用户名: 密码: 验证码:
NSC606985诱导U937细胞凋亡的差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性髓细胞性白血病(acute myeloid leukemia,AML)是一种异质性恶性血液肿瘤。过去二十年间,人们对于AML在生物学、分子和细胞遗传学等方面的认识取得了巨大进展。与此同时,对于AML病人的治疗也取得了长足进步。然而,大部分AML病人依然不可治愈。因此,开发新的药物对于AML病人来说非常重要。作为一种新型的抗癌药物,喜树碱具有广阔的发展前景。近两年,宋满根博士等在国际上首先研究了一种称为NSC606985的新型喜树碱衍生物对白血病细胞的体内外效应。已有的实验结果显示,在体外,NSC606985能够以极低浓度(纳摩尔浓度水平),通过水解激活PKCδ诱导急性早幼粒细胞性白血病NB4细胞和急性单核细胞性白血病U937细胞凋亡。
     为了深入研究NSC606985诱导AML细胞凋亡的分子机制,本文用差异蛋白质组学技术分析50nM NSC606985处理U937细胞36小时后差异表达的蛋白质,结果确定有28种蛋白的表达发生改变。这些差异表达蛋白质的功能涉及细胞骨架、能量代谢、氧化应激、信号转导、RNA代谢、DNA代谢、蛋白质代谢、分化、分子伴侣等。
     骨架蛋白在这些差异表达的蛋白中占相当的比例。本文用western blot和二维凝胶电泳+western blot的方法验证骨架蛋白在二维凝胶电泳胶图上的变化。这部分结果显示:β-tubulin、β-actin和transgelin-2的总表达量没有改变;对照组中,这些骨架蛋白有多个等电点,但经NSC606985处理后(实验组),碱性端的等电点都往酸性端偏移,实验组中这些骨架蛋白只有一个等电点(相当于对照组中最偏酸的等电点);鉴于磷酸化修饰是最常见的翻译后修饰,且能使等电点左移,推测这些骨架蛋白在NSC606985诱导U937细胞凋亡过程中发生磷酸化修饰;用碱性磷酸酶处理实验组蛋白,后者有绝大部分往碱性端偏移,符合磷酸化蛋白的特点,证实经NSC606985处理后,这三种蛋白发生磷酸化修饰;鉴于前期工作表明PKCδ水解激活在NSC606985诱导U937细胞凋亡过程中的重要地位和这三种蛋白都具有PKCδ的识别模序(经scansite分析软件预测),观察PKCδ特异抑制剂rottlerin预处理是否能抑制NSC606985诱导的骨架蛋白磷酸化修饰,结果发现rottlerin能抑制β-tubulin和β-actin磷酸化,不能抑制transgelin-2磷酸化;提示β-tubulin和β-actin的磷酸化在PKCδ剪切活化的下游,而transgelin-2磷酸化不是PKCδ剪切活化的下游事件。
     抗氧化蛋白peroxiredoxin 1和thioredoxin都明显上调,提示活性氧生成增加。为明确活性氧在NSC606985诱导U937细胞凋亡过程中的变化、机制和意义,本文用DCF法检测活性氧的含量;结果证实NSC606985处理24h,U937细胞活性氧增多;并且这种变化处于PKCδ剪切活化的下游,用rottlerin可抑制这种改变;NAC虽然能完全清除NSC606985作用下的U937细胞中增多的活性氧,却对U937细胞的凋亡无影响。
     本研究结果显示了蛋白质组学方法在高通量地筛选凋亡相关蛋白质方面的巨大潜力,以及在探测蛋白翻译后修饰方面的独特优势。上述结果可为进一步探讨NSC606985诱导AML细胞凋亡的机制提供新的线索。
Acute myeloid leukemia(AML)is a heterogenous group of hematopoietic malignancies.Significant advances in understanding the biologic,molecular,and cytogenetic aspects of this malignancy have been achieved in the past 20 years.Meanwhile,substantial progress is also made in the treatment of patients with AML.However,most patients remain incurable.So development of new drugs for treatment of AML is very important.As a promising new class of anticancer drugs, camptothecins have advanced to the forefront of several areas of therapetitic and developmental chemotherapy.The last two years,our task group has studied the potential anti-leukemic effectiveness of NSC606985,a new class of camptothecin analogs,in vitro and in vivo.
     In order to explore further the molecular mechanisms of NSC606985 inducing AML cell apoptosis,the technology of differential proteomics has been used to analyze the differential proteins expression in U937 cells treated with(36 hours)or without 50nM NSC606985.As a result,we identified 28 proteins that were significantly deregulated by NSC606985. These proteins were mainly involved in cytoskeleton,RNA metabolism, DNA metabolism,protein metabolism,carbohydrate metabolism,energy metabolism,signal transduction,stress response,oxidation and reduction, differentiation and others.
     Cytoskeleton proteins occupied a great proportion of these differential proteins.We used western blot and two-dimensional gel electrophoresis plus western blot to validate the changes of cytoskeleton proteins in 2D-GE.The results revealed that the protein expression ofβ-tubulin,β-actin and transgelin-2 did not be changed.In tthe control group,these cytoskeleton proteins had several isoelectric points.After treated by NSC606985(the experimental group),the isoelectric points in the basic end transferred to the acid end and each of these cytoskeleton proteins had only one isoelectric point in the experimental group(it is equal to the acidest point in the control group).Because the phosphorylation is the commonest post-translational modification and it can induce isoelectric points to move to left,we presumed that these cytoskeleton proteins was been phosphorylated.Treated the total proteins of the experimental group by alkaline phosphotase,the great mass ofβ-tubulin,β-actin and transgelin-2 transferred to the basic end.It was according with the characteristic of phosphorylated proteins and it was proved that these three cytoskeleton proteins were been phosphorylated in the apoptotic process which was induced by NSC606985.Because the preliminary work proved that active cleaved PKCδplayed a key role in the apoptotic process and all of these three cytoskeleton proteins had recognizing motif (forcasting by scansite software),we observed that whether rottlerin(a specific inhibitor of PKC)pretreatment could inhibit the phosphorylationof these three cytoskeleton proteins.The results showed that rottlerin could totally inhibited the phosphorylation ofβ-tubulin andβ-actin,but it was unable to inhibited the phosphorylation of transgelin-2.It was suggested that the phosphorylation ofβ-tubulin andβ-actin were downstream to PKCδactivation,the phosphorylation of transgelin-2 was not one of the events which were,downstream to PKCδactivation.
     Peroxiredoxin 1 and thioredoxin,two antioxidant proteins,were increased significantly.It was suggested that ROS was produced.To confirm the change,mechanism and significance of ROS in NSC606985 inducing apoptotsis,we mensurated the content of ROS in the cells with DCF.The results showed that ROS of U937 cells was increased after NSC606985 treating 24 hours.This event was downstream to PKCδactivation because it was totally inhibited by rottlerin.Though NAC could eliminate ROS of U937 cells,it had no influence on NSC606985 inducing apoptotsis.
     In summary,this study showed that the proteomic technique was a powerful method to identify apoptotic related proteins,and it has unique superiority to explore post-translation modifications of proteins.The results of the present study are worthing further investigation to understand the mechanisms ofNSC606985 inducing apoptotsis.
引文
[1] Wasinger V C, Cordwell S J, Cerpa-poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium.[J]. Electrophoresis. 1995, 16(7): 1090-1094.
    
    [2] Abbott A. And now for the proteome.[J]. Nature. 2001, 409(6822): 747.
    
    [3] Werner T. Promoters can contribute to the elucidation of protein function.[J]. Trends Biotechnol. 2003, 21(1): 9-13.
    [4] Righetti P G, Castagna A, Antonucci F, et al. Proteome analysis in the clinical chemistry laboratory: myth or reality?[J]. Clin Chim Acta. 2005, 357(2): 123-139.
    [5] Wan J, Wang J, Cheng H, et al. Proteomic analysis of apoptosis initiation induced by all-trans retinoic acid in human acute promyelocytic leukemia cells.[J]. Electrophoresis. 2001, 22(14): 3026-3037.
    [6] Wang D, Jensen R, Gendeh G, et al. Proteome and transcriptome analysis of retinoic acid-induced differentiation of human acute promyelocytic leukemia cells, NB4.[J]. J Proteome Res. 2004, 3(3): 627-635.
    [7] Bomgaars L, Berg S L, Blaney S M The development of camptothecin analogs in childhood cancers.[J]. Oncologist. 2001, 6(6): 506-516.
    [8] Pizzolato J F, Saltz L B. The camptothecins.[J]. Lancet. 2003, 361(9376): 2235-2242.
    [9] Rowinsky E K, Kaufmann S H, Baker S D, et al. A phase I and pharmacological study of topotecan infused over 30 minutes for five days in patients with refractory acute leukemia.[J]. Clin Cancer Res. 1996, 2(12): 1921-1930.
    [10] Weihrauch M R, Staib P, Seiberlich B, et al. Phase I/II clinical study of topotecan and cytarabine in patients with myelodysplastic syndrome, chronic myelomonocytic leukemia and acute myeloid leukemia.[J]. Leuk Lymphoma. 2004, 45(4): 699-704.
    
    [11] Bolanos-meade J, Guo C, Gojo I, et al. A phase II study of timed sequential therapy of acute myelogenous leukemia (AML) for patients over the age of 60: two cycle timed sequential therapy with topotecan, ara-C and mitoxantrone in adults with poor-risk AML.[J]. Leuk Res. 2004, 28(6): 571-577.
    
    [12] Giles F J, Cortes J E, Kantarjian H M, et al. A fludarabine, topotecan, and cytarabine regimen is active in patients with refractory acute myelogenous leukemia.[J]. Leuk Res. 2004,28(4): 353-357.
    [13] Nomoto T, Nishio K, Ishida T, et al. Characterization of a human small-cell lung cancer cell line resistant to a new water-soluble camptothecin derivative, DX-8951f.[J].Jpn J Cancer Res. 1998,89(11): 1179-1186.
    [14] Tomkinson B, Bendele R, Giles F J, et al. OSI-211, a novel liposomal topoisomerase I inhibitor, is active in SCID mouse models of human AML and ALL.[J]. Leuk Res. 2003, 27(11): 1039-1050.
    [15] Song M G, Gao S M, Du K M, et al. Nanomolar concentration of NSC606985, a camptothecin analog, induces leukemic-cell apoptosis through protein kinase Cdelta-dependent mechanisms.[J]. Blood. 2005, 105(9): 3714-3721.
    [16] Boatright K M, Salvesen G S. Mechanisms of caspase activation.[J]. Curr Opin Cell Biol. 2003, 15(6): 725-731.
    [17] Henry-mowatt J, Dive C, Martinou J C, et al. Role of mitochondrial membrane permeabilization in apoptosis and cancer.[J]. Oncogene. 2004, 23(16): 2850-2860.
    [18] Decker P, Isenberg D, Muller S. Inhibition of caspase-3-mediated poly(ADP-ribose) polymerase (PARP) apoptotic cleavage by human PARP autoantibodies and effect on cells undergoing apoptosis.[J]. J Biol Chem. 2000, 275(12): 9043-9046.
    [19] Basu A. Involvement of protein kinase C-delta in DNA damage-induced apoptosis. J Cell Mol Med. 2003;7(4):341-350.
    [20] Jackson D N, Foster D A. The enigmatic protein kinase Cdelta: complex roles in cell proliferation and survival.[J]. FASEB J. 2004, 18(6): 627-636.
    [21] Trubiani O, Borgatti P, Di P R. Protein kinase C modulation in apoptotic rat thymocytes: an ultrastructural analysis.[J]. Histochemistry. 1994, 102(4): 311-316.
    [22] Reyland M E, Anderson S M, Matassa A A, et al. Protein kinase C delta is essential for etoposide-induced apoptosis in salivary gland acinar cells.[J]. J Biol Chem. 1999,274(27): 19115-19123.
    [23] Emoto Y, Kisaki H, Manome Y, et al. Activation of protein kinase Cdelta in human myeloid leukemia cells treated with 1-beta-D-arabinofuranosyl-cytosine.[J]. Blood. 1996, 87(5): 1990-1996.
    [24] Matassa A A, Carpenter L, Biden T J, et al. PKCdelta is required for mitochondrial-dependent apoptosis in salivary epithelial cells.[J]. J Biol Chem. 2001, 276(32): 29719-29728.
    [25] Meinhardt G, Roth J, Totok G, et al. Signaling defect in the activation of caspase-3 and PKCdelta in human TUR leukemia cells is associated with resistance to apoptosis.[J]. Exp Cell Res. 1999, 247(2): 534-542.
    [26] Blass M, Kronfeld I, Kazimirsky G, et al. Tyrosine phosphorylation of protein kinase Cdelta is essential for its apoptotic effect in response to etoposide.[J]. Mol Cell Biol. 2002,22(1): 182-195.
    [27] Ringshausen I, Schneller F, Bogner C, et al. Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cdelta.[J]. Blood. 2002, 100(10): 3741-3748.
    [28] Klose J, Nock C, Herrmann M, et al. Genetic analysis of the mouse brain proteome.[J]. Nat Genet. 2002, 30(4): 385-393.
    [29] Janmey P A. The cytoskeleton and cell signaling: component localization and mechanical coupling.[J]. Physiol Rev. 1998, 78(3): 763-781.
    [30] Oh J E, Karlmark R K, Shin J H, et al. Cytoskeleton changes following differentiation of N1E-115 neuroblastoma cell line.[J]. Amino Acids. 2006, 31(3): 289-298.
    [31] Frances R, Tumang J R, Kaku H, et al. B-1 cells express transgelin 2: unexpected lymphocyte expression of a smooth muscle protein identified by proteomic analysis of peritoneal B-1 cells.[J]. Mol Immunol. 2006, 43(13):2124-2129.
    [32] Levee M G, Dabrowska M I, Lelli J L, et al. Actin polymerization and depolymerization during apoptosis in HL-60 cells.[J]. Am J Physiol. 1996, 271(6 Pt 1): 1981-1992.
    [33] Rhee S G, Chae H Z, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling.[J]. Free Radic Biol Med. 2005, 38(12): 1543-1552.
    [34] Kim Y C, Masutani H, Yamaguchi Y, et al. Hemin-induced activation of the thioredoxin gene by Nrf2. A differential regulation of the antioxidant responsive element by a switch of its binding factors.[J]. J Biol Chem. 2001, 276(21): 18399-18406.
    [35] Carpenter B, Mackay C, Alnabulsi A, et al. The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression.[J]. Biochim Biophys Acta. 2006, 1765(2): 85-100.
    [36] Brockstedt E, Rickers A, Kostka S, et al. Identification of apoptosis-associated proteins in a human Burkitt lymphoma cell line. Cleavage of heterogeneous nuclear ribonucleoprotein Al by caspase 3.[J]. J Biol Chem. 1998, 273(43): 28057-28064.
    [37] Wiedmann B, Prehn S. The nascent polypeptide-associated complex (NAC) of yeast functions in the targeting process of ribosomes to the ER membrane.[J]. FEBS Lett. 1999, 458(1): 51-54.
    [38] Spreter T, Pech M, Beatrix B. The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain.[J]. J Biol Chem. 2005, 280(16): 15849-15854.
    [39] Sonobe S, Takahashi S, Hatano S, et al. Phosphorylation of Amoeba G-actin and its effect on actin polymerization.[J]. J Biol Chem. 1986,261(31): 14837-14843.
    [40] Szalay J, Bruno P, Bhati R, et al. Associations of PKC isoforms with the cytoskeleton of B16F10 melanoma cells.[J]. J Histochem Cytochem. 2001, 49(1): 49-66.
    [41] Liedtke C, Hubbard M, Wang X. Stability of actin cytoskeleton and PKC-delta binding to actin regulate NKCC1 function in airway epithelial cells. [J]. Am J Physiol Cell Physiol. 2003, 284: C487-496.
    [42] Karsenti E, Nedelec F, Surrey T. Modelling microtubule patterns.[J]. Nat Cell Biol. 2006, 8(11): 1204-1211.
    [43] Wear M A, Schafer D A, Cooper J A. Actin dynamics: assembly and disassembly of actin networks.[J]. Curr Biol. 2000, 10(24): 891-895.
    [44] Fourest-lieuvin A, Peris L, Gache V, et al. Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdkl.[J]. Mol Biol Cell. 2006, 17(3): 1041-1050.
    [45] Kersken H, Vilmart-seuwen J, Momayezi M, et al. Filamentous actin in Paramecium cells: mapping by phalloidin affinity labeling in vivo and in vitro.[J]. J Histochem Cytochem. 1986, 34(4): 443-454.
    [46] Chang JY, Hsieh HP, Pan WY, et al. Dual inhibition of topoisomerase I and tubulin polymerization by BPR0Y007, a novel cytotoxic agent. Biochem Pharmacol. 2003, 65(12):2009-19.
    [47] Kobayashi N, Delano F A, Schmid-schonbein G W. Oxidative stress promotes endothelial cell apoptosis and loss of microvessels in the spontaneously hypertensive rats.[J]. Arterioscler Thromb Vasc Biol. 2005, 25(10): 2114-2121.
    [48] Ahmad K A, Iskandar K B, Hirpara J L. et al. Hydrogen peroxide-mediated cytosolic acidification is a signal for mitochondrial translocation of Bax during drug-induced apoptosis of tumor cells. [J]. Cancer Res. 2004, 64(21): 7867-7878.
    [49] Forrest V J, Kang Y H, Mcclain D E, et al. Oxidative stress-induced apoptosis prevented by Trolox.[J]. Free Radic Biol Med. 1994, 16(6): 675-684.
    [50] Alcouffe J, Caspar-bauguil S, Garcia V, et al. Oxidized low density lipoproteins induce apoptosis in PHA-activated peripheral blood mononuclear cells and in the Jurkat T-cell line.[J]. J Lipid Res. 1999, 40(7): 1200-1210.
    [51] Jacobson M D, Raff M C. Programmed cell death and Bcl-2 protection in very low oxygen.[J]. Nature. 1995, 374(6525): 814-816.
    [52] Ibuki Y, Goto R. The antiapoptotic effect of low-dose UVB irradiation in NIH3T3 cells involves caspase inhibitions.[J]. Photochem Photobiol. 2003, 77(3): 276-283.
    [53] Sarre A, Lange N, Kucera P, et al. mitoKATP channel activation in the postanoxic developing heart protects E-C coupling via NO-, ROS-, and PKC-dependent pathways.[J]. Am J Physiol Heart Circ Physiol. 2005, 288(4): 1611-1619.
    [54] I. Suzuma, K. Suzuma H T A Y H. Cyclic Stretch induced Reactive Oxygen Species (ROS) Generation in Porcine Retinal Pericytes (PRPC) through PKC-Activation[J]. Invest Ophthalmol Vis Sci. 2004, 45: 3202.
    [55] Droge W. Free radicals in the physiological control of cell function.[J]. Physiol Rev. 2002, 82(1): 47-95.
    [56] Robinson J P, Bruner L H, Bassoe C F, et al. Measurement of intracellular fluorescence of human monocytes relative to oxidative metabolism.[J]. J Leukoc Biol. 1988, 43(4): 304-310.
    [57] Zafarullah M, Li W Q, Sylvester J, et al. Molecular mechanisms of N-acetylcysteine actions.[J]. Cell Mol Life Sci. 2003, 60(1): 6-20.
    [58] Tanel A, Averill-bates D A. Inhibition of acrolein-induced apoptosis by the antioxidant N-acetylcysteine.[J]. J Pharmacol Exp Then 2007, 321(1): 73-83.
    [59] Santra A, Chowdhury A, Ghatak S, et al. Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine.[J]. Toxicol Appl Pharmacol. 2007.
    [60] Fadok V A, Voelker D R, Campbell P A, et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages.[J]. J Immunol. 1992, 148(7): 2207-2216.
    [61] Andree H A, Stuart M C, Hermens W T, et al. Clustering of lipid-bound annexin V may explain its anticoagulant effect.[J]. J Biol Chem. 1992, 267(25): 17907-17912.
    [62] Koopman G, Reutelingsperger C P, Kuijten G A, et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis.[J]. Blood. 1994, 84(5): 1415-1420.
    [63] Das K C, Pahl P M, Guo X L, et al. Induction of peroxiredoxin gene expression by oxygen in lungs of newborn primates.[J]. Am J Respir Cell Mol Biol. 2001, 25(2): 226-232.
    [64] Kumar S, Holmgren A. Induction of thioredoxin, thioredoxin reductase and glutaredoxin activity in mouse skin by TPA, a calcium ionophore and other tumor promoters.[J]. Carcinogenesis. 1999,20(9): 1761-1767.
    [65] Talior I, Tennenbaum T, Kuroki T, et al. PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase.[J]. Am J Physiol Endocrinol Metab. 2005, 288(2): 405-411.
    [66] Inoguchi T, Sonta T, Tsubouchi H, et al. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase.[J]. J Am Soc Nephrol. 2003, 14(8 Suppl 3): 227-232.
    [67] Cai J, Jones D P. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss.[J]. J Biol Chem. 1998, 273(19): 11401-11404.
    [68] Packham G, Ashmun R A, Cleveland J L. Cytokines suppress apoptosis independent of increases in reactive oxygen levels.[J]. J Immunol. 1996, 156(8): 2792-2800.
    [69] Fang J, Nakamura H, Iyer AK. Tumor-targeted induction of oxystress for cancer therapy. [J].J Drug Target. 2007, 15(7-8): 475-86.
    [70] Deshpande S S, Angkeow P, Huang J, et al. Racl inhibits TNF-alpha-induced endothelial cell apoptosis: dual regulation by reactive oxygen species.[J]. FASEB J. 2000, 14(12): 1705-1714.
    [1]V.C.Wasinger,S.J.Cordwell,A.Cerpa-Poljak,J.X.Yan,A.A.Gooley,M.R.Wilkins,M.W.Duncan,R.Harris,K.L.Williams,I.Humphery-Smith,Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium,Electrophoresis 16(1995)1090-1094.
    [2]N.G.Anderson,N.L.Anderson,Twenty years of two-dimensional electrophoresis:past,present and future,Electrophoresis 17(1996)443-453.
    [3]贺福初,孙建中,叶鑫生,钱小红,蛋白质科学,军事医科学出版社,北京,2002.
    [4]B.Gjertsen,A.Oyan,B.Marzolf,R.Hovland,G.Gausdal,S.Doskeland,K.Dimitrov,A.Golden,K.Kalland,L.Hood,O.Bruserud,Analysis of acute myelogenous leukemia:preparation of samples for genomic and proteomic analyses,J Hematother Stem Cell Res 11(2002)469-481.
    [5] L. Campos, D. Guyotat, A. Larese, E. Archimbaud. L. Mazet, A. Ehrsam, D. Fiere, Expression of immunological markers on leukemic cells before and after cryopreservation and thawing, Cryobiology 25 (1988) 18-22.
    [6] F. Lanza, S. Moretti, B. Castagnari, F. Montanelli, A. Latorraca, L. Ferrari, A. Bardi, M. Dominici, D. Campioni, M. Dabusti, N. Piva, G. Lodi, R. Reverberi, G. Castoldi, Assessment of distribution of CD34 epitope classes in fresh and cryopreserved peripheral blood progenitor cells and acute myeloid leukemic blasts, Haematologica 84 (1999) 969-977.
    [7] H. Zaheer, F. Gibson, M. Bagnara, E. Gordon-Smith, T. Rutherford, Differential sensitivity to cryopreservation of clonogenic progenitor cells and stromal precursors from leukemic and normal bone marrow, Stem Cells 12 (1994) 180-186.
    [8] M. Zellner, W. Winkler, H. Hayden, M. Diestinger, M. Eliasen, B. Gesslbauer, I. Miller, M. Chang, A. Kungl, E. Roth, R. Oehler, Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets, Electrophoresis 26 (2005) 2481-2489.
    [9] N. Ahmed, K. Oliva, G. Barker, P. Hoffmann, S. Reeve, I. Smith, M. Quinn, G. Rice, Proteomic tracking of serum protein isoforms as screening biomarkers of ovarian cancer., Proteomics 5 (2005) 4625-4636.
    [10] Y.Y. Wang, P. Cheng, D.W. Chan, A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis, Proteomics 3 (2003) 243-248.
    [11] N. Ahmed, G. Barker, K.T. Oliva, P. Hoffmann, C. Riley, S. Reeve, A.I. Smith, B.E. Kemp, M.A. Quinn, G.E. Rice, Proteomic-based identification of haptoglobin-1 precursor as a novel circulating biomarker of ovarian cancer, Br J Cancer 91 (2004)129-140.
    [12] B. Lollo, S. Harvey, J. Liao, A. Stevens, R. Wagenknecht, R. Sayen, J. Whaley, F. Sajjadi, Improved two-dimensional gel electrophoresis representation of serum proteins by using ProtoClear, Electrophoresis 20 (1999) 854-859.
    [13] R. Labugger, J. McDonough, I. Neverova, J.V. Eyk, Solubilization, two-dimensional separation and detection of the cardiac myofilament protein troponin T, Proteomics 2 (2002) 673-678.
    [14] J. Fichmann, R. Westermeier, 2-D protein gel electrophoresis. An overview., Methods Mol Biol 112 (1999) 1-7.
    [15] S. Bae, A. Harris, P. Hains, H. Chen, D. Garfin, S. Hazell, Y. Paik, B. Walsh, S. Cordwell, Strategies for the enrichment and identification of basic proteins in proteome projects, Proteomics 3 (2003) 569-579.
    [16] T. Stasyk, L. Huber, Zooming in: fractionation strategies in proteomics, Proteomics 4 (2004) 3704-3716.
    [17] R. Wildgruber, A. Harder, C. Obermaier, G. Boguth, W. Weiss, S. Fey, P. Larsen, A. Gorg, Towards higher resolution: two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients, Electrophoresis 21 (2000) 2610-2616.
    [18] A. Gorg, C. Obermaier, G. Boguth, A. Harder, B. Scheibe, R. Wildgruber, W. Weiss, The current state of two-dimensional electrophoresis with immobilized pH gradients, Electrophoresis 21 (2000) 1037-1053.
    [19] L.K. Elek G, A path or a new road in laboratory diagnostics? Biological mass spectrometry: facts and perspectives Pathol Oncol Res 12 (2006) 178-183.
    [20] L. Belov, P. Huang, J. Chrisp, S. Mulligan, R. Christopherson, Screening microarrays of novel monoclonal antibodies for binding to T-, B- and myeloid leukaemia cells, J Immunol Methods 305 (2005) 10-19.
    [21] H. Zhu, S. Pan, S. Gu, E. Bradbury, X. Chen, Amino acid residue specific stable isotope labeling for quantitative proteomics, Rapid Commun Mass Spectrom 16 (2002)2115-2123.
    [22] A. Sickmann, J. Reinders, Y. Wagner, C. Joppich, R. Zahedi, H. Meyer, B. Schonfisch, I. Perschil, A. Chacinska, B. Guiard, P. Rehling, N. Pfanner, C. Meisinger, The proteome of Saccharomyces cerevisiae mitochondria, Proc Natl Acad Sci U S A. 2005 Nov 22; 102(47): 17041-6. 100(2003) 13207-13212.
    [23] A. Gorg, W. Weiss, M.J. Dunn, Current two-dimen sional electrophoresis technology for proteomics, Proteomics 4 (2004) 3665-3685.
    [24] K.D. Rodland, Proteomics and cancer diagnosis: the potential of mass spectrometry, Clin Biochem 37 (2004) 579-583.
    [25] J. Reinders, U. Lewandrowski, J. Moebius, Y. Wagner, A. Sickmann, Challenges in mass spectrometry-based proteomics, Proteomics 4 (2004) 3686-3703.
    [26] G. Elek, K. Lapis, A path or a new road in laboratory diagnostics? Biological mass spectrometry: facts and perspectives, Pathol Oncol Res 12 (2006) 178-183.
    [27] C. Hegedus, L. Gunn, C. Skibola, L. Zhang, R. Shiao, S. Fu, E. Dalmasso, C. Metayer, G. Dahl, P. Buffler, M. Smith, Proteomic analysis of childhood leukemia, Leukemia 19 (2005) 1713-1718.
    [28] G. Behre, V. Reddy, D. Tenen, W. Hiddemann, A. Zada. S. Singh. Proteomic analysis of transcription factor interactions in myeloid stem cell development and leukaemia, Expert Opin Ther Targets 6 (2002) 491-495.
    [29] D. Smith, C. Evans, A. Pierce, S. Gaskell, A. Whetton, Changes in the proteome associated with the action of Bcr-Abl tyrosine kinase are not related to transcriptional regulation, Mol Cell Proteomics 1 (2002) 876-884.
    [30] K.M. Zhang J, Yamamura S, Chait BT, Roeder RG, E protein silencing by the leukemogenic AML1-ETO fusion protein, Science 305 (2004) 1286-1289.
    [31] E.C. Cochran DA, Blinco D, Burthem J, Stevenson FK, Gaskell SJ, Whetton AD, Proteomic analysis of chronic lymphocytic leukemia subtypes with mutated or unmutated Ig V(H) genes, Mol Cell Proteomics 2 (2003) 1331-1341.
    [32] W.J. Cui JW, He K, Jin BF, Wang HX, Li W, Kang LH, Hu MR, Li HY, Yu M, Shen BF, Wang GJ, Zhang XM, Proteomic analysis of human acute leukemia cells: insight into their classification, Clin Cancer Res 10 (2004) 6887-6896.
    [33] L.K. Habib, W.G. Finn,Unsupervised immunophenotypic profiling of chronic lymphocytic leukemia, Cytometry B Clin Cytom 70 (2006) 124-135.
    [34] J. Irish, R. Hovland, P. Krutzik, O. Perez, (?). Bruserud, B. Gjertsen, G. Nolan, Single cell profiling of potentiated phospho-protein networks in cancer cells, Cell 118 (2004) 217-228.
    [35] S. Diks, M. Peppelenbosch, Single cell proteomics for personalised medicine, Trends Mol Med 10 (2004) 574-577.
    
    [36] E.F. Petricoin, 3rd, V.E. Bichsel, V.S. Calvert, V. Espina, M. Winters, L. Young, C. Belluco, B.J. Trock, M. Lippman, D.A. Fishman, D.C. Sgroi, P.J. Munson, L.J. Esserman, L.A. Liotta, Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy, J Clin Oncol 23 (2005) 3614-3621.
    [37] S. Perfetto, P. Chattopadhyay, M. Roederer, Seventeen-colour flow cytometry: unravelling the immune system, Nat Rev Immunol 4 (2004) 648-655.
    [38] J.S. Huston, A.J. George, Engineered antibodies take center stage, Hum Antibodies 10 (2001) 127-142.
    [39] L. Belov, O. de la Vega, C.G. dos Remedios, S.P. Mulligan, R.I. Christopherson, Immunophenotyping of leukemias using a cluster of differentiation antibody microarray, Cancer Res 61 (2001) 4483-4489.
    [40] L. Belov, S. Mulligan, N. Barber, A. Woolfson, M. Scott, K. Stoner, J. Chrisp, W. Sewell, K. Bradstock, L. Bendall, D. Pascovici, M. Thomas, Analysis of human leukaemias and lymphomas using extensive immunophenotypes from an antibody microarray, Br J Haematol. 2006 Oct; 135(2): 184-97 (2006).
    
    [41] L. Belov, P. Huang, J.S. Chrisp, S.P. Mulligan, R.I. Christopherson, Screening microarrays of novel monoclonal antibodies for binding to T-, B- and myeloid leukaemia cells, J Immunol Methods 305 (2005) 10-19.
    
    [42] P. Ellmark, L. Belov, P. Huang, C. Lee, M. Solomon, D. Morgan, R. Christopherson, Multiplex detection of surface molecules on colorectal cancers, Proteomics 6 (2006) 1791-1802.
    
    [43] O. Ornatsky, V.I. Baranov, D.R. Bandura, S.D. Tanner, J. Dick, Multiple cellular antigen detection by ICP-MS, J Immunol Methods 308 (2006) 68-76.
    
    [44] R. Vermeulen, Q. Lan, L. Zhang, L. Gunn, D. McCarthy, R. Woodbury, M. McGuire, V. Podust, G. Li, N. Chatterjee, R. Mu, S. Yin, N. Rothman, M. Smith, Decreased levels of CXC-chemokines in serum of benzene-exposed workers identified by array-based proteomics, Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17041-6.
    
    [45] S. Hanash, J. Madoz-Gurpide, D. Misek, Identification of novel targets for cancer therapy using expression proteomics, Leukemia 16 (2002) 478-485.
    
    [46] R.S. Boyd, P.J. Adam, S. Patel, J.A. Loader, J. Berry, N.T. Redpath, H.R. Poyser, G.C. Fletcher, N.A. Burgess, A.C. Stamps, L. Hudson, P. Smith, M. Griffiths, T.G. Willis, E.L. Karran, D.G. Oscier, D. Catovsky, J.A. Terrett, M.J. Dyer, Proteomic analysis of the cell-surface membrane in chronic lymphocytic leukemia: identification of two novel proteins, BCNP1 and MIG2B, Leukemia 17 (2003) 1605-1612.
    
    [47] C. Geuijen, N. Bijl, R. Smit, F. Cox, M. Throsby, T. Visser, M. Jongeneelen, A. Bakker, A. Kruisbeek, J. Goudsmit, J.d. Kruif, A proteomic approach to tumour target identification using phage display, affinity purification and mass spectrometry, Eur J Cancer. 2005 Jan;41(1): 41 (2005) 178-187.
    
    [48] H. Skalnikova, P. Halada, P. Dzubak, M. Hajduch, H. Kovarova, Protein fingerprints of anti-cancer effects of cyclin-dependent kinase inhibition: identification of candidate biomarkers using 2-D liquid phase separation coupled to mass spectrometry, Technol Cancer Res Treat 4 (2005) 447-454.
    
    [49] Q. Xia, H.X. Wang, J. Wang, J.Y. Zhang, B.Y. Liu, A.L. Li, M. Lv, M.R. Hu, M. Yu, J.N. Feng, S.C. Yang, X.M. Zhang, B.F. Shen, Proteomic analysis of interleukin 6-induced differentiation in mouse myeloid leukemia cells, Int J Biochem Cell Biol 37 (2005) 1197-1207.
    [50] D. Grebenova, K. Kuzelova. O. Fuchs, P. Halada, V. Havlicek. I. Marinov, Z. Hrkal, Interferon-alpha suppresses proliferation of chronic myelogenous leukemia cells K562 by extending cell cycle S-phase without inducing apoptosis, Blood Cells Mol Dis 32 (2004) 262-269.
    [51] W.J. Wan J, Cheng H, Yu Y, Xing G, Oiu Z, Qian X, He F., Proteomic analysis of apoptosis initiation induced by all-trans retinoic acid in human acute promyelocytic leukemia cells, Electrophoresis 22 ( 2001 ) 3026-3037.
    [52] H.Z. Wang YT, Chang HM, Proteomic analysis of human leukemic U937 cells incubated with conditioned medium of mononuclear cells stimulated by proteins from dietary mushroom of Agrocybe aegerita., J Proteome Res 3 (2004) 890-896.
    [53] T. Voss, H. Ahorn, P. Haberl, H. Dohner, K. Wilgenbus, Correlation of clinical data with proteomics profiles in 24 patients with B-cell chronic lymphocytic leukemia., Int J Cancer 91 (2001) 180-186.
    [54] N. Verrills, N. Liem, T. Liaw, B. Hood, R. Lock, M. Kavallaris, Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia—an in vivo study, Proteomics 6 (2006) 681-694.
    [55] W. Carroll, D. Bhojwani, D. Min, E. Raetz, M. Relling, S. Davies, J. Downing, C. Willman, J. Reed, Pediatric acute lymphoblastic leukemia, Hematology Am Soc Hematol Educ Program (2003) 102-131.
    [56] J.W. Cho, J.J. Kim, S.G. Park, D.H. Lee, S.C. Lee, H.J. Kim, B.C. Park, S. Cho, Identification of B-cell translocation gene 1 as a biomarker for monitoring the remission of acute myeloid leukemia, Proteomics 4 (2004) 3456-3463.
    [57] M. Albitar, S.J. Potts, F.J. Giles, S. O'Brien, M. Keating, D. Thomas, C. Clarke, I. Jilani, C. Aguilar, E. Estey, H. Kantarjian, Proteomic-based prediction of clinical behavior in adult acute lymphoblastic leukemia, Cancer 106 (2006) 1587-1594.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700