用户名: 密码: 验证码:
有机光导小分子材料的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机光折变材料因性能易调节、器件易制备等优势成为当前的研究热点,其性能主要受光生载流子产率、载流子的扩散能力等方面的影响。因此,本论文通过改变光导分子中供受单元的方法,调节光导小分子的能带结构,以促进光生载流子的传输、内建电场的形成,进而达到提高光折变器件综合性能的目的。基于以上论述,本论文选择光性能优异的供受体单元,并通过SUZUKI反应,在受体两侧加上供体单元以形成D-A-D结构的光导体小分子材料,从构造和构型上对分子进行修饰,制备了新型低带隙光折变光导材料,可用于近红外光折变器件中光导性能的研究。
     1、制备了多种具有强吸电子能力的苯丙噻二唑或苯并三唑衍生物作为受体单元,合成了具有优异给电子能力的吩噻嗪、咔唑、三苯胺衍生物作为供体单元,将其用于制备一系列具有D-A-D结构的低带隙光导体小分子材料。通过对分子构造和构型的设计,为克服有机光折变器件因能带不匹配造成的响应时间长、增益因子和衍射效率低等缺点做好基础设计。
     2、目标产物的紫外可见吸收光谱的表征结果表明:化合物在稀溶液状态下的能带隙最高不超过2.398eV,最低可达2.183eV,证明这些化合物有希望用于长波光折变材料及器件的研究。
     3、通过对供受体单元上所连烷基链大小和结构来调控目标产物的柔性,使其具有良好的溶解性和较低的玻璃化转变温度,如以吩噻嗪为供体的化合物Tg为28℃,以双烷氧基取代三苯胺为供体的化合物Tg为3.3℃。材料的加工性能不仅得以提高,且有利于改善光折变器件的取向增强效应,使器件具有更大的增益因子。
     4、利用核磁、红外、TG和DSC等对目标化合物的结构、热性能进行了表征,结果表明其化学结构与目标化合物一致,分解温度均高于350℃,具有良好的热稳定性。
     5、为了进一步完善材料的光吸收性能、光电导效率、成膜性、光热稳定性、透光率等多方面性能,本文还初步开展了超支化光导聚合物材料的合成工作。
Organic photorefractive (PR) materials have been paid much attention due to easily-adjusted performance of organic PR materials and easy preparation of organic PR devices. The PR performance depends mainly on the photon-generated efficiency and diffusibility of carriers. Therefore, the modification of band gap of photoconductors in PR devices will benefit to the photon-generation of carriers, the formation of internal built-in electric field, and then the improvement of PR performance. Therefore, a series of novel photoconductive materials are prepared as organic photoconductors in PR devices through one donor-alternating-acceptor approach.
     1、The derivatives of benzothiadiazole and benzotriazole are synthesized as acceptor units with strong electron-withdrawing ability. The derivatives of phenothiazine, carbazole and triphenylamine are also prepared as donor units with great electron-donating ability. Then, novel near-infrared photoconductive micromolecules are synthesized through D-A-D strategy to improve the mismatching of energy levels inside PR devices.
     2、The UV-vis spectra show that the target compounds with strong electron-withdrawing and electron-donating units have the tunable band gap from2.398eV to2.183eV.
     3、Target compounds bear good solubility and low Tg with the introduction of appropriate alkyl chains, which will improve their processabilities. The PR performance will potentially be improved owing to the photo-induced orientation-enhanced effect.
     4、he results of1H-NMR,13C-NMR and IR indicate the chemical structure of synthesized compounds is in accord with the target compounds. The TG and DSC measurements show all the compounds have the decomposition temperature higher than350℃, indicating good thermostability.
     5.The preliminary research on hyperbranched photoconducting polymers is ongoing in our laboratory with the aim of the further optimization of photoconduction, film-forming, light&heat stability of organic PR devices.
引文
[1]Eichler H J, Gunter P, Pohl D W, Laser-Induced Dynamic Gratings [J]. Berlin/Heidelberg:Springer-Verlag,1986
    [2]Chemla D S, Zyss J. Nonlinear Optical Properties of Organic Molecules and Crystals [J]. Orlando:Academic Press,1987
    [3]Brown G H. Photochromism[J]. New York:Wiley-Interscience,1971
    [4]Vally G C. Two-wave mixing with an applied field and a moving grating [J]. Journal of the Optical Society of America B-Optical Physics,1984, (1):868-873
    [5]Khoo I C, Liu T H. Probe beam amplification via two-and four-wave mixings in a nematic liquid crystal film [J]. IEEE Journal of Quantum Electron,1987, (23):171-173
    [6]Sanchez F, Kayoun P H, Huignard J P. Two-wave mixing with gain in liquid crystals at 10.6μm wavelength [J]. Journal of Applied Physics,1988, (64):26-31
    [7]Grunnet-Jepsen A, Thompson C L, Moerner W E, Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier [J]. Science,1997, (277):549-552
    [8]Goonesekera A, Wright D, Moerner W E. Image amplification and novelty filtering with a photorefractive polymer [J]. Applied Physics Letters,2000, (76):3358-3360
    [9]Hendrickx E, Van Steenwinckel D, Persoons A. Tracking novelty filter at 780nm based on a photorefractive polymer in a two-beam coupling geometry [J]. Applied Optics, 2001, (40):1412-1416
    [10]Gubler U, He M, Wright D, et al. Monolithic photorefractive organic glasses with larger coupling gain and strong beam fanning [J]. Advanced Materials,2002, (14):313-315
    [11]李铭华,杨春晖,徐玉恒.光折变晶体材料科学导论[M].北京:科学出版社,2003
    [12]Kukhtarev N V, Markov V B, Odulov S G, et al. Hologuaphoic storage in electrooptic crystals. I. Steady state [J]. Ferroelectrics,1979, (22):949-960
    [13]Feinberg J, Heiman D, Tanguay A R, et al. Photorefractive effects and light-induced change migration in barium titanatei [J]. Journal of Applied Physics,1980, (51): 1297-1305
    [14]Daubler T K, Bittner R, Meerholz K, et al. Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials [J]. Physical Review B,2000, (61):13515-13527
    [15]Ostroverkhova O, Moerner W E. Organic photorefractives:Mechanisms, materials and applications [J]. Chemical Reviews,2004, (104):3267-3314
    [16]Silence S M, Walsh C A, Scott J C, et al. C60 sensitization of a photorefractive polymer[J]. Applied Physics Letters,1992, (61):2967-2969
    [17]Zhang Y, Cui Y P, Prasad P N. Observation of photorefractivity in a fullerene-doped polymer composite [J]. Physical Review B,1992, (46):9900-9902
    [18]Okamoto K, Nomura T, Park S H, et al. Synthesis and characterization of photorefractive polymer containing electron transport material [J]. Chemistry of Materials,1999, (11): 3279-3284
    [19]Wang L M, Ng M K, Yu L P. Complementary holographic gratings through electron-hole transport in a fully functionalized photorefractive molecular glass [J]. Physical Review B,2000, (62):4973-4984
    [20]Li L, Chittibabu K G, Chen Z, et al. Photorefractive effect in a conjugated polymer based materials[J]. Optics Communications,1996, (2):257-261
    [21]Mecher E, Brauchle C, Horhold H H, et al. Comparison of new photorefractive composites based on a poly(ρ-phenyl envinylene)-derivative with traditional poly(N-vinylcarbazole)-based composites [J]. Physical Chemistry Chemical Physics, 1999, (2):1749-1756
    [22]Daubler T K, Bittner R. Meerholz K, et al. Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials [J]. Physical Review B,2000, (61):13515-13527
    [23]Ostroverkhova O, Singer K D. Space-charge dynamics in photorefractive polymers [J]. Journal of Applied Physics,2002, (92):1727-1743
    [24]Ostroverkhova O, Moerner W E. Organic photorefractives:mechanisms, materials, and applications [J]. Chemical Reviews,2004, (104):3267-3314
    [25]Kukhtarev N V, Markov V B, Odulov S G, et al. Hologuaphic storage in eletrooptic crystals. I. Steady state [J]. Ferroelectrics,1979, (22):949-960
    [26]Twarowski A. Geminate recombination in photorefractive crystals [J]. Journal of Applied Physics,1989, (65):2833-2837
    [27]Schildkraut J S, Buettner A V. Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers [J]. Journal of Applied Physics, 1992, (72):1888-1893
    [28]Schildkraut J S, Cui Y P. Zero-order and first-order theory oa the formation of space-charge gratings in photoconductive polymers [J]. Journal of Applied Physics, 1992, (72):5055-5060
    [29]Cui Y P, Swee k B, Cheng N, et al. Dynamics if photorefractive grating erasure in polymeric composites [J]. Journal of Applied Physics,1999, (85):38-43
    [30]Yuan B H, Sun X D, Zhou Z X, et al. Forced-oscillator model of a photorefractive space-charge field that is due to carrier population variation [J]. Journal of the Optical Society of America B-Optical Physics,2000, (18):1342-1350
    [31]Yuan B H, Sun X D, Jiang Y Y, et al. Effect of the applied electric field on the steady state and temporary state space-charge field in photorefractive polymers [J]. Journal of Modern Optics,2001, (48):1161-1170
    [32]Yuan B H, Sun X D, Zhou Z X, et al. Theory of space-charge field with a moving fringe in photorefractive polymers [J]. Journal of Applied Physics,2001, (89):5881-5888
    [33]Pope M, Swenberg C E. Electronic Processes in Organic Crystals and Polymers [J]. New York:Oxford University Press,1999
    [34]Grunnet-Jepsen A, Wright D, Smith B, et al. Spectroscopic determination of trap density in C60-sensitized photorefractive polymers [J]. Chemical Physics Letters,1998, (291): 553-561
    [35]Ostroverkhova O. Nonlinear optical probe and processes in polymer and liquid crystals Cleveland[D]. Ohio:Case Western Reserve University,2001
    [36]Peyghambarian N, Ferrio K B, Herlocker J A, et al. Photorefractive polymers with high speed [J]. Journal of Organic Nonlinear Optical Materials and Devices, Symposium, 1999:131-139
    [37]Herlocker J A, Fuentes-Hernandz C, Ferrio K B, et al. Stabilization of the response time in photorefractive polymers [J]. Applied Physics Letters,2000, (77):2292-2294
    [38]Kulikovsky L, Neher D, Mecher E, et al. Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite [J]. Physical Review B,2004, (69):125216
    [39]Marc N, Moisan J Y, Wolffer N, et al. Determination of the charge mobility in organic photoconductors by a new method-theoretical study and experimental results [J] Philosophical Magazine Part B,1996, (74):81-91
    [40]Marc N, Moisan J Y, Andre B, et al. Charge trapping in an organic photoconductor: poly(N-vinylcarbazole) doped with 2,4,7-trinitrofluorenone [J]. Philosophical Magazine Part B,1996, (73):779-791
    [41]Ostroverkhova O, Moerner W E, He M, et al. Role of temperature in controlling performance photorefractive organic glasses [J]. ChemPhysChem,2003, (4):732-744
    [42]Liphardt M, Goonesekera A, Ducharme S, et al. Effect of beam attenuation on photorefractive grating erasure [J]. Journal of the Optical Society of America B-Optical Physics,1996, (13):2252-2260
    [43]Grunnet-Jepsen A, Thompson C L, Twieg R J, et al. Amplified scattering in a high-gain photorefractive polymer [J]. Journal of the Optical Society of America B-Optical Physics,1998, (15):901-904
    [44]Grunnet-Jepsen A, Thompson C L, Twieg R J, et al. High performance photorefractive polymer with improved stability [J]. Applied Physics Letters,1997, (70):1515-1517
    [45]Meerholz K, Mecher E, Bittner R, et al. Competing photorefractive gratings in organic thin-film devices [J]. Journal of the Optical Society of America B-Optical Physics,1998, (15):2114-2124
    [46]刘思敏,郭儒,许京军.光折变非线性光学及其应用[M].北京:科学出版社,2004
    [47]Onsager L. Initial recombination of ions [J]. Physical Review,1938, (54):554-557
    [48]Noolandi J, Hong K M. Theory of photogeneration and fluorescence quenching [J]. Journal of Chemical Physics,1979, (70):3230-3236
    [49]Marcus R A, Chemical and electrochemical electron-transfer theory [J]. Annual Review of Physical Chemistry,1964, (15):155-196
    [50]Kavarnos G J. Fundamentals of Photoinduced Electron Transfer [J]. New York:VCH Publishers,1993
    [51]Kraabel B, McBranch D, Sariciftci N S, et al. Ultrafast spectroscopic studies of photoinduced electron transfer from semiconducting polymers to C60[J]. Physical Review B,1994, (50):18543-18552
    [52]Pope M, Swenberg C E. Electronic Processes in Organic Crystals and Polymers [J]. New York:Oxford University Press,1999
    [53]WangQ, Wang L M, YuJJ, et al. Fully functionalized photorefractive polymers incorporating transition metal phthalocyanine and porphyrin complexes as photosensitizers[J]. Advanced Materials,2000, (12):974-978
    [54]Winiarz J G, Zhang L M, Lal M,et al. Photogeneration, charge transport, and photoconductivity of a novel PVK/CdS-nanocrystal polymer composite [J]. Chemical Physics,1999, (245):417-428
    [55]Hendrichx K, Zhang Y D, Ferrio K B, et al. Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated styrene chromophores [J]. Journal of Materials Chemistry,1999, (9):2251-2258
    [56]Ostroverkhova O, Gubler U, Wright D, et al. High-performance photorefractive organic glasses:understanding mechanisms and limitations [J]. SPIE Proceedings, SPIE Annual Meeting, Seattle, WA,2002, (4802):21-32
    [57]Sohn J, Hwang J, Park S Y, et al. Monolithic photorefractive molecule with excellent transparency in the visible region [J]. Applied Physics Letters,2000, (77):1422-1424
    [58]Ostroverkhova O, Moerner W E, He M, et al. High-performance photorefractive organic glass with near-infrared sensitivity [J]. Applied Physics Letters,2003, (82):3602-3604
    [59]Kippelen B, Marder S R, Hendrickx E, et al. Infrared photorefractive polymers and their applications for imaging [J]. Science,1998, (279):54-57
    [60]Hendrickx E, Herlocker J, Maldonado J L, et al. Thermally stable high-gain photorefractive polymer composites based on a trifunctional chromophore [J]. Applied Physics Letters,1998, (72):1679-1681
    [61]Wurthner F, Yao S, Schilling J, et al. ATOP dyes. Optimization of a multifunctional merocyanine chromophore for high refractive index modulation in photorefractive materials [J]. Journal of the American Chemical Society,2001, (123):2810-2824
    [62]Basslar H. Charge transport in disordered organic photoconductors:A Monte Carlo simulation study [J]. Physics Status Solidi,1993, (175):15-56
    [63]Blom P W, Vissenberg M. Change transport in poly(p-phenylenevinylene)light-emitting diodsLJ]. Materials Science and Engineering R,2000, (27):53-94
    [64]Visser S A, Gruenbaum W T, Magin E H, et al. Hole transport in arylamine doped polymers[J]. Chemical Physics,1999, (240):197-203
    [65]Young R H, Rule N G. Electronic hopping velocities that decrease as the electric field strength increases [J]. Physical Review Letters,1994, (72):388-391
    [66]van der Auweraer M, de Schryver F C, Borsenberger P. The relevance of polaronic effects to the hopping motion of charges [J]. Chemical Physics,1994, (186):409-434
    [67]Malliaras G G, Krasnikov V V, Bolink H J, et al. Control of charge trapping in a photorefractive polymer [J]. Applied Physics Letters,1995, (66):1038-1040
    [68]Malliaras G G, Angerman H, Krasnilov V V, et al. The influence of disorder on the space charge field formation in photorefractive polymers [J]. Journal of Physics D,1996, (29):2045-2048
    [69]Choudhury K R, Winiarz J, Samoc M, et al. Charge carrier mobility in an organic-inorganic hybrid nanocomposite [J]. Applied Physics Letters,2003, (82): 406-408
    [70]Hofmann U, Schreiber A, Haarer D, et al. Investigations on the grating dynamics in a fast photorefractive guest-host polymer [J]. Chemical Physics Letters,1999, (311): 41-46
    [71]Bushby R J, Lozman O R. Photoconducting liquid crystals [J]. Current Opinion in Solid State and Materials Science,2002, (6):569-578
    [72]Wiederrecht G P, Niemczyk M P, Svec W A, et al. Photorefractivity in nematic liquid crystals doped with a conjugated polymer:Mechanisms for enhanced charge transport [J]. Chemistry of Materials,1999, (11):1409-1412
    [73]Kokil A, Shiyanocxkayal, Singer K D, et al. High charge carrier mobility in conjgated organometallic polymer networks [J]. Journal of the American Chemical Society.2002, (124):9978-9979
    [74]Meredith G R, Vandusen J G, Williams D J, Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers [J]. Macromolecules,1982,15:1385-1389
    [75]朱道本,王佛松.有机固体[M].北京:科学出版社,1999
    [76]Bolink H J, Krasnikov V V, Malliaras G G, et al. Effect of plasticization on the performance of a photorefractive polymer [J]. Journal of Physical Chemistry,1996, (100):16356-16360
    [77]van Steenwinckel D, Engles C, Gubbelmans E, et al. Fully functionalized photorefractive polymethacrylates with net gain at 780nm [J]. Macromolecules,2000, (33):4074-4079
    [78]You W, Hou Z, Yu L P. Dramatic enhancement of photorefractive properties by controlling the electron trap density in a monolithic material [J]. Advanced Materials, 2004, (16):356-36
    [79]Ostroverkhova O, Moerner W E, He M, et al. High-performance photorefractive organic glass with near-infrared sensitivity [J]. Applied Physics Letters,2003, (82):3602-3604
    [80]You W, Hou Z J, Yu L P. Pronounced photorefractive effect at wavelength over 1000nm in monolithic organic materials [J]. Applied Physics Letters,2005, (86):1511906/1-3
    [81]Choudhury K R, Sahoo Y, Jiang S, et al. Efficient photosensitization and high optical gain in a novel quantum-dot-sensitized hybrid photorefractive nanocomposite at a telecommunications wavelength [J]. Advanced Functional Materials,2005, (15): 751-756
    [82]Choudhury K R, Sahoo Y, Prasad P N. Hybrid quantum-dot-polymer nanocomposites for infrared photorefractivity at an optical commmunicaiton wavelength [J]. Advanced Materials,2005, (17):2877-2881
    [83]Kippelen B,Marder S R, Hendrickx E, et al. Infrared photorefractive polymers and their applications for imaging [J]. Science,1998, (279):54-57
    [84]WurthnerF, Yao S, Schilling J, et al. ATOP dyes. Optimization of a multifunctional merocyanine chromophore for high refractibe index modulation in photorefractive materials[J]. Journal of the American Chemical Society,2001, (123):2810-2824
    [85]van Steenwinckel D, Hendrickx E, Persoons A, et al. Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole)based polymer composites [J]. Journal of Chemical Physics, 2000, (112):11030-11037
    [86]Zilker S J, Hofrnann U. Organic photorefractive glass with infrared sensitivity and fast response [J]. Applied Optics,2000, (39):2287-2290
    [87]Mecher E, Gallego-Gomez F, Tillmann H, et al. Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination[J]. Nature.2002, (418): 959-964
    [88]Eralp M. Thomas J, Tay S, et al. High-performance photorefractive polymer operating at975nm[J]. Applied Physics Letters,2004, (85):1095-1097
    [89]Jung K M, ChoMJ, Jin J, et al. Photorefractive star-shaped molecular glassy materials containing tricyanopyrroline-based chromophore [J]. Applied Physics Letters,2007, (90):181123/1-3
    [90]Stephan J Z, Materials design and physics of organic photorefractive systems [J]. ChemPhysChem,2000,1,72-87
    [91]Francisco G-G, Francisco D M, Klaus M, Optical gain by a simple photoisomerization process [J]. Nature Materials,2008,7,490-497
    [92]Jose A Q, Jose M V, Pedro G B, et al., Enhanced photorefractivity of poly(N-vinylcarbazole)-based composites through electric-field treatments and ionic liquid doping [J]. Advanced Functional Materials,2009,19,428-437
    [93]Day D, Gu M, Smallridge A, Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer [J]. Advanced Materials,2001,13,1005-1007
    [94]Tay S, Blanche P-A, Voorakaranam R, et al., An updatable holographic three-dimensional display [J]. Nature,2008,451,694-698
    [95]Talarico M, Golemme A, Optical control of orientational bistability in photorefractive liquid crystals [J], Nature Materials,2006,5,185-188
    [96]戎霭伦,记录媒体技术[J].2005,3,18-22
    [97]Tay S, Thomas J, Eralp M, et al., Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm[J]. Applied Physics Letters,2004,85, 4561-4563
    [98]Kippelen B, Marder S R, Hendrickx E, et al., Infrared photorefractive polymers and then-applications for imaging [J]. Science,1998,279,54-57
    [99]Ostroverkhova O, Moerner W E, He M, Twieg R J, High-performance photorefractive organic glass with near-infrared sensitivity [J]. Applied Physics Letters,2003,82, 3602-3604
    [100]Erwin M, Francisco G-G, Hartwig T, et al., Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination[J]. Nature,2002,418, 959-964
    [101]Ostroverkhova O, Moerner W E, He M, Twieg R J, High-performance photorefractive organic glass with near-infrared sensitivity [J]. Applied Physics Letters,2003,82, 3602-3604
    [102]You W, Hou Z J, Yu L P, Highly sensitive fiber Bragg grating refractive index sensors [J]. Applied Physics Letters,2005,86,151906/1-3
    [103]You W, Cao S K, Hou Z J, Yu L P, Fully Functionalized Photorefractive Polymer with Infrared Sensitivity Based on Novel Chromophories [J]. Macromolecules,2005,36, 7014-7019
    [104]Choudhury K R, Sahoo Y, Ohulchanskyy T Y, Prasad P N, Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites [J]. Applied Physics Letters,2005,87,073110
    [105]Soci C, Hwang IW, Moses D, et al., Photoconductivity of a low-bandgap conjugated polymer[J]. Advanced Functional Materials.2007,17,632-636
    [106]Guo W F, Sun X B, Sun J, et al., Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths [J]. Chemical Physical Letters,2007,435 (1-3),65-68
    [107]Sebastian K, Francisco G-G, Michael S, et al., Influence of the sensitizer reduction potential on the sensitivity of photorefractive polymer composites [J]. Journal of Materials Chemistry,2010,20,6170-6175
    [108]Kou H Q, Shi W F, Synthesis and characterization of bi-functional photorefractive hyperbranched polyisophthalesters [J]. Polymers for Advanced Technologies,2004, 15 (8),495-498
    [109]Voit B, Hyperbranched polymers-All problems solved after 15 years of research [J]. Journal of Polymer Science, Part A:Polymer Chemistry.2005,43,2679-2699
    [110]程能林等.溶剂手册[M].化学工业出版社,2002
    [111]DaSilveira Neto B A, Lopes A S, Ebeling G, et al. Photophysical and electrochemical properties of π-extended molecular 2,1,3-benzothiadiazoles [J]. Tetrahedron,2005, 61(46):10975-10982
    [112]Tsubata Y, Suzuki T, Miyashi T, Yamashita Y. Single-component organic conductors based on neutral radicals containing the pyrazino-TCNQ skeleton [J]. J. Org. Chem. 1992,57(25):6749-6755
    [113]Ergang W, Lintao H, Zhongqiang W, et al., Small Band Gap Polymers Synthesized via a Modified Nitration of 4,7-Dibromo-2,1,3-benzothiadiazole[J]. Org. Lett. Vol.12, No.20,2010
    [114]范康年等.谱学导论[M].北京:高等教育出版社,2001.7
    [115]Tanimoto A, Yamamoto T. Nickel-2,2'-Bipyridyl and Palladium-Triphenyl-phosphine Complex Promoted Synthesis of New Conjugated Poly(2-hexyl-benzotriazole)s and Characterization of the Polymers [J]. Advanced Synthesis & Catalysis,2004, 346(13-15):1818-1823
    [116]Sung S P, Yong S W, Young C C, et al., Molecular design of organic dyes with double electron acceptor for dye-sensitized solar cell [J]. Energy & Fuels,2009,23,3732-3736
    [117]Sukrawee P, Narid P, Siriporn J, et al., Synthesis, characterization, and their benzo[b]thiophene derivatives [J]. Tetrahedron Letters,53 (2012):4568-4572
    [118]Ashok K M, Josemon J, Klaus M A, et al., Synthesis of aminocarbazoleeanthraquinone fused dyes and polymers [J]. Dyes and Pigments,75 (2007):1-10
    [119]Wangdong Z, Yiming C, Yu B, et al., Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks [J]. Chem. Mater.2010,22:1915-1925
    [120]Panayiotis K, John A. Mikroyannidis, et al., Bipolar Poly(p-phenylene vinylene)s Bearing Electron-Donating Triphenylamine or Carbazole and Electron-Accepting Quinoxaline Moieties [J]. Journal of Polymer Science Part A:Polymer Chemistry, 2008, Volume 46, Issue 7,2367-2378
    [121]Liu J Y, Zhou D F, Wang F F, et al., Joint photophysical and electrical analyses on the influence of conjugation order in D-π-A photosensitizers of mesoscopic titania solar cells [J]. J. Phys. Chem. C,2011,115 (29),14425-14430
    [122]Liu J Y, Zhou D F, Wang F F, et al., Joint photophysical and electrical analyses on the influence of conjugation order in D-π-A photosensitizers of mesoscopic titania solar cells [J]. J. Phys. Chem. C,2011,115 (29),14425-14430
    [123]Karl M, Elizabeth R. Burkhardt, Aryl boronates from bis(pinacolato)diboron and pinacolborane [J]. chimica oggi·Chemistry Today·March/April 2005
    [124]LiuYL, XinYR,LiJH, et al., Synthesis and characterization of photoelectronic polymers containing triphenylamine moiety [J]. Reactive & Functional Polymers,67 (2007):253-263
    [125]徐清.含三苯胺基团有机空穴传输材料的合成与性能研究[D].浙江:浙江大学,2004
    [126]Oh J W, Joo W J, Moon I K, et al., Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite[J]. J Phys Chem B.2009 Feb 12; 113(6):1592-7
    [127]Cao X B, Wen Y G, Guo Y L, et al., Undoped, red organic light-emitting diodes based on a N, N, N', N'-tetraphenylbenzidine (TPD) derivative as red emitter with a triphenylamine derivative as hole-transporting layer [J]. Dyes and Pigments,84 (2010) 203-207
    [128]Wang G, Pu K Y, Zhang X H, et al., Star-shaped glycosylated conjugated oligomer for two-photon fluorescence imaging of live cells [J]. Chem. Mater.2011,23,4428-4434

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700