用户名: 密码: 验证码:
稀土氧化物纳米结构的可控合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用负压抽滤法,以氧化铝(AAO)为模板,制备出NdCoxOy、LaNdxPy、 NdCoxOy:Eu、LaNdxOy:Eu稀土氧化物纳米阵列结构,并研究了它们的结构和性能。研究结果如下:
     1.采用两步阳极氧化法分别在硫酸、草酸、磷酸溶液中,分别制备出孔径为50nm,80nm,130nm,200-250nm,350-400nmAAO模板。采用负压抽滤法,在AA0模板中制备了NdCoxOy纳米线阵列。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X-射线衍射(XRD)、能谱(EDS)、振动样品磁强计(VSM)等对NdCoxOy纳米线形貌、结构和化学组成及磁性能进行表征。结果表明:NdCoxOy纳米线是非晶结构;具有明显磁各向异性,且易磁化方向是外加磁场平行于纳米线方向。
     2.在AAO模板中,制备了NdCoxOy:Eu、LaNdxOy:Eu纳米管阵列。对其形貌和晶相结构进行表征;并研究了它们的荧光性能。结果表明:NdCoxOy:Eu、 LaNdxOy:Eu纳米管都是非晶态结构;在波长394nm的光激发下,NdCoxOy:Eu、 LaNdxOy:Eu纳米管阵列,593nm处都出现一个宽的荧光发射峰,为Eu3+的5Do-7F1跃迁,这与发光基质无关。
     3.制备了LaNdxOy纳米线及纳米管阵列,研究了热处理工艺对LaNdxOy纳米线阵列晶相结构和LaNdxOy:Eu纳米线阵列荧光性能的影响。结果表明:LaNdxOy纳米线阵列晶相结构与热处理温度无关,但LaNdxOy:Eu纳米线阵列的荧光强度随着热处理温度的升高而变强。LaNdxOy结构与性能测试的结果表明:LaNdxOy:Eu纳米线的荧光强度弱于LaNdxOy:Eu纳米管的;LaNdxOy:Eu纳米线的荧光强度随着纳米线直径的增大而变小。LaNdxOy纳米管阵列具有明显的磁各向异性,平行方向的矩形比比垂直方向高,LaNdxOy纳米管阵列具备明显的软磁体特征。
We have employed anodic aluminium (AAO) as template to prepare NdCoxOy、 LaNdxOy、NdCoxOy:Eu、LaNdxOy:Eu rare earth oxide nanoarrays nanostructure by suction filtration at subatmospheric pressure. The detailed researches of the thesis are as follows:
     1. The different nanopores porous anodic aluminum oxide (AAO) template have been fabricated by two-step anodization using in sulfuric, oxalic acid and phosphoric acid. The NdCoxOy nanowire arrays have been successfully fabricated in AAO by suction filtration at subatmospheric pressure (SFSP). The morphology, structure, chemical composition and magnetic performance of NdCoxOy nanowires have been characterized by scanning electron microscope(SEM)、transmission electron microscope (TEM)、x-ray diffraction (XRD)、energy dispersive spectra (EDS) and vibrating sample magnetometer(VSM). The results show the NdCoxOy nanowires is amorphous in structure. There are obvious magnetic anisotropy for NdCoxOy nanowire arrays, and the easily magnetized direction is parallel to the nanowire arrays.
     2. The NdCoxOy:Euand LaNdxOy:Eu nanotube arrays have been synthesized by the method of SFSP assisted AAO template. The morphology and the crystal structure have been investigated and luminescence Properties have been studied. The results show that the nanotubes are both amorphous in structure, the diameter of nanotube is homogeneous. The result of the fluorescence spectrum for the two nanotubes indicates that there are both a strong broad emission peak at593nm under394nm excitation characterized as transition5D0-7F1of the Eu3+ions, which is not related to the substrate.
     3. LaNdxOy nanowire arrays and LaNdxOy nanotubes arrays have been prepared. We have researched heat treatment technology on the influence of the structure of LaNdxOy nanowire arrays, luminescence Property of LaNdxOy:Eu3+nanowire arrays, we find thermal treatment temperature do not influence the structure of LaNdxOy nanowire arrays, but luminescence intensity of LaNdxOy:Eu nanowire arrays increases with increasing the calcination temperature. The result reveals that the luminescence intensity of LaNdxOy:Eu nanowires is weaker than that of LaNdxOy:Eu nanotubes, and the luminescence intensity of LaNdxOy:Eu nanowires increases with decreasing the diameter of the nanowires. The magnetic property of LaNdxOy nanotube arrays shows that the squareness along the parallel direction is higher than that of the perpendicular direction, and it exhibits obvious soft ferromagnetism in both parallel and perpendicular directions.
引文
[1]Zeng Q., Cheng J.S., Liu X.F., ET AL. Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor [J].Biosensors and Bioelectronics,2011,26(8):3456-3463
    [2]Lu L.M., Li H.B., Qu F.L., ET AL. In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors[J].Biosensors and Bioelectronics,2011,26(8):3500-3504
    [3]Zhai C.X., Du N., Zhang H., ET AL. Multiwalled Carbon Nanotubes Anchored with SnS2 Nanosheets as High-Performance Anode Materials of Lithium-Ion Batteries[J].ACS Appl. Mater. Interfaces,2011,3(10):4067-4074
    [4]Ball P., Garwin L. Science at the atomic scale[J]. nature.,1992, 355(6363):761-766.
    [5]Klabunde K.J., Stark J., Koper O., ET AL. Nanocrystals as stoichiometric reagents with unique surface chemistry[J]. J. Phys. Chem,1996,100(30):12142-12153
    [6]Leggett A.J., Chakravarty S., Dorsey A.T., ET AL. Dynamics of the dissipative two-state system[J]. Rev. Mod. Phys.,1987,59(l):1-85
    [7]Niu H.Y., Wang Y.H., Zhang X.L., ET AL. Easy Synthesis of Surface-Tunable Carbon-Encapsulated Magnetic Nanoparticles:Adsorbents for Selective Isolation and Preconcentration of Organic Pollutants[J]. ACS Appl. Mater. Interfaces, 2012,4(1):286-295
    [8]Jiang G.Q., Hore M.J.A., Gam S., ET AL. Gold Nanorods Dispersed in Homopolymer Films:Optical Properties Controlled by Self-Assembly and Percolation of Nanorods[J]. ACS Nano,2012,6(2):1578-1588
    [9]Xie L.X., Qin Y., Chen H.Y. Direct Fluorescent Measurement of Blood Potassium with Polymeric Optical Sensors Based on Upconverting Nanomaterials[J].Anal Chem.,2013,85(5):2617-2622
    [10]Kim M.G, Hennek J.W., Kim H.S., ET AL. Delayed Ignition of Autocatalytic Combustion Precursors:Low-Temperature Nanomaterial Binder Approach to Electronically Functional Oxide Films[J].J. Am. Chem. Soc,2012, 134(28):11583-11593
    [11]Alshehri A.H., Jakubowska M., Mlozniak., ET AL. Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications[J].ACS Appl. Mater. Interfaces,2012,4(12):7007-7010
    [12]Hu W.W., Yuan H.M., Li G.H., ET AL. Structure, Magnetic, and Ferroelectric Properties of Bi1-xGdxFeO3 Nanoparticles[J].J. Phys. Chem. C,2011, 115(18):8869-8875
    [13]Narayanan T.N., Shaijumon M.M., Ajayan P.M., ET AL. Synthesis of High Coercivity Cobalt Nanotubes with Acetate Precursors and Elucidation of the Mechanism of Growth[J].J. Phys. Chem. C,2008,112(37):14281-14285
    [14]Wang X.W., Zhang C.A., Wang P.J., ET AL. Enhanced Performance of Biodegradable Poly(butylene succinate)/Graphene Oxide Nanocomposites via in Situ Polymerization[J]. Langmuir,2012,28(18):7091-7095
    [15]Yuan B.H., Bao C.L., Guo Y.Q., ET AL. Preparation and Characterization of Flame-Retardant Aluminum Hypophosphite/Poly(Vinyl Alcohol) Composite[J]. Ind. Eng. Chem. Res.,2012,51(43):14065-14075
    [16]Vinci J.C., Ferrer I.M., Seedhouse S.J., ET AL. Hidden Properties of Carbon Dots Revealed After HPLC Fractionation[J]. J. Phys. Chem. Lett.,2013,4(2): 239-243
    [17]Xu S.J., Yong L., Wu P.Y. One-Pot, Green, Rapid Synthesis of Flowerlike Gold Nanoparticles/Reduced Graphene Oxide Composite with Regenerated Silk Fibroin As Efficient Oxygen Reduction Electrocatalysts[J]. ACS Appl. Mater. Interfaces,2013,5(3):654-662
    [18]Xu Z.H., Li C.X., Yang P.P., ET AL. Rare Earth Fluorides Nanowires/Nanorods Derived from Hydroxides:Hydrothermal Synthesis and Luminescence Properties[J].Cryst. Grow. Des.,2009,9(11):.4752-4758.
    [19]Wang N., Chen W., Zhang Q.F., ET AL. Synthesis, luminescent, and magnetic properties of LaVO4:Eu nanorods[J].Materials Letters,2008,62(1):109-112
    [20]Liu Y.F., Cao Y.H., Huang. L., ET AL. Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries[J]. Journal of Alloys and Compounds,2011,509(3):675-681.
    [21]Zhao L., Wang Z.H., Han D.M., ET AL. Preparation of carbon nanotube neodymium oxide composite and research on its catalytic performance[J]. Materials Research Bulletin,2009,44(5):984-988
    [22]Fu Y.P. Electrochemical performance of La0.9Sr0.1Co0.8Ni0.2O3-Ce0.8Sm0.2O1.9 composite cathode for solid oxide fuel cells[J]. Hydrogen Energy,2011,36: 5574-5580
    [23]Pei J., Yue Z.X., Zhao F., ET AL. Microstructure and dielectric properties control of Ba4(Nd0.7Smo.3)9.33Ti18O54 microwave ceramics[J].Ceramics International, 2009,35:253-257
    [24]Yang L., Tang Y.H., Chen X.H.,ET AL. Synthesis of Eu3+doped Y2O3 nanotube arrays through an electric field-assisted deposition method[J]. Materials Chemistry and Physics,2007,101(1):195-198
    [25]Liu G.X., Hong GY, Dong X.T., ET AL. Preparation and characterization of Gd2O3:Eu3+luminescence nanotubes[J]. Journal of Alloys and Compounds, 2008,466(1-2):512-516
    [26]Yuan X.Y., Chang J., Pang F, ET AL. Synthesis of non-stoichiometric NdxNi1-xOy nanotube arrays and magnetism, upconversion behavior[J]. Solid State Communications,2010,150(29-30):1355-1358
    [27]Aono H., Tsuzaki M., Kawaura A., ET AL. LaMnO3 Fine Powder Prepared by the Thermal Decomposition of a Heteronuclear Complex, LaMn(dhbaen)(OH)(NO3)(H2O)4[J]. Chem Lett,1999,11:1175-76
    [28]Aono H., Tsuzaki M., Kawaura A., ET AL. Preparation of Nanosized Perovskite-Type LaMnO3 Powders Using the Thermal Decomposition of a Heteronuclear Complex, LaMn(dhbaen)(OH)(NO3)(H2O)4[J]. Journal of the American Ceramic Society,2001,84(5):969-75
    [29]Li Y.H., Chen C.W., Zhou X.Z., ET AL. Synthesis of CeO2 nanoparticles by mechanochemical processing and the inhibiting action of NaCl on particle agglomeration[J].Materials Letters,2005,59(1):48-52
    [30]Xu Z.H., Li C.X., Yang P.P., ET AL. Rare Earth Fluorides Nanowires/Nanorods Derived from Hydroxides:Hydrothermal Synthesis and Luminescence Properties[J]. Cryst. Growth Des.,2009,9(11):.4752-4758
    [31]Taniguchi T., Watanabe T., Katsumata K., ET AL. Synthesis of Amphipathic YVO4:Eu3+Nanophosphors by Oleate-Modified Nucleation/ Hydrothermal-Growth Process[J]. J. Phys. Chem. C,2010,114(9):3763-3769
    [32]Yan L., Yu R.B., Chen J., ET AL. Template-Free Hydrothermal Synthesis of CeO2 Nano-octahedronsand Nanorods:Investigation of the Morphology Evolution[J]. Cryst. Growth Des,2008,8(5):1474-1477
    [33]Wang X., Zhuang J., Peng Q., ET AL. Hydrothermal Synthesis of Rare-Earth Fluoride Nanocrystals[J]. Inorg. Chem.,2006,45(17):6661-6665
    [34]Fisher M.J., Wang W.Z., Dorhout P.T., ET AL. Synthesis of LaPO4:Eu Nanostructures Using the Sol-Gel Template Method[J]. J. Phys. Chem. C,2008, 112(6):1901-1907
    [35]Wang H.M., Simmonds M.C., Huang Y.Z., ET AL. Synthesis of Nanosize Powders and Thin Films of Yb-Doped YAG by Sol-Gel Methods[J]. Chem. Mater.,2003,15(18):3474-3480
    [36]甘树才,洪广言,张军,等.溶胶-凝胶法合成稀土铁氧体过程中的相变与形成机制[J].中国稀土学报,2001,19(3):278-280
    [37]甘树才,李红英,孟健,等.溶胶-凝胶法合成稀土Z型铁氧体Ba3-xLaxCo2Fe24O4与表征[J].中国稀土学报,2004,39(6):751-753
    [38]Xiao H.Y., Ai Z.H., Zhang L.Z. Nonaqueous Sol-Gel Synthesized Hierarchical CeO2 Nanocrystal Microspheres as Novel Adsorbents for Wastewater Treatment[J]. J. Phys. Chem. C,2009,113(38):16625-16630
    [39]Chervin C. N., Clapsaddle B.J., Chiu H.W., ET AL. A Non-AIkoxide Sol-Gel Method for the Preparation of Homogeneous Nanocrystalline Powders of Lao.85Sro.15Mn03[J]. Chem. Mater.,2006,18(7):1928-1937
    [40]Chang H., Chen H.I. Morphological evolution for CeO2 nanoparticles synthesized by precipitation technique[J]. Journal of Crystal Growth,2005, 283(3-4):457-468
    [41]韩陈, 廖静, 曹秀军,等.超声波均匀沉淀法制备纳米氧化镧[J].无机盐工业,2008,40(10):18-20
    [42]Jiang X.C., Yan C.H., Sun L.D., ET AL. Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+nanocrystals with improved luminescent properties[J]. Journal of Solid State Chemistry,2003,175(2):245-251
    [43]周新木.络合沉淀法制备超细氧化稀土粉体[J].南昌大学学报(理科版),2002,26(4):377-380
    [44]Wang GH., Brewer J.R., Chan J.Y., ET AL. Morphological Evolution of Neodymium Boride Nanostructure Growth by Chemical Vapor Deposition[J]. J. Phys. Chem. C,2009,113(24):10446-10451
    [45]Liu T., Zhang Y.H., Shao H.Y., ET AL. Synthesis and Characteristics of Sm2O3 and Nd2O3 Nanoparticles[J]. Langmuir,2003,19(18):7569-7572
    [46]lijima S. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature,1993, 363:603-605
    [47]Munoz F.F., Cabezas M.D., Acuna L.F., ET AL. Structural Properties and Reduction Behavior of Novel Nanostructured Pd/Gadolinia-Doped Ceria Catalysts with Tubular Morphology [J]. J. Phys. Chem. C,2011, 115(17):8744-8752
    [48]Brewer J.R., Jacobberger R.M., Diercks D.R., ET AL. Rare Earth Hexaboride Nanowires:General Synthetic Design and Analysis Using Atom Probe Tomography[J]. Chem. Mater.,2011,23(10):2606-2610
    [49]Wang D.D., Xing GZ., Gao M., ET AL. Defects-Mediated" Energy Transfer in Red-Light-Emitting Eu-Doped ZnO Nanowire Arrays[J]. J. Phys. Chem. C,2011, 115(46):22729-22735
    [50]Wu GS., Zhang L.D., Cheng B.C., ET AL. Synthesis of Eu2O3 Nanotube Arrays through a Facile Sol-Gel Template Approach[J]. J. Am. Chem. Soc,2004, 126(19):5976-5977
    [51]Kuang Q., Lin Z.W., Lian W., ET AL. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates[J]. Journal of Solid State Chemistry,2007,180(4):1236-1242
    [52]Gong X.Z., Tang J.N., Li J.Q., ET AL. Preparation and characterization of La-Co alloy nanowire arrays by electrodeposition in AAO template under nonaqueous system[J]. Transactions of Nonferrous Metals Society of China,2008, 18(3):642-647
    [53]Tan X.H. Fabrication and properties of Sr2MgSi2O7:Eu2+,Dy3+nanostructures by an AAO template assisted co-deposition method[J]. Journal of Alloys and Compounds,2009,477:648-651
    [54]Li X.D., Meng G.W., ET AL. Controlled Synthesis of Germanium Nanowires and Nanotubes with Variable Morphologies and Sizes[J]. Nano Lett.,2011, 11 (4):1704-1709
    [1]Liu S.Y., Soh A.K., Lu L. Structure Characterization of AmorphousCoxGd1-x Nanowires and Magnetic Properties of Their Arrays [J]. J. Phys. Chem. C, 2009,113(39):16934-16938
    [2]Lin J., Huang Y., Bando Y., ET AL. Synthesis of In2O3 Nanowire-Decorated Ga2O3 Nanobelt Heterostructures and Their Electrical and Field-Emission Properties[J]. ACS Nano.,2010,4(4):2452-2458
    [3]Liang J.X., Tang S.B., Cao Z.X. Electronic and Optical Properties of Low-Dimensional B2CN Nanomaterials from First Principles[J] J. Phys. Chem. C,2011,115(58):18802-18809
    [4]Hou Z.Y., Li C.X., ET AL. One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes:electrospinning preparation and luminescent properties[J].J. Mater. Chem,2009,19:2737-2746
    [5]Qu X. F., Dai J.H., ET AL. Syntheses of Nd2O3 nanowires through sol-gel process assisted with porous anodic aluminum oxide (AAO) template[J]. Journal of Alloys and Compounds,2009,469:332-335
    [6]Li X.D., Wang Y.Q., ET AL. Controlled Synthesis of Germanium Nanowires and Nanotubes with Variable Morphologies and Sizes[J]. Nano Lett.,2011,11(4): 1704-1709
    [7]Li X., Wang Y., Song G., ET AL. Fabrication and Magnetic Properties of Ni/Cu Shell/Core Nanocable Arrays [J]. J. Phys. Chem. C,2010,114(15):1704-1709
    [8]Brewer J.R., Jacobberger R.M., ET AL. Rare Earth Hexaboride Nanowires: General Synthetic Design and Analysis Using Atom Probe Tomography[J].Chem. Mater.,2011,23(10):2606-2610
    [9]Dong M.Y., Lin Q., ET AL. Synthesis of Cerium Molybdate Hierarchical Architectures and Their Novel Photocatalytic and Adsorption Performances [J]. Cryst. Growth. Des.,2011,11(11):5002-5009
    [10]Wen C.Y., Sun L.L., ET AL. Mesoporous rare earth fluoride nanocrystals and their photoluminescence properties[J]. Journal of Colloid and Interface Science, 2011,357(1):116-120
    [11]Rovira L.G.., Delgado J.J., ElAmrani K., ET AL. Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation[J]. Catalysis Today, 2012,180(1):167-173
    [12]Zahir M.H., Suzuki T., ET AL. Synthesis and characterization of Sm3+-doped Y(OH)3 and Y2O3 nanowires and their NO reduction activity[J]. Journal of Alloys and Compounds,2009,476(1-2):335-240
    [13]Rafi U.D., Lin Z., Li P., ET AL. Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of LiAlH4[J]. Journal of Alloys and Compounds,2010,508(1):119-128
    [14]Yang L., Tang Y.H., Chen X.H., ET AL. Synthesis of Eu3+ doped Y2O3 nanotube arrays through an electric field-assisted deposition method[J]. Materials Chemistry and Physics,2007,101(1):195-198
    [15]Tan X.H. Fabrication and properties of Sr2MgSi2O7:Eu2+, Dy3+nanostructures by an AAO template assisted co-deposition method[J]. Journal of Alloys and Compounds,2009,477:648-651
    [16]Gong X. Z., Tang J. N., Li J. Q., ET AL, Preparation and characterization of La-Co alloy nanowire arrays by electrodeposition in AAO template under nonaqueous system[J]. Trans. Nonferrous Met. Soc. China.,2008,18:642-647
    [17]Li X.Z., Wei X.W., Ye Y. A simple method for forming amorphous rare earth-transition metal alloy nanotube arrays[J]. Journal of Non-Crystalline Solids, 2009,355(45-47):2233-2238
    [18]Rana S., Rawat J., Sorensson M., ET AL. Antimicrobial function of Nd3+- doped anatase titania-coated nickel ferrite composite nanoparticles:A biomaterial system[J]. Acta Biomaterialia,2006,2(4):421-432
    [19]Ding Q.W., Zhao Y.M., Xu J.Q., Zou C.Y. Large-scale synthesis of neodymium hexaboride nanowires by self-catalyst[J].Solid State Communications,2007, 141(2):53-56
    [20]Xu Y.H., Chen C, Yang X.L., ET AL. Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 nanotubes[J]. Applied Surface Science,2009,255(20):8624-8628
    [21]Zhao L., Wang Z.H., Han D.M., ET AL. Preparation of carbon nanotube-neodymium oxide composite and research on its catalytic performance[J]. Materials Research Bulletin,2009,44(5-6):984-988
    [22]Masuda H., Fukuda K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina[J]. Science,1995, 268:1466-1468
    [23]Li X., Ma J. Controlled synthesis and luminescence properties of LaPO4:Eu phosphors[J]. Journal of Luminescence,2011,131:1355-1360
    [24]Wang Z.L. Theme issue:inorganic nanotubes and nanowires[J].J. Mater. Chem., 2009,19:826-827
    [25]Bao J.R., Yu R.B., Zhang J.Y., Wang D., ET AL. Oxalate-induced hydrothermal synthesis of CePO4:Tb nanowires with enhanced photoluminescence[J]. Scripta Materialia,2010,62(3):133-136
    [26]Yang L., Tang Y.H., Chen X.H., ET AL. Synthesis of Eu3+doped Y2O3 nanotube arrays through an electric field-assisted deposition method[J]. Materials Chemistry and Physics,2007,101(1):195-198
    [27]Li H.B., Sheng Y, Zhang H.G., ET AL. Synthesis and luminescent properties of TiO2:Eu3+ nanotubes[J]. Powder Technology,2011,212(2):372-377
    [1]Potdevin A., Chadeyron G, Therias S., ET AL. Luminescent Nanocomposites Made of Finely Dispersed Y3Ga5O12 Tb Powder in a Polymer Matrix:Promising Candidates for Optical Devices[J]. Langmuir.,2012,28(37):13526-13535
    [2]Liu Y.F., Yang Z.P., Yu Q.M. Preparation and its luminescent properties of AlPO4:Eu3+ phosphor for w-LED applications[J]. Journal of Alloys and Compounds,2011,509(21):199-202
    [3]Kang X.J., Cheng Z.Y., Li C.X., ET AL. Core-Shell Structured Up-Conversion Luminescent and Mesoporous NaYF4:Yb3+/Er3+@nSiO2@mSiO2 Nanospheres as Carriers for Drug Delivery[J]J. Phys. Chem. C.,2011,115(52):15801-15811
    [4]Dai Y.L., Ma P.A., Cheng Z.Y., ET AL. Up-Conversion Cell Imaging and pH-Induced Thermally Controlled Drug Release from NaYF4:Yb3+/Er3+@Hydrogel Core-Shell Hybrid Microspheres[J]. ACS Nano.,2012,6(4):3327-3338
    [5]Zou P., Hong X., Ding YD., ET AL. Up-Conversion Luminescence of NaYF4:Yb3+/Er3+ Nanoparticles Embedded into PVP Nanotubes with Controllable Diameters[J].J. Phys. Chem. C,2012,116(9):5787-5791
    [6]Tian Y, Xu R.R., Hu L.L., ET AL. Spectroscopic properties and energy transfer process in Er3+ doped ZrF4-based fluoride glass for 2.7 lm laser materials[J].Optical. Materials.,2011,34(1):308-312
    [7]Babu M.A., Jamalaiah B.C., Kumar J.S., ET AL. Spectroscopic and photoluminescence properties of Dy3+-doped lead tungsten tellurite glasses for laser materials[J].Journal of Alloys and Compounds,2011,509(2):457-462
    [8]Bachmann V., Ronda C., Meijerink A. Temperature Quenching of Yellow Ce3+Luminescence in YAG:Ce[J].Chem. Mater.,2009,21(10):2077-2084
    [9]Wu GS., Zhang L.D., Cheng B.C., ET AL. Synthesis of Eu2O3 Nanotube Arrays through a Facile Sol-Gel Template Approach[J].J. Am. Chem. Soc.,2004, 126(19):5976-5977
    [10]Lin Z.W., Kuang Q., Lian W., ET AL. Preparation and Optical Properties of ThO2 and Eu-Doped ThO2 Nanotubes by the Sol-Gel Method Combined with Porous Anodic Aluminum Oxide Template[J]J. Phys. Chem. B.,2006,110(46): 3007 23011
    [11]Wu Y.L., Sun W.L., Zhou X.Z., ET AL. Hydrothermal synthesis of Y(OH)3,Y(OH)3:Eu3+ nanotubes and the photoluminescence of Y(OH)3:Eu3+,Y2O3:Eu3+[J]JOURNAL OF RARE EARTH,2009,27(5):767-772
    [1]Elghanian R., Storhoff J.J., Mucic R.C., ET AL. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles[J]. Science,1997,277:1077-1081
    [2]Qin GW., Pei W.L., Ma X.M., ET AL. Enhanced Catalytic Activity of Pt Nanomaterials:From Monodisperse Nanoparticles to Self-Organized Nanoparticle-Linked Nanowires[J]. J. Phys. Chem. C,2010,114(15):6909-6913
    [3]Penuelas J., Lu X., Blanchard N.P., ET AL. Morphological and structural properties of InP/Gd2O3 nanowires grown by molecular beam epitaxy on silicon substrate[J]. Journal of Crystal Growth,2012,347(1):49-52
    [4]Judy J.D., Unrine J.M., Rao W., ET AL. Bioavailability of Gold Nanomaterials to Plants:Importance of Particle Size and Surface Coating[J]. Environ. Sci. Technol., 2012,46(15):8467-847
    [5]Longmire M.R., Ogawa M., Choyke P.L., ET AL. Biologically Optimized Nanosized Molecules and Particles:More than Just Size[J].Bioconjugate. Chem, 2011,22(6):993-1000
    [6]Zheng Y.H., Liu K., Qiao H., ET AL. Facile synthesis and catalytic properties of CeO2 with tunable morphologies from thermal transformation of cerium benzendicarboxylate complexes[J]. CrystEngComm,2011,13:1786-1788
    [7]Rao R., Zhang Q.Y., Liu H.D., ET AL. Formaldehyde-assisted hydrothermal synthesis of one-dimensional CeO2 and their morphology-dependent properties[J].CrystEngComm,2012,14:5929-5936
    [8]Qu X.S., Yang H.K., Pan GH., ET AL. Controlled Fabrication and Shape-Dependent Luminescence Properties of Hexagonal NaCeF4, NaCeF4:Tb3+Nanorods via Polyol-Mediated Solvothermal Route[J]. Inorg. Chem, 2011,50(8):3387-3393
    [9]Kang Y.J., Pyo J.B., Ye X,C., ET AL. Shape-Controlled Synthesis of Pt Nanocrystals:The Role of Metal Carbonyls[J].ACS Nano,2013,7(1):645-653
    [10]Kruszynska M., Borchert H., Bachmatiuk A., ET AL. Size and Shape Control of Colloidal Copper(I) Sulfide Nanorods[J]. ACS Nano,2012,6(7):5889-5896
    [11]Wu J.B., Gross A., Yang H. Shape and Composition-Controlled Platinum Alloy Nanocrystals Using Carbon Monoxide as Reducing Agent[J].Nano Lett,2011, 11(12):798-802
    [12]Dobrovolskaia M.A., Patri A.K., Simak J., ET AL. Nanoparticle Size and Surface Charge Determine Effects of PAMAM Dendrimers on Human Platelets in Vitro[J]. Mol. Pharmaceutics,2012,9(3):382-393
    [13]Tang Y., Cheng W.L. Nanoparticle-Modified Electrode with Size-and Shape-Dependent Electrocatalytic Activities[J].Langmuir,2013,29(9): 3125-3132
    [14]Tyler T.P., Lin P.A., Tian Y., ET AL. Centrifugal Shape Sorting of Faceted Gold Nanoparticles Using an Atomic Plane-Selective Surfactant[J].J. Phys. Chem. Lett, 2012,3(12):1484-1487
    [15]Wu C.M., Baltrusaitis J., Gillan E.G., ET AL. Sulfur Dioxide Adsorption on ZnO Nanoparticles and Nanorods[J].J. Phys. Chem. C,2011,15(20):110164-10172
    [16]Duan C.F., Cui H., Zhang Z.F., ET AL. Size-Dependent Inhibition and Enhancement by Gold Nanoparticles of Luminol-Ferricyanide Chemiluminescence[J]. J. Phys. Chem. C,2007,111(12):.45614566
    [17]Narayanan R., El-Sayed M.A. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution[J].Nano Lett,2004,4(7):1343-1348
    [18]Xue W.L., Zhang G.W., Xu X.F., ET AL. Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate[J]. Chemical Engineering Journal,2011,167(1):397-402
    [19]Xu L., Dong B., Wang Y., ET AL. Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires[J].Sensors and Actuators B:Chemical,2010,147(2-3):531-538
    [20]Wang Y., Cao G.Z. Synthesis and electrochemical properties of InVO4 nanotube arrays[J]. J. Mater. Chem.,2007,17:894-899
    [21]Yang M., You H.P., Liu K., ET AL. Low-Temperature Coprecipitation Synthesis and Luminescent Properties of LaPO4:Ln3+(Ln3+=Ce3+,Tb3+) Nanowires and LaPO4:Ce3+,Tb3+/LaPO4 Core/Shell Nanowires[J].Inorg.Chem.,2010,49 (11):4996-5002
    [22]Liu S.Y., Soh A.K., Lu L. Structure Characterization of Amorphous CoxGd1-x Nanowires and Magnetic Properties of Their Arrays[J]. J. Phys. Chem. C.,2009, 113:16934-16938
    [23]Wang X.F., Yuan Z,H., Fang B.C. Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters[J]. Materials Chemistry and Physics,2011,125 (1-2):1-4
    [24]Zeng Q.G, Zhang Z.M., Ding Z.J., ET AL. Strong photoluminescence emission of Eu:TiO2 nanotubes[J]. Scripta Materialia,2007,57(10):897-900

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700