能的测定,中国洗涤用品工业,2009(3),76-78.
    [88]许关荣;王国勤;许建农.硬脂酸聚乙二醇单酯的制备及其性能,日用化学工业,1985,54(2),7-9.
    [1]Weiss, R. G. Preface to the molecular and polymer gels; materials with self-assembled fibrillar networks special issue, Langmuir,2009,25 (15),8369-8369.
    [2]Suzuki, M.; Hanabusa, K. L-lysine-based low-molecular-weight gelators, Chem. Soc. Rev.,2009,38,967-975.
    [3]Vemula, P. K.; John, G. Crops:a green approach toward self-assembled soft materials, Ace. Chem. Res.,2008,41 (6),769-782.
    [4]Lu, J.; Hu, J.; Song, Y.; Ju, Y. A new dual-responsive organogel based on uracil-appended glycyrrhetinic acid, Org. Lett.,2011,13 (13),3372-3375.
    [5]Kida, T.; Marui, Y.; Miyawaki, K.; Katob, E.; Akashi, M. Unique organogel formation with a channel-type cyclodextrin assembly, Chem. Commun. (Camb),2009, 3889-3891.
    [6]Lloyd, G. O.; Steed, J. W. Anion-tuning of supramolecular gel properties, Nat. Chem.,2009,1,437-442.
    [7]Piepenbrock, M. O.; Llotd, G. O.; Clarke, N.; Steed, J. W. Metal- and anion-binding supramolecular gels, Chem. Rev.,2010,110 (4),1960-2004.
    [8]Yan, J. J.; Tang, R. P.; Zhang, B.; Zhu, X. Q.; Xi, F.; Li, Z. C.; Chen, E. Q. Gelation Originated from Growth of Wormlike "Living Polymer" of Symmetrically Dendronized Large-Ring Crown Ether in Dilute Solutions, Macromolecules,2009,42 (21),8451-8459.
    [9]Bernecker, A.; Wieneke, R.; Riedel, R.; Seibt, M.; Geyer, A.; Steinem, C. Tailored synthetic polyamines for controlled biomimetic silica formation, J. Am. Chem. Soc., 2010,132(3),1023-1031.
    [10]Tuncaboylu, D. C.; Okay, O. Hierarchically macroporous cryogels of polyisobutylene and silica nanoparticles, Langmuir,2010,26 (10),7574-7581.
    [11]Yu, X.; Liu, Q.; Wu, J.; Zhang, M.; Cao, X.; Zhang, S.; Wang, Q.; Chen, L.; Yi, T. Sonication-triggered instantaneous gel-to-gel transformation, Chem. Eur. J.,2010, 16 (30),9099-9106.
    [12]Rajamalli, P.; Prasad, E. Luminescent micro and nanogel formation from AB3 type poly (aryl ether) dendron derivatives without conventional multi-interactive gelation motifs, New. J. Chem.,2011,35,1541-1548.
    [13]Neabo, J. R.; Tohoundjona, K. I.; Morin, J. F. Topochemical polymerization of a diarylbutadiyne derivative in the gel and solid states, Org, Lett.,2011,13 (6), 1358-1361.
    [14]An, B. K.; Gierschner, J.; Park, S. Y.π-Conjugated cyanostilbene derivatives:a unique self-assembly motif for molecular nanostructures with enhanced emission and transport, Acc. Chem. Res.,2012,45 (4),544-554.
    [15]Rogers, M. A.; Marangoni, A. G. Solvent-modulated nucleation and crystallization kinetics of 12-hydroxystearic acid:a nonisothermal approach, Langmuir,2009,25 (15),8556-8566.
    [16]John, G.; Shankar, B. V.; Jadhav, S. R.; Vemula, P. K. Biorefinery:a design tool for molecular gelators, Langmuir,2010,26 (23),17843-17851.
    [17]Rajaganesh, R.; Gopal, A.; Das, T. M.; Ajayaghosh, A. Synthesis and properties of amphiphilic photoresponsive gelators for aromatic solvents, Org. Lett.,2012,14 (3), 748-751.
    [18]Garcia, F.; Sanchez, L. Structural rules for the chiral supramolecular organization of OPE-based discotics:induction of helicity and amplification of chirality, J. Am. Chem. Soc.,2012,134 (1),734-742.
    [19]Kumar, R. J.; MacDonald, J. M.; Singh, T. B.; Waddington, L. J.; Holmes, A. B. Hierarchical self-assembly of semiconductor functionalized peptide alpha-helices and optoelectronic properties, J. Am. Chem. Soc.,2011,133 (22),8564-8573.
    [20]Li, Y.; Liu, J.; Du, G.; Yan, H.; Wang, H.; Zhang, H.; An, W.; Zhao, W.; Sun, T. Xin, F.; Kong, L.; Li, Y.; Hao, A.; Hao, J. Reversible heat-set organogel based on supramolecular interactions of beta-cyclodextrin in N,N-dimethylformamide, J. Phys. Chem. B,2010,114(32),10321-10326.
    [21]Kong, L.; Sun, T.; Xin, F.; Zhao, W.; Zhang, H.; Li, Z.; Li, Y.; Hou, Y.; Li, S.; You, A. Lithium chloride-induced organogel transformed from precipitate based on cyclodextrin complexes, Colloid. Surface A,2011,392 (1),156-162.
    [22]Zhao, W.; Li, Y.; Sun, T.; Yan, H.; Hao, A.; Xin, F.; Zhang, H.; An, W.; Kong, L.; Li, Y. Heat-set supramolecular organogels composed of β-cyclodextrin and substituted aniline in N, N-dimethylformamide, Colloid. Surface A,2011,374 (1),115-120.
    [23]Wang, C.; Chen, Q.; Sun, F.; Zhang, D.; Zhang, G.; Huang, Y.; Zhao, R.; Zhu, D. Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups:reversible tuning of the gel-sol transition by redox reactions and light irradiation, J. Am. Chem. Soc.,2010,132 (9),3092-3096.
    [24]Kotharangannagari, V. K.; Sanchez-Ferrer, A.; Ruokolainen, J.; Mezzenga, R. Thermoreversible Gel-Sol Behavior of Rod-Coil-Rod Peptide-Based Triblock Copolymers, Macromolecules,2012,45 (4),1982-1990.
    [25]Dou, C.; Li, D.; Gao, H.; Wang, C.; Zhang, H.; Wang, Y. Sonication-induced molecular gels based on mono-cholesterol substituted quinacridone derivatives, Langmuir,2010,26 (3),2113-2118.
    [26]Simalou, O.; Zhao, X.,; Lu, R.; Xue, P.; Yang, X.; Zhang, X. Strategy to control the chromism and fluorescence emission of a perylene dye in composite organogel phases, Langmuir,2009,25 (19),11255-11260.
    [27]Dasgupta, D.; Srinivasan, S.; Rochas, C.; Ajayaghosh, A.; Guenet, J. M. Hybrid thermoreversible gels from covalent polymers and organogels, Langmuir,2009,25 (15),8593-8598.
    [28]Mallia, V. A.; Butler, P. D.; Sarkar, B.; Holman, K. T.; Weiss, R. G. Reversible Phase Transitions within Self-Assembled Fibrillar Networks of (R)-18-(n-Alkylamino) octadecan-7-ols in Their Carbon Tetrachloride Gels, J. Am. Chem. Soc.,2011,133 (38),15045-15054.
    [29]Mukhopadhyay, P.; Fujita, N.; Takada, A.; Kishida, T.; Shirakawa, M.; Shinkai, S. Regulation of a Real-Time Self-Healing Process in Organogel Tissues by Molecular Adhesives, Angew. Chem. Int. Ed.,2010,49 (36),6338-6342.
    [30]Zhang, K.; Lackey, M. A.; Cui, J.; Tew, G. N. Gels based on cyclic polymers, J. Am. Chem. Soc.,2011,133,4140-4148.
    [31]Maeda, K.; Mochizuki, H.; Osato, K.; Yashima, E. Stimuli-Responsive Helical Poly (phenylacetylene) s Bearing Cyclodextrin Pendants that Exhibit Enantioselective Gelation in Response to Chirality of a Chiral Amine and Hierarchical Super-Structured Helix Formation, Macromolecules,2011,44 (9),3217-3226.
    [32]Qu, S.,; Wang, L.; Liu, X.; Li, M. Evolution from lyotropic liquid crystal to helical fibrous organogel of an achiral fluorescent twin-tapered bi-1,3,4-oxadiazole derivative, Chem. Eur. J.,2011,17 (12),3512-3518.
    [33]Kim, T. H.; Kim, D. G.; Lee, M.; Lee, T. S. Synthesis of reversible fluorescent organogel containing 2-(2'-hydroxyphenyl) benzoxazole:fluorescence enhancement upon gelation and detecting property for nerve gas simulant, Tetrahedron,2010,66 (9), 1667-1672.
    [34]Bhalla, V.; Singh, H.; Kumar, M.; Prasad, S. K. Triazole-modified triphenylene derivative:self-assembly and sensing applications, Langmuir,2011,27 (24), 15275-15281.
    [35]Chen, W.; Gong, W.; Ye, J.; Lin, Y.; Ning, G Rational design of multistimuli responsive organogels by alternation of hydrogen-bonding and amphiphilic properties, RSC Adv.,2012,2,809-811.
    [36]Zhu, P.; Yan, X.; Su, Y.; Yang, Y.; Li, J. Solvent-induced structural transition of self-assembled dipeptide:from organogels to microcrystals, Chem. Eur. J.,2010,16 (10),3176-3183.
    [37]Mostafavi, F.; Ebrahimi, N. G Physical characterization and rheological behavior of polyurethane/poly (s-caprolactone) blends, prepared by solution blending using dimethylacetamide, J. Appl. Polym. Sci.,2012,125 (5),4091-4099.
    [38]Zhang, S.; Painter, P. C.; Runt, J. Dynamics of polymer blends with intermolecular hydrogen bonding:Broad-band dielectric study of blends of poly (4-vinyl phenol) with poly (vinyl acetate) and EVA70, Macromolecules,2002,35 (22), 8478-8487.
    [39]Zhang, L.; Lu, Q.; Xu, Z.; Liu, Q.; Zeng, H. Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions, J. Colloid Interface Sci.,2012,378 (1),222-231.
    [40]Woodward, P. J.; Hermida Merino, D.; Greenland, B. W.; Hamley, I. W.; Light, Z.; Slark, A. T.; Hayes, W. Hydrogen bonded supramolecular elastomers:correlating hydrogen bonding strength with morphology and rheology, Macromolecules,2010,43 (5),2512-2517.
    [41]Li, J. L.; Liu, X. Y. Architecture of Supramolecular Soft Functional Materials: From Understanding to Micro-/Nanoscale Engineering, Adv. Funct. Mater.,2010,20 (19),3196-3216.
    [42]Yin, W.; Deng, J.; Esker, A. R. Surface Rheology of Trisilanolisobutyl-POSS at the Air/Water Interface, Langmuir,2009,25 (13),7181-7184.
    [43]Plante, A.; Mauran, D.; Carvalho, S. P.; Danny Page, J. Y. S.; Pellerin, C.; Lebel, O. Tg and rheological properties of triazine-based molecular glasses:incriminating evidence against hydrogen bonds, J. Phys. Chem. B,2009,113 (45),14884-14891.
    [44]Marui, Y.; Kikuzawa, A.; Kida, T.; Akashi, M. Unique organogel formation with macroporous materials constructed by the freeze-drying of aqueous cyclodextrin solutions, Langmuir,2010,26 (13),11441-11445.
    [45]Numata, M.; Sugiyasu, K.; Hasegawa, T. Sol-gel reaction using DNA as a template:An attempt toward transcription of DNA into inorganic materials, Angew. Chem.,2004,116 (25),3341-3345.
    [46]Eftink, M. R.; Andy, M. L.; Bystrom, K.; Perlmutter, H. D.; Kristol, D. S. Cyclodextrin inclusion complexes:studies of the variation in the size of alicyclic guests, J. Am. Chem. Soc.,1989,111 (17),6765-6772.
    [47]Nagao, A.; Kan-no, A.; Takayanagi, M. Infrared spectra of monosubstituted toluene derivatives in cyclodextrin:Orientation of guest molecules in included complexes, J. Mol. Struct.,2009,929 (1),43-47.
    [48]Song, L. X.; Dang, Z. Thermal decomposition behavior of sodium arsenite in the presence of carbonized β-cyclodextrin, J. Phys. Chem. B,2009,113 (15),4998-5000.
    [49]Song, L. X.; Pan, S. Z.; Zhu, L. H.; Wang, M.; Du, F. Y.; Chen, J. Molecule-ion interaction and its effect on coordination interaction, Inorg. Chem.,2011,50 (6), 2215-2223.
    [50]Chung, J. W.; Kwak, S. Y. Iron-Induced Cyclodextrin Self-Assembly into Size-Controllable Nanospheres, Langmuir,2009,26 (4),2418-2423.
    [51]Song, L. X.; Wang, M.; Dang, Z.; Du, F. Y. Meaningful Differences in Spectral Performance, Thermal Behavior, and Heterogeneous Catalysis between Ammonium Molybdate Tetrahydrate and Its Adduct of β-Cyclodextrin, J. Phys. Chem. B,2010, 114(9),3404-3410.
    [52]Song, L. X.; Du, F. Y.; Guo, X. Q.; Pan, S. Z. Formation, Characterization, and Thermal Degradation Behavior of a Novel Tricomponent Aggregate of β-Cyclodextrin, Ferrocene, and Polypropylene Glycol, J. Phys. Chem. B,2010,114 (4),1738-1744.
    [53]Taguchi, K. Transient binding mode of phenolphthalein-β-cyclodextrin complex: an example of induced geometrical distortion, J. Am. Chem. Soc.,1986,108 (10), 2705-2709.
    [54]Wang, Z.; Larson, R. G. Molecular dynamics simulations of threadlike cetyltrimethylammonium chloride micelles:effects of sodium chloride and sodium salicylate salts, J. Phys. Chem. B,2009,113 (42),13697-13710.
    [55]Vishnyakov, A.; Neimark, A. V. Molecular simulation study of Nafion membrane solvation in water and methanol, J. Phys. Chem. B,2000,104 (18), 4471-4478.
    [1]Cram, D. J.; Cram, J. M. Design of complexes between synthetic hosts and organic guests, Acc. Chem. Res.,1978,11 (1),8-14.
    [2]Zhang, H.; Li, F.; Dever, B.; Li, X. F.; Le, X. C. DNA-Mediated Homogeneous Binding Assays for Nucleic Acids and Proteins, Chem. Rev.,2012.
    [3]Hargrove, A. E.; Nieto, S.; Zhang, T.; Sessler J. L.; Anslyn, E. V. Artificial receptors for the recognition of phosphorylated molecules, Chem. Rev.,2011,111 (11), 6603-6782.
    [4]Mahadevi, A. S.; Sastry, G. N. Cation-π Interaction:Its Role and Relevance in Chemistry, Biology, and Material Science, Chem. Rev.,2013,113 (13),2100-2138.
    [5]Hermann, T.; Patel, D. J. Adaptive recognition by nucleic acid aptamers, Science, 2000,287 (5454),820-825.
    [6]Zheng, Y.; Hashidzume, A.; Takashima Y.; Yamaguchi, H.; Harada A. Temperature-Sensitive Macroscopic Assembly Based on Molecular Recognition, ACS Macro Lett.,2012,1 (8),1083-1085.
    [7]Zheng, Y.; Hashidzume, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. Macroscopic observations of molecular recognition:discrimination of the substituted position on the naphthyl group by polyacrylamide gel modified with beta-cyclodextrin, Langmuir,2011,27 (22),13790-13795.
    [8]Dong, S.; Luo, Y.; Yan, X.; Zheng, B.; Ding X.; Yu, Y.; Ma, Z.; Zhao, Q.; Huang, F. A Dual-Responsive Supramolecular Polymer Gel Formed by Crown Ether Based Molecular Recognition, Angew. Chem.,2011,123 (8),1945-1949.
    [9]He, X.; Wei, B.; Mi, Y. Aptamer based reversible DNA induced hydrogel system for molecular recognition and separation, Chem. Commun.,2010,46,6308-6310.
    [10]Danjo, H.; Hirata, K.; Yoshigai, S.; Azumaya, I.; Yamaguchi, K. Back to Back Twin Bowls of D 3-Symmetric Tris (spiroborate) s for Supramolecular Chain Structures, J. Am. Chem. Soc.,2009,131 (5),1638-1639.
    [11]Maeda, K.; Mochizuki, H.; Osato, K.; Yashima, E. Stimuli-Responsive Helical Poly(phenylacetylene)s Bearing Cyclodextrin Pendants that Exhibit Enantioselective Gelation in Response to Chirality of a Chiral Amine and Hierarchical Super-Structured Helix Formation, Macromolecules,2011,44 (9),3217-3226.
    [12]Yamaguchi, H.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Harada, A. Self-Assembly of Gels through Molecular Recognition of Cyclodextrins:Shape Selectivity for Linear and Cyclic Guest Molecules, Macromolecules,2011,44 (8), 2395-2399.
    [13]Harada, A.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H. Macroscopic self-assembly through molecular recognition, Nat. chem.,2010,3, 34-37.
    [14]Li, Y.; Liu, J.; Du, G.; Yan, H.; Wang, H.; Zhang, H.; An, W.; Zhao, W.; Sun, T.; Xin, F.; Kong, L.; Li, Y.; Hao, A.; Hao, J. Reversible heat-set organogel based on supramolecular interactions of (3-cyclodextrin in N, N-dimethylformamide, J. Phys. Chem. B,2010,114 (32),10321-10326.
    [15]Liu, W.; Liu, W.; Xing, P.; Xin, F.; Hou, Y.; Sun, T.; Hao, J.; Hao, A. Novel Double Phase Transforming Organogel Based on Beta-Cyclodextrin in 1,2-Propylene Glycol, J. Phys. Chem. B,2012,116(43),13106-13113.
    [16]Xin, F.; Zhang, H.; Hao, B.; Sun, T.; Kong, L.; Li, Y.; Hou, Y.; Li, S.; Zhang, Y.; Hao, A. Controllable transformation from sensitive and reversible heat-set organogel to stable gel induced by sodium acetate, Colloid. Surface A,2012,410,18-22.
    [17]Hou, Y.; Xin, F.; Yin, M.; Kong, L.; Zhang, H.; Sun, T.; Xing, P.; Hao, A. Stimuli-responsive supramolecular organogels that exhibit a succession of micro-morphologies, Colloid. Surface A,2012,414,160-167.
    [18]Zhu, P.; Yan, X.; Su., Y.; Yang, Y.; Li, J. Solvent-Induced Structural Transition of Self-Assembled Dipeptide:From Organogels to Microcrystals, Chem. Eur. J.,2010. 16 (10),3176-3183.
    [19]Kida, T.; Marui, Y.; Miyawaki, K.; Kato, E.; Akashi, M. Unique organogel formation with a channel-type cyclodextrin assembly, Chem. Commun.,2009, 3889-3891.
    [20]Guo, X. Q.; Song, L. X.; Du, F. Y.; Dang, Z.; Wang, M. Important Effects of Lithium Carbonate on Stoichiometry and Property of the Inclusion Complexes of Polypropylene Glycol and β-Cyclodextrin, J. Phys. Chem. B,2011.115 (5), 1139-1144.
    [21]Bolla, G.; Nangia, A. Clofazimine Mesylate:A High Solubility Stable Salt, Cryst. Growth Des.,2012,12 (12),6250-6259.
    [22]Ohta, N.; Fuyuhiro, A.; Yamanari, K. Complete Enantioseparation through Supramolecular Complex Formation between Tris (1,3-diaminopropane) cobalt (III) Phosphate and β-Cyclodextrin, [Co (tn) 3] PO4·β-CDX, Inorg. Chem.,2010,49 (20), 9122-9124.
    [23]Liu, B.; Zhao, J.; Liu, Y.; Zhu, X.; Zeng, J. Physiochemical Properties of the Inclusion Complex of Puerarin and Glucosyl-β-Cyclodextrin, J. Agric. Food Chem., 2012,61 (2),12501-12507.
    [24]Miura, T.; Kida, T.; Akashi, M. Recognition of Stereoregularity of Poly (methacrylic acid)s with γ-Cyclodextrin, Macromolecules,2011,44 (10),3723-3729.
    [25]Ng, E. P.; Chateigner, D; Bein, T.; Valtchev, V.; Mintova, S. Capturing Ultrasmall EMT Zeolite from Template-Free Systems, Science,2012,335 (6064), 70-73.
    [26]Chung, J. W.; Kwak, S. Y Iron-Induced Cyclodextrin Self-Assembly into Size-Controllable Nanospheres, Langmuir,2009,26 (4),2418-2423.
    [27]Song, L. X.; Pan, S. Z.; Zhu, L. H.; Wang, M.; Du, F. Y.; Chen, J. Molecule-ion interaction and its effect on coordination interaction, Inorganic Chemistry,2011,50 (6),2215-2223.
    [28]Liu, Y.; Zhao, Y. L.; Chen, Y.; Wang, M. Supramolecular Assembly of Gold Nanoparticles Mediated by Polypseudorotaxane with Thiolated β-Cyclodextrin, Macromol. Rapid Commun.2005,26 (5),401-406.
    [29]Gao, Y. A.; Li, Z. H.; Du, J. M.; Han, B. X.; Li, G Z.; Hou, W. G.; Shen, D.; Zheng, L. Q.; Zhang, G. Y. Preparation and Characterization of Inclusion Complexes of β-Cyclodextrin with Ionic Liquid, Chem. Eur. J.,2005,11 (20),5875-5880.
    [30]Song, L. X.; Du, F. Y.; Guo, X. Q.; Pan, S. Z. Formation, Characterization, and Thermal Degradation Behavior of a Novel Tricomponent Aggregate of β-Cyclodextrin, Ferrocene, and Polypropylene Glycol, J. Phys. Chem. B,2010,114 (4),1738-1744.
    [31]Song, L. X.; Yang, J.; Bai, L.; Du, F. Y.; Chen, J.; Wang, M. Molecule-Ion Interaction and Its Effect on Electrostatic Interaction in the System of Copper Chloride and (3-Cyclodextrin, Inorg. Chem.,2011,50 (5),1682-1688.
    [32]Uekama, K.; Fujinaga, T.; Hirayama, F.; Otagiri, M.; Yamasaki, M.; Seo, H.; Hashimoto, T.; Tsuruoka, M. Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation, J. Pharm. Sci.,1983,72 (11),1338-1341.
    [33]Franco, C.; Schwingel, L.; Lula, I.; Sinisterra, R. D.; Koester, L. S.; Bassani,V. L Studies on coumestrol/β-cyclodextrin association:Inclusion complex characterization, International journal of pharmaceutics,2009,369 (1),5-11.
    [34]Shin, J. A.; Lim, Y. G.; Lee, K. H. Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction in Water Using Cyclodextrin as a Phase Transfer Catalyst, J. Org. Chem.,2012,77 (8),4117-4122.
    [35]Prasannan, A.; Truong, T. L. B.; Hong, P. D.; Somanathan, N.; Shown, I.; Imae, T. Synthesis and Characterization of "Hairy Urchin"-like Polyaniline by Using β-Cyclodextrin as a Template, Langmuir,2010,27 (2),766-773.
    [36]Shibu, E. S.; Pradeep, T. Quantum clusters in cavities:trapped Aul5 in cyclodextrins, Chem. Mater.,2011,23 (4),989-999.
    [37]Taguchi, K. Transient binding mode of phenolphthalein-β-cyclodextrin complex: an example of induced geometrical distortion, J. Am. Chem. Soc.,1986,108 (10), 2705-2709.
    [1]Liu, Z.; Erhan, S.; Calvert, P. Solid freeform fabrication of epoxidized soybean oil/epoxy composites with di-, tri-, and polyethylene amine curing agents, Compos. Part A-Appl. S.,2007,38 (1),87-93.
    [2]Samuelsson, J.; Sundell, P. E.; Johansson, M. Synthesis and polymerization of a radiation curable hyperbranched resin based on epoxy functional fatty acids, Prog. Org. Coat.,2004,50 (3),193-198.
    [3]Lu, J.; Khot, S.; Wool, R. P. New sheet molding compound resins from soybean oil. I. Synthesis and characterization, Polymer,2005,46 (1),71-80.
    [4]Adhvaryu, A.; Erhan, S. Epoxidized soybean oil as a potential source of high-temperature lubricants, Industrial Crops and Products,2002,15,247-254.
    [5]Liu, Z. S.; Erhan, S. Z.; Calvert, P. D. Solid freeform fabrication of epoxidized soybean oil/epoxy composite with bis or polyalkyleneamine curing agents, Compos. Part A-Appl. S.,2007,38 (1),87-93.
    [6]Song, B.; Chen, W.; Liu, Z.; Erhan, S. Compressive properties of epoxidized soybean oil/clay nanocomposites, Int. J. Plasticity,2006,22 (8),1549-1568.
    [7]邓芳;魏俊发;石先莹.无羧酸条件下清洁合成环氧大豆油,石油化工,2006, 35(3),281-283.
    [8]崔玉民;范少华.3,3’一二氯联苯胺的合成,精细化工,2001,236-238.
    [9]程争.无溶剂法合成环氧大豆油新工艺的研究,辽宁化工,1997,26(1),37-40.
    [10]曹卫东.由硫酸铝催化合成环氧大豆油,辽宁化工,1994,(5),36-37.
    [11]于兵川;吴洪特;向罗京.改进型无溶剂法工艺合成环氧大豆油的研究.中国油脂,2005,30(4),42.44.
    [12]Sobczak, J. M.; Ziolkowski, J. J. Molybdenum complex-catalysed epoxidation of unsaturated fatty acids by organic hydroperoxides, Appl. Catal. A-Gen.,2003,248 (1),261-268.
    [13]Bouh, A. O.; Espenson, J. H. Epoxidation reactions with urea-hydrogen peroxide catalyzed by methyltrioxorhenium (VII) on niobia, J. Mol. Catal. A-Chem., 2003,200 (1),43-47.
    [1]李岿.新型高分子增稠剂的合成,精细石油化工进展,2006,7(5),47-50.
    [2]陈红.聚乙二醇双硬脂酸酯的合成,江苏化工,1997,25(6),21-22.
    [3]蒋登高;章亚东;周彩荣.精细有机合成反应及工艺,化学工业出版社,2001.
    [4]汪多仁.聚乙二醇硬脂酸酯的合成与应用,四川化工,1996,(2),58-59.
    [5]杨剑鹏;郭志宇.增稠剂DS6000的制备和在日用化学品中的应用,信阳师范学院学报:自然科学版,1997,10,50-53.
    [6]孙建军.聚乙二醇硬脂酸酯的合成,精细石油化工进展,2000,1(7),20-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700