用户名: 密码: 验证码:
钙钛矿结构锰氧化物中的元素替代、电子向列有序与畴壁钉扎效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以钙钛矿结构锰氧化物为代表的磁电阻材料,由于它们所表现出的庞磁电阻效应(CMR, Colossal Magnetoresistance)在提高磁存储密度以及磁敏感探测元件等领域具有十分广阔的应用前景,因而受到人们的广泛关注。同时,这类体系还表现出诸如磁场或电场等诱导的绝缘体—金属转变,电荷/轨道/自旋有序,以及相分离等十分丰富的物理内容,涉及到凝聚态物理的许多基本问题,对这些问题的微观物理机制的正确认识,必将对凝聚态物理的发展起到巨大的推动作用。
     本论文工作以具有ABO3典型钙钛矿结构的锰氧化物La-Mn-O体系为具体研究对象,采用宏观物性测量与微观结构分析相结合的方法,详细研究了LaMnO3母体中进行B位替代的LaMn1-xCuxO3体系和在此基础上进行A位替代的La1-yCayMn0.90Cu0.10O3体系中的元素替代效应、微观电子向列有序与宏观物性的关联、以及纳米尺度的畴壁钉扎效应,并对相分离锰氧化物强关联体系中的纳米尺度磁畴/畴壁结构、微观电子有序/无序转变、及其与材料的电/磁输运行为的关联效应等问题的理解有了更深层次的发展。本论文共分为六章,主要内容包括:
     第一章综述了磁电阻效应研究的历史、发展与现状,并简单介绍了庞磁电阻锰氧化物体系中丰富的物理现象及其潜在的应用前景。通过本章的介绍,我们将对磁电阻效应以及磁电子学有一个概括的了解,并对元素替代后生成的掺杂锰氧化物的基本物理性质,包括晶体结构、电子结构、磁特性、输运机制、有序相等基本物理问题有所认识;最后我们还就本文工作的研究目的和出发点进行了概括性描述。
     第二章介绍了实验样品的制备方法、结构分析与表征、物性测量的方法和基本原理,主要包括电、磁输运测量和样品形貌/粒度的观察与比较等。
     第三章研究了A位和B位元素替代对锰氧化物电、磁输运性质以及磁电阻效应的影响。主要包括两部分内容:第一部分研究了Cu替代Mn位对LaMnO3反铁磁母体性质的改变,研究了B位非磁性元素替代以及离子价态变化对锰氧化物磁性和磁电阻效应的影响。实验结果证明通过直接在反铁磁LaMnO3母体的锰位进行Cu替代可以导致双交换作用,并出现强铁磁性和大的磁电阻效应,并且当Cu的替代浓度为10%时,双交换作用和磁电阻效应最为明显。第二部分是在B位最佳掺杂的基础上,研究了La位被Ca替代的影响。重点讨论了相分离体系中不同的相以及近邻畴/团簇间的摩擦效应,以及由此引发的热磁曲线中大的热滞现象。这些研究成果对理解巨磁电阻的微观机制以及探索新型磁电阻材料都提供了重要的信息。
     第四章研究了La1-yCayMn0.90Cu0.10O3体系中的变磁性磁化台阶跳跃现象,并用电子向列有序理论对它进行了很好的解释,首次有针对性地从实验上证实了电子向列有序理论的有效性,这对于变磁性转变行为的研究以及重新认识相分离机制具有重要意义。
     第五章对普遍存在于微量元素替代锰氧化物体系中100 K以下的低温磁化反常现象进行了深入细致的研究,我们选取LaMn1-xCuxO3体系为具体研究对象,实验证实了纳米尺度畴壁钉扎效应的存在,并且发现畴壁钉扎现象消失的单畴颗粒的临界尺寸RC约为100 nm,这对于进一步明确低温下强关联锰氧化物体系中的复杂磁结构及其低温相图是很有帮助的。
     第六章是对本论文工作的总结,并简要叙述了工作的意义。
Since the discovery of colossal magnetoresistance effect (CMR) in perovskite manganites, it has sparked considerable renewed interests in these long-known materials with an eye towards both an understanding of the CMR mechanism and related properties and potential applications in magnetic information storage and low-field mangetic sensors. Beside the CMR effect, these materials also exhibit intriguing physical properties such as insulator-metal transition and structure transition induced by applied magnetic-field or electric-field, charge/orbital/spin ordering, and phase separation etc. The full understanding of these properties will definitely stimulate the progress of condensed matter physics.
     In this thesis, the element-substitution effects, microcosmic electronic nematic order, nano-scaled domain wall pinning and their correlated effects are minutely studied, by both the measurements of macroscopical physical properties and the analysis of microstructure, in phase separated B-site Cu substituted LaMn1-xCuxO3 and the related A-site Ca substituted La1-yCayMn0.90Cu0.10O3 perovskites. A further understanding of nano-scaled magnetic domain (wall) structure, microcosmic electronic ordering/disordering transition and their correlated effects in magnetic/electrical transport properties is obtained. The whole thesis consists of six chapters.
     The first chapter aims at a brief overview of the history, progress, and current status of magnetoresistance effect. The abundant physical contents and potential applications in CMR manganites are also introduced, including crystal structure, electronic structure, magnetic/electrical transport mechanism, all kinds of ordering states, etc. By these illustrations, one may acquire a basic sight on magnetoresistance effect as well as magnetoelectronics. Meanwhile, the aims and motivations of the present work are synoptically given.
     In Chapter Two, the main methods and principles in our experiments are involved, including the preparation of samples, structural analysis and physical property measurements such as electrical transport, AC/DC magnetization, observation of crystal grains and their boundaries by electron microscopy, and so on.
     In Chapter Three, the effects of A-site and B-site substitution by foreign elements are studied by preparing LaMn1-xCuxO3 and La1-yCayMn0.90Cu0.10O3 samples. Firstly, the effects of nonmagnetic Cu substitution for Mn are studied in LaMn1-xCuxO3 system. The results confirm that the strong double-exchange ferromagnetism and large CMR effect can be achieved by directly Cu substitution into B-site. And when the Cu content is at 10%, both the double-exchange and CMR are optimal. Then, the effects of A-site Ca substitution for La are also studied at a fixed Cu substitution level x=0.10, especially the friction effects between differect phases or neighbouring domains/clusters, the large thermal hysteresis is also discussed. This part is helpful for the understanding of CMR mechanism and exploring new CMR materials.
     The fourth chapter is mainly about the study of metamagnetic step-like transition in La1-yCayMn0.90Cu0.10O3 manganites. A new theory of electron nematic ordering model is approved to be effective rather than phase separation, which is important for metamagnetism study and a further understanding of the phase separation model.
     In Chapter Five, the anomalous magnetic behavior below 100 K in dilute Cu substituted LaMn1-xCuxO3 system is studied systematically, and the domain wall pinning effect is confirmed by our measurements. The TEM pictures show that the critical size of single domain particle is at ablout RC ~ 100 nm. These results are useful to get to the bottom of the perplexing magnetic domain structure and build up a clear phase diagram at low temperatures in manganites.
     In Chapter Six, a summarization of the present work is given, altogether with the significance of this work.
引文
[1] J. Q. Xiao, J. S. Jiang and C. L. Chien, "Giant magnetoresistance in nonmultilayer magnetic systems", Phys. Rev. Lett. 68, 3749 (1992).
    [2] S. L. Yuan, Y. P. Yang, Z. C. Xia, L. Liu, G. H. Zhang, W. Feng, J. Tang, L. J. Zhang and S. Liu, "Unusual hysteresis and giant low-field magnetoresistance in polycrystalline sample with nominal composition La2/3Ca1/3Mn0.955Cu0.045O3", Phys. Rev. B 66, 172402 (2002).
    [3] G. C. Milward, M. J. Calderon and P. B. Littlewood, "Electronically soft phases in manganites", Nature 433, 607 (2005).
    [4] R. A. Borzi, S. A. Grigera, J. Farrell, R. S. Perry, S. J. S. Lister, S. L. Lee, D. A. Tennant, Y. Maeno and A. P. Mackenzie, "Formation of a Nematic Fluid at High Fields in Sr3Ru2O7", Science 315, 214 (2007).
    [5] Y. Yamato, M. Matsukawa, Y. Murano, R. Suryanarayanan, S. Nimori, M. Apostu, A. Revcolevschi, K. Koyama and N. Kobayashi, "Colossal electroresistance and colossal magnetoresistive step in paramagnetic insulating phase of single crystalline bilayered manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7", Appl. Phys. Lett. 94, 092507 (2009).
    [6] M. Matsubara, Y. Okimoto, T. Ogasawara, Y. Tomioka, H. Okamoto and Y. Tokura, "Ultrafast Photoinduced Insulator-Ferromagnet Transition in the Perovskite Manganite Gd0.55Sr0.45MnO3", Phys. Rev. Lett. 99, 207401 (2007).
    [7] D. N. Argyriou, J. F. Mitchell, C. D. Potter, D. G. Hinks, J. D. Jorgensen and S. D. Bader, "Lattice Effects and Magnetic Order in the Canted Ferromagnetic Insulator La0.875Sr0.125MnO3+δ", Phys. Rev. Lett. 76, 3826 (1996).
    [8] R. Mahendiran, A. Maignan, S. Hébert, C. Martin, M. Hervieu, B. Raveau, J. F. Mitchell and P. Schiffer, "Ultrasharp Magnetization Steps in Perovskite Manganites", Phys. Rev. Lett. 89, 286602 (2002).
    [9] A. Prodi, E. Gilioli, A. Gauzzi, F. Licci, M. Marezio, F. Bolzomi, Q. Huang, A. Santoro and J.W. Lynn, "Charge, orbital and spin ordering phenomena in the mixed valence manganite (NaMn3+(3))(Mn3+(2)Mn4+(2))O12", NatureMaterials 3, 48 (2004).
    [10] S. Canulescu, E. L. Papadopoulou, D. Anglos, Lippert Th, C. W. Schneider and A. Wokaun, "Mechanisms of the laser plume expansion during the ablation of LiMn2O4", J. Appl. Phys. 105, 063107 (2009).
    [11] W. Cheikh-Rouhou Koubaa, M. Koubaa and A. Cheikhrouhou, "Effect of potassium doping on the structural, magnetic and magnetocaloric properties of La0.7Sr0.3-xKxMnO3 perovskite manganites", J. Alloys Compd. 470, 42 (2009).
    [12] N. Abdelmoula, A. Cheikh-Rouhou and L. Reversat, "Structural, magnetic and magnetoresistive properties of La0.7Sr0.3-xNaxMnO3 manganites", J. Phys.: Condens. Matter 13, 449 (2001).
    [13] G. H. Jonker and J. H. Van Santen, "Ferromagnetic compounds of manganese with perovskite structure", Physica(Amsterdam) 16, 337 (1950).
    [14] C. Zener, "Interaction Between the d Shells in the Transition Metals", Phys. Rev. 82, 403 (1951).
    [15] J. B. Goodenough, "Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3", Phys. Rev. 100, 564 (1955).
    [16] P. G. De Gennes, "Effects of Double Exchange in Magnetic Crystals", Phys. Rev. 118, 141 (1960).
    [17] J. B. Goodenough, A. Wold, R. J. Arnott and N. Menyuk, "Relationship Between Crystal Symmetry and Magnetic Properties of Ionic Compounds Containing Mn3+", Phys. Rev. 124, 373 (1961).
    [18] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, "Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films", Science 264, 413 (1994).
    [19] R. von Helmot, J. Wecker, B. Holzapfel, L.Schultz and K.Samwer, "Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnOx Ferromagnetic Films", Phys. Rev. Lett. 71, 2331 (1993).
    [20] T. Miyazaki and N. Tezuka, "Spin polarized tunneling in ferromagnet / insulator / ferromagnet junctions", J. Magn. Magn. Mater. 151, 403 (1995).
    [21] G. Jeffrey Snyder, Ron Hiskes, Steve DiCarolis, M. R. Beasley and T. H.Geballe, "Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material", Phys. Rev. B 53, 14434 (1996).
    [22] N. Gayathry, A. K. Raychaudhuri, S. K. Tiwary, R. Gundakaram, Anthony Arulraj and S. K. Tiwary, "Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides with mixed exchange interactions: A study of the La0.7Ca0.3Mn1-xCoxO3 system", Phys.Rev.B 56, 1345 (1997).
    [23] J. S. Zhou and J. B. Goodenough, "Phonon-Assisted Double Exchange in Perovskite Manganites", Phys. Rev. Lett. 80, 2665 (1998).
    [24] Y. Tokura and Y. Tomioka, "Colossal magnetoresistive manganites", J. Magn. Magn. Mater. 200, 1 (1999).
    [25] V. Hardy, S. Majumdar, S. J. Crowe, M. R. Lees, D. McK. Paul, L. Hervé, A. Maignan, S. Hébert, C. Martin, C. Yaicle, M. Hervieu and B. Raveau, "Field-induced magnetization steps in intermetallic compounds and manganese oxides: The martensitic scenario", Phys. Rev. B 69, 020407(R) (2004).
    [26] Gang Xiao, Jr. E. J. McNiff, G. Q. Gong, A. Gupta, C. L. Canedy and J. Z. Sun, "Magnetic-field-induced multiple electronic states in La0.5Ca0.5MnO3+δ", Phys. Rev. B 54, 6073 (1996).
    [27]王志宏,蔡建旺,沈保根,赵见高,詹文山,"自旋玻璃锰氧化物La0.67Ca0.33(Mn, Fe)O3中的分步磁化和超大磁电阻",物理学报48,757 (1999).
    [28] Guixin Cao, Jincang Zhang, Shixun Cao, Chao Jing and Xuechu Shen, "Magnetization step, history-dependence, and possible spin quantum transition in Pr5/8Ca3/8MnO3 manganites", Phys. Rev. B 71, 174414 (2005).
    [29] Guixin Cao, Jincang Zhang, Shixun Cao, Chao Jing and Xuechu Shen, "Magnetization step and spin reorientation in Pr5/8Ca3/8MnO3 manganites", Appl. Phys. Lett. 86, 042507 (2005).
    [30] J. Cao, J. T. Haraldsen, R. C. Rai, S. Brown, J. L. Musfeldt, Y. J. Wang, X. Wei, M. Apostu, R. Suryanarayanan and A. Revcolevschi, "Magneto-optical investigation of the field-induced spin-glass-insulator to ferromagnetic-metaltransition in the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7", Phys. Rev. B 74, 045113 (2006).
    [31] H. Y. Hwang, T. T. M. Palstra, S.-W. Cheong and B. Batlogg, "Pressure effects on the magnetoresistance in doped manganese perovskites", Phys. Rev.B 52, 15046 (1995).
    [32] H. Y. Hwang, S. W. Cheong, P. G. Radaelli, M. Marezio and B. Batlogg, "Lattice effects on the magnetoresistance in doped LaMnO3", Phys. Rev. Lett. 75, 914 (1995).
    [33] R. M. Lide, M. E.Helmut and A. J. Paul, "Disorder effects on structural and electronic transitions in high tolerance factor manganite perovskites", Sol. Sta. Sci. 2, 11 (2000).
    [34] F. Damay, C. Martin, A. Maignan and B. Raveau, "Cation disorder and size effects upon magnetic transitions in Ln0.5A0.5MnO3 manganites", J. Appl. Phys. 82, 6181 (1997).
    [35] J. Kanamori, "Crystal Distortion in Magnetic Compounds", J. Appl. Phys. 31, S14 (1960).
    [36] P. W. Anderson and H. Hasegawa, "Considerations on Double Exchange", Phys. Rev. 100, 675 (1955).
    [37] Y. Tokura and N. Nagaosa, "Reviews Orbital Physics in Transition-Metal Oxides", Science 288, 462 (2000).
    [38] C. H. Chen and S.-W. Cheong, "Commensurate to Incommensurate Charge Ordering and Its Real-Space Images in La0.5Ca0.5MnO3", Phys. Rev. Lett. 76, 4042 (1996).
    [39] H. A. Dramers, "The interaction of magnetogenic atoms in paramagnetic crystals", Physica 1, 182 (1934).
    [40] P. W. Anderson, "Antiferromagnetism. Theory of Superexchange Interaction", Phys. Rev. 79, 350 (1950).
    [41] M. Z. Li, Zou Liang-Jian and Q. Q. Zheng, "Magnetism and Jahn-Teller effect in LaMnO3", J. Appl. Phys. 83, 6596 (1998).
    [42] Y. Q. Ma, J. Yang, B. C. Zhao, J. J. Du and Y. P. Sun, "Effect of electriccurrent on the Jahn-Teller distortion modes in La0.67-yPryCa0.33MnO3", physica status solidi (b) 243, 677 (2006).
    [43] D. Hrabovsky, J. M. Caicedo, G. Herranz, I. C. Infante, F. Sanchez and J. Fontcuberta, "Jahn-Teller contribution to the magneto-optical effect in thin-film ferromagnetic manganites", Phys. Rev. B 79, 052401 (2009).
    [44] P. Wagner, I. Gordon, S. Mangin, V. V. Moshchalkov, Y. Bruynseraede, L. Pinsard and A. Revcolevschi, "Influence of the cooperative Jahn-Teller effect on the transport and magnetic properties of La7/8Sr1/8MnO3 single crystals", Phys. Rev. B 61, 529 (2000).
    [45] A. J. Millis, R. Mueller and B. I. Shraiman, "Fermi-liquid-to-polaron crossover. II. Double exchange and the physics of colossal magnetoresistance", Phys. Rev. B 54, 5405 (1996).
    [46] A. J. Millis, B. I. Shraiman and R. Mueller, "Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La1-xSrxMnO3", Phys. Rev. Lett. 77, 175 (1996).
    [47] D. I. Khomskii and K. I. Kugel, "Elastic interactions and superstructures in manganites and other Jahn-Teller systems", Phys. Rev. B 67, 134401 (2003).
    [48] S. H. Pan, J. P. O'Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K.-W. Ng, E. W. Hudson, K. M. Lang and J. C. Davis, "Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x", Nature 413, 282 (2001).
    [49] E. O. Wollan and W. C. Koehler, "Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La, xCa]MnO3", Phys. Rev. 100, 545 (1955).
    [50] J. M. De Tresa, M. R. Ibarra, R. A. Algarabel, C. Riter, C. Marqulna, J. Blasco, J. Garsia, A. del Moral and Z. Arnold, "Evidence for magnetic polarons in the magnetoresistive perovskites", Nature 386, 256 (1997).
    [51] J. B. Goodenough and J. S. Zhou, "New forms of phase segregation", Nature 386, 229 (1997).
    [52] M. F?th, S. Freisem, A.A. Menovsky, Y. Tomioka, J. Aarts and J.A. Mydosh, "Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites", 25Science 285, 1540 (1999).
    [53] Elbio DAGOTTO, Takashi HOTTA and Adriana MOREO, "COLOSSAL MAGNETORESISTANT MATERIALS: THE KEY ROLE OF PHASE SEPARATION", Phys. Rep. 344, 1 (2001).
    [54] M. Uehara, S. Mori, C. H. Chen and S. W. Cheong, "Percolative phase separation underlies colossal magnetoresistance in mixed-valentmanganites", Nature 399, 560 (1999).
    [55] Y. D. Chuang, A. D. Gromko, D. S. Dessau, T. Kimura and Y. Tokura, "Fermi Surface Nesting and Nanoscale Fluctuating Charge/Orbital Ordering in Colossal Magnetoresistive Oxides", Science 292, 1509 (2001).
    [56] K. H. Ahn, T. Lookman and A. R. Bishop, "Strain-induced metal-insulator phase coexistence in perovskite manganites", Nature 428, 401 (2004).
    [57] E. Stryjewski and N. Giordano, "Metamagnetism", Adv. Phys. 26, 487 (1997).
    [58] J. M. D.Coey, M. Viret and S. von Molnar, "Mixed-valence manganites", Adv. Phys. 48, 167 (1999).
    [59] E. M. Levin, Jr. K. A. Gschneidner and V. K. Pecharsky, "Magnetic correlations induced by magnetic field and temperature in Gd5Ge4", Phys. Rev. B 65, 214427 (2002).
    [60] J. Kushauer, R. van Bentum, W. Kleemann and D. Bertrand, "Athermal magnetization avalanches and domain states in the site-diluted metamagnet FexMg1-xCl2", Phys. Rev. B 53, 11647 (1996).
    [61] G. Xiao, G. Q. Gong, C. L. Canedy, Jr. E. J. McNiff and A. Gupta, "Magnetic field induced properties of manganite perovskites with colossal magnetoresistance (invited)", J. Appl. Phys. 81, 5324 (1997).
    [62] Y. Tomioka, A. Asamitsu, Y. Moritomo, H. Kuwahara and Y. Tokura, "Collapse of a Charge-Ordered State under a Magnetic Field in Pr1/2Sr1/2MnO3", Phys. Rev. Lett. 74, 5108 (1995).
    [63] S. Hébert, A. Maignan, V. Hardy, C. Martin, M. Hervieu, B. Raveau, R. Mahendiran and P. Schiffer, "Magnetization and resistivity steps in the phase separated Pr0.5Ca0.5Mn1-xNixO3 manganites", Eur. Phys. J. B 29, 419 (2002).
    [64] S. Hébert, A. Maignan, V. Hardy, C. Martin, M. Hervieu and B. Raveau, "Avalanche like field dependent magnetization of Mn-site doped charge-ordered manganites", Solid State Comm. 122, 335 (2002).
    [65] S. B. Roy, M. K. Chattopadhyay, P. Chaddah and A. K. Niqam, "Sharp magnetization step across the ferromagnetic-to-antiferromagnetic transition in doped CeFe2 alloys", Phys. Rev. B 71, 174413(5) (2005).
    [66] J. Dho and N. H. Hur, "Thermal relaxation of field-induced irreversible ferromagnetic phase in Pr-doped manganites", Phys. Rev. B 67, 214414 (2003).
    [67] L. Ghivelder, R. S. Freitas, M. G. das Virgens, M. A. Continentino, H. Martinho, L. Granja, M. Quintero, G. Leyva, P. Levy and F. Parisi, "Abrupt field-induced transition triggered by magnetocaloric effect in phase-separated manganites", Phys. Rev. B 69, 214414 (2004).
    [68] L. Ghivelder and F. Parisi, "Dynamic phase separation in La5/8-xPrxCa3/8MnO3", Phys. Rev. B 71, 184425 (2005).
    [69] L. M. Fisher, A. V. Kalinov, I. F. Voloshin, N. A. Babushkina, D. I. Khomskii, Y. Zhang and T. T. M. Palstra, "Quenched-disorder-induced magnetization jumps in (Sm, Sr)MnO3 ", Phys. Rev. B 70, 212411 (2004).
    [70] J. Burgy, E. Dagotto and M. Mayr, "Percolative transitions with first-order characteristics in the context of colossal magnetoresistance manganites", Phys. Rev. B 67, 014410 (2003).
    [71] V. Hardy, A. Maignan, S. Hébert, C. Yaicle, C. Martin, M. Hervieu, M. R. Lees, G. Rowlands, D. Mc Paul and B. Raveau, "Observation of spontaneous magnetization jumps in manganites", Phys. Rev. B 68, 220402 (2003).
    [72] A. Maignan, S. Hébert, V. Hardy, C. Martin, M. Hervieu and B. Raveau, "Magnetization jumps and thermal cycling effect induced by impurities in Pr0.6Ca0.4MnO3", J. Phys.: Condens. Matter 14, 11809 (2002).
    [73] J. A. Fernandez-Baca, Penqcheng Dai, H. Kawano-Furukawa, H. Yoshizawa, E. W. Plummer, S. Katano, Y. Tomioka and Y. Tokura, "Microscopic spin interactions in colossal magnetoresistance manganites", Phys. Rev. B 66, 054434 (2002).
    [74] P. A. Joy and S. K. Date, "On the low-temperature anomaly in the AC susceptibility of La0.9Ca0.1MnO3", J. Magn. Magn. Mater. 220, 106 (2000).
    [75] C. Raj Sankar and P. A. Joy, "Studies on the evolution of a low-temperature anomaly in the AC susceptibility of ferromagnetic compositions in the La1-xMnO3 (1 < x≤0.125) series", J. Magn. Magn. Mater. 277, 209 (2004).
    [76] C. Raj Sankar and P. A. Joy, "Magnetic properties of the self-doped lanthanum manganites La1-xMnO3", Phys. Rev. B 72, 024405 (2005).
    [77] S. K. Hasanain, Wiqar Hussain Shah, Arif Mumtaz, M. Nadeem and M. J. Akhtar, "Re-entrant spin freezing behavior in La0.85Ca0.15Mn0.95Fe0.05O3 manganite", J. Magn. Magn. Mater. 271, 79 (2004).
    [78] T. Sudyoadsuk, R. Suryanarayanan and P. Winotai, "Enhancement of TC and the re-entrant spin glass transition in La0.86Ca0.14Mn1-yCryO3 (y =0, 0.1 and 0.2)", J. Phys.: Condens. Matter 16, 3691 (2004).
    [79] I. O. Troyanchuk, V. A. Khomchenko, A. N. Chobot, and H. Szymczak, "Magnetic phase diagram of the La0.88MnOx (2.82≤x≤2.96) system", J. Phys.: Condens. Matter 15, 6005 (2003).
    [80] C. D. Ling, E. Granado, J. J. Neumeier, J. W. Lynn and D. N. Argyriou, "Inhomogeneous magnetism in La-doped CaMnO3. I. Mesoscopic phase separation due to lattice-coupled ferromagnetic interactions", Phys. Rev. B 68, 134439 (2003).
    [81] T. Qian, G. Li, T. Zhang, T. F. Zhou, X. Q. Xiang, X. W. Kang and X. G. Li, "Exchange bias tuned by cooling field in phase separated Y0.2Ca0.8MnO3", Appl. Phys. Lett. 90, 012503 (2007).
    [82] Udai Raj Singh, S. Chaudhuri, Shyam K. Choudhary, R. C. Budhani and Anjan K. Gupta, "Tunneling study of the charge-ordering gap on the surface of La0.350Pr0.275Ca0.375MnO3 thin films", Phys. Rev. B 77, 014404 (2008).
    [83] Junwei Huang, Changbae Hyun, Tien-Ming Chuang, Jeehoon Kim, J. B. Goodenough, J.-S. Zhou, J. F. Mitchell and Alex de Lozanne, "Magnetic state of La1.36Sr1.64Mn2O7 probed by magnetic force microscopy", Phys. Rev. B 77, 024405 (2008).
    [1]焦正宽,曹光旱,《磁电子学》,浙江大学出版社,2005年10月。
    [2] A. R. West,《固体化学及其应用》,复旦大学出版社,1989年7月。
    [3]冯端,师昌绪,刘治国,《材料科学导论》,化学工业出版社,2002年5月。
    [4]王华馥,吴自勤,《固体物理实验方法》,高等教育出版社,1990年6月。
    [5]王成国,丁洪太,侯绪荣,《材料分析测试方法》,上海交通大学出版社,1994年6月。
    [6] Physical Property Measurement System, Resistivity Option User’s Manual, Part Number 1076-100A, Quantum Design.
    [7] Physical Property Measurement System, AC Measurement System (ACMS) Option User’s Manual, Part Number 1084-100C, Quantum Design.
    [1] Adriana Moreo, Matthias Mayr, Adrian Feiguin, Seiji Yunoki and Elbio Dagotto, "Giant Cluster Coexistence in Doped Manganites and Other Compounds", Phys. Rev. Lett. 84, 5568 (2000).
    [2] Myron B. Salamon and Marcelo Jaime, "The physics of manganites: Structure and transport", Rev. Mod. Phys. 73, 583 (2001).
    [3] N. D. Mathura and P. B. Littlewood, "The self-organised phases of manganites", Solid State Comm. 119, 271 (2001).
    [4] Dho Joonghoe, W. S. Kim and N. H. Hur, "Reentrant Spin Glass Behavior in Cr-Doped Perovskite Manganite", Phys. Rev. Lett. 89, 027202 (2002).
    [5] V. Hardy, A. Maignan, S. Hébert, C. Yaicle, C. Martin, M. Hervieu, M. R. Lees, G. Rowlands, D. Mc Paul and B. Raveau, "Observation of spontaneous magnetization jumps in manganites", Phys. Rev. B 68, 220402 (2003).
    [6] L. Ghivelder, R. S. Freitas, M. G. das Virgens, M. A. Continentino, H. Martinho, L. Granja, M. Quintero, G. Leyva, P. Levy and F. Parisi, "Abrupt field-induced transition triggered by magnetocaloric effect in phase-separated manganites", Phys. Rev. B 69, 214414 (2004).
    [7] D. Niebieskikwiat and M. B. Salamon, "Intrinsic interface exchange coupling of ferromagnetic nanodomains in a charge ordered manganite", Phys. Rev. B 72, 174422 (2005).
    [8] Hong-Ying Zhai, J. X. Ma, D. T. Gillaspie, X. G. Zhang, T. Z. Ward, E. W. Plummer and J. Shen, "Giant Discrete Steps in Metal-Insulator Transition in Perovskite Manganite Wires", Phys. Rev. Lett. 97, 167201 (2006).
    [9] Murakami Tatsuya, Sakai Joe and Imai Syozo, "Resistance of a perovskite manganite junction limited by series resistance after an electric-field-induced insulator-to-metal transition", Phys. Rev. B 75, 064423 (2007).
    [10] D. N. H. Nam, N. V. Khien, N. V. Dai, L. V. Hong and N. X. Phuc, "Temperature memory and resistive glassy behavior of a perovskite manganite", Phys. Rev. B 77, 214406 (2008).
    [11] Y. Yamasaki, H. Sagayama, N. Abe, T. Arima, K. Sasai, M. Matsuura, K. Hirota, D. Okuyama, Y. Noda and Y. Tokura, "Cycloidal Spin Order in the a-Axis Polarized Ferroelectric Phase of Orthorhombic Perovskite Manganite", Phys. Rev. Lett. 101, 097204 (2008).
    [12] T. Z. Ward, X. G. Zhang, L. F. Yin, X. Q. Zhang, Liu Ming, P. C. Snijders, S. Jesse, E. W. Plummer, Z. H. Cheng, E. Dagotto and J. Shen, "Time-Resolved Electronic Phase Transitions in Manganites", Phys. Rev. Lett. 102, 087201 (2009).
    [13] G. Singh-Bhalla, S. Selcuk, T. Dhakal, A. Biswas and A. F. Hebard, "Intrinsic Tunneling in Phase Separated Manganites", Phys. Rev. Lett. 102, 077205 (2009).
    [14] C. Zener, "Interaction Between the d Shells in the Transition Metals", Phys. Rev. 82, 403 (1951).
    [15] Young Sun, Wei Tong, Xiaojun Xu and Yuheng Zhang, "Possible double-exchange interaction between manganese and chromium in LaMn1 -xCrxO3", Phys. Rev. B 63, 174438 (2001).
    [16] Wei Tong, Bei Zhang, Shun Tan and Yuheng Zhang, "Probability of double exchange between Mn and Fe in LaMn1-xFexO3", Phys. Rev. B 70, 014422 (2004).
    [17] Changjin Zhang, Yi Yin, Li Pi and Yuheng Zhang, "Double percolation in perovskite oxides: Resistivity and magnetization study", Phys. Rev. B 71, 014408 (2005).
    [18] Y. Q. Ma, J. Yang, B. C. Zhao, J. J. Du and Y. P. Sun, "Effect of electric current on the Jahn-Teller distortion modes in La0.67-yPryCa0.33MnO3", physica status solidi (b) 243, 677 (2006).
    [19] Yafeng Lu, J. Klein, F. Herbstritt, J. B. Philipp, A. Marx and R. Gross, "Effect of strain and tetragonal lattice distortions in doped perovskite manganites", Phys. Rev. B 73, 184406 (2006).
    [20] P. Tong, Kim Bongju, Kwon Daeyoung, G. Kim Bog, G. Y. Ahn, J. M. S. Park, Kim Sung Baek and S. W. Cheong, "Enhanced Jahn--Teller distortion inthe orthorhombic phase of La0.15Ca0.85MnO3 and Y0.15Ca0.85MnO3", Appl. Phys. Lett. 93, 202504 (2008).
    [21] D. Hrabovsky, J. M. Caicedo, G. Herranz, I. C. Infante, F. Sanchez and J. Fontcuberta, "Jahn-Teller contribution to the magneto-optical effect in thin-film ferromagnetic manganites", Phys. Rev. B 79, 052401 (2009).
    [22] B. Raveau, D. Zhu, A. Maignan, M. Hervieu, C. Martin, V. Hardy and S. Hébert, "Sharp magnetization steps induced by A-site substitution in Pr 0.5Ca0.5MnO3", J. Phys.: Condens. Matter 15, 7055 (2003).
    [23] D. Zhu, B. Raveau, A. Maignan, M. Hervieu, V. Hardy and C. Martin, "Control of the magnetic ground state by A-site substitution in Pr0.6Ca0.4MnO3: Impact upon the multistep-like behavior of magnetization", J. Appl. Phys. 95, 4245 (2004).
    [24] K. R. Mavani and P. L. Paulose, "Effects of cation disorder and size on metamagnetism in A-site substituted Pr0.5Ca0.5MnO3 system", Appl. Phys. Lett. 86, 162504 (2005).
    [25] K. F. Wang, Y. Wang, L. F. Wang, S. Dong, D. Li, Z. D. Zhang, H. Yu, Q. C. Li and J.-M. Liu, "Cluster-glass state in manganites induced by A-site cation-size disorder", Phys. Rev. B 73, 134411 (2006).
    [26] Jiyu Fan, Langsheng Ling, Li Pi, Yang Wang, Yue Ying and Yuheng Zhang, "Influence of A-site disorder on the half-doped manganites", J. Appl. Phys. 100, 053902 (2006).
    [27] K. F. Wang, Y. Wang, L. F. Wang, S. Dong, H. Yu, Q. C. Li, J. M. Liu and Z. F. Ren, "Ferromagnetic metal to cluster-glass insulator transition induced by A-site disorder in manganites", Appl. Phys. Lett. 88, 152505 (2006).
    [28] B. Raveau, C. Martin and A. Maignan, "What about the role of B elements in the CMR properties of ABO3 perovskites?" J. Alloys Compd. 275-277, 461–467 (1998).
    [29] Kalyanashis De, Ruma Ray, Rabi Narayan Panda, Saurav Giri, Hiroyuki Nakamura and Takao Kohara, "The effect of Fe substitution on magnetic and transport properties of LaMnO3 ", J. Magn. Magn. Mater. 288, 339 (2005).
    [30] W. J. Lu, Y. P. Sun, B. C. Zhao, X. B. Zhu and W. H. Song, "Induced ferromagnetism in Mo-substituted LaMnO3 ", Phys. Rev. B 73, 174425 (2006).
    [31] Zhe Qu, Li Pi, Shun Tan, Simi Chen, Zekun Deng and Yuheng Zhang, "Interplay between Cr and Mn probed by comparing the magnetic properties of La1-xSr x Mn0.98Cr0.02O3 and La1-ySryMn0.98Ga0.02O3", Phys. Rev. B 73, 184407 (2006).
    [32] D. Li, X. Y. Qin, Y. J. Gu and J. Zhang, "Electrical transport behavior of Ca 3 MnxCo4-xO9 (0 < x < 1.28) at low temperatures", J. Appl. Phys. 99, 053709 (2006).
    [33] S. K. Srivastava, Manoranjan Kar and S. Ravi, "Ferromagnetic insulating and spin glass behavior in Cr substituted La0.85Ag0.15MnO3 compounds", J. Phys.: Condens. Matter 20, 235201 (2008).
    [34] J. B. Goodenough, A. Wold, R. J. Arnott and N. Menyuk, "Relationship Between Crystal Symmetry and Magnetic Properties of Ionic Compounds Containing Mn3+", Phys. Rev. 124, 373 (1961).
    [35] J. H. Park, S. W. Cheong and C. T. Chen, "Double-exchange ferromagnetism in La(Mn1 -xCox)O3", Phys. Rev. B 55, 11072 (1997).
    [36] Kichizo Asai, Kouji Fujiyoshi, Nobuhiko Nishimori, Yasumasa Satoh, Yoshihiko Kobayashi and Moriji Mizoguchi, "Magnetic Properties of REMe0.5Mn0.5O3 (RE=Rare Earth Element, Me=Ni, Co)", J. Phys. Soc. Jpn. 67, 4218 (1998).
    [37] P. A. Joy, Y. B. Khollam and S. K. Date, "Spin states of Mn and Co in LaMn0 .5Co0.5O3", Phys. Rev. B 62, 8608 (2000).
    [38] S. Hébert, C. Martin, A. Maignan, R. Retoux, M. Hervieu, N. Nguyen and B. Raveau, "Induced ferromagnetism in LaMnO3 by Mn-site substitution: The major role of Mn mixed valency", Phys. Rev. B 65, 104420 (2002).
    [39] K. Y. Wang, W. H. Song, J. M. Dai, S. L. Ye, S. G. Wang, J. Fang, J. L. Chen, B. J. Gao, J. J. Du and Y. P. Sun, "Structural, magnetic, and transport properties in a Cu-doped La0.7Ca0.3MnO3 system", J. Appl. Phys. 90, 6263 (2001).
    [40] Li Pi, Xiaojun Xu and Yuheng Zhang, "Anomalous transport properties of heavily doped polycrystalline La0.825Sr0.175Mn1-xCuxO3", Phys. Rev. B 62, 5667 (2000).
    [41] Li Pi, Lei Zheng and Yuheng Zhang, "Transport mechanism in polycrystalline La 0.825Sr0.175Mn1-xCuxO3", Phys. Rev. B 61, 8917 (2000).
    [42] K. Ghosh, S. B. Ogale, R. Ramesh, R. L. Greene, T. Venkatesan, K. M. Gapchup, Ravi Bathe and S. I. Patil, "Transition-element doping effects in La 0.7Ca0.3MnO3", Phys. Rev. B 59, 533 (1999).
    [43] S. Kolesnik, B. Dabrowski and O. Chmaissem, "Structural and physical properties of SrMn 1-xRuxO3 perovskites", Phys. Rev. B 78, 214425 (2008).
    [44] Gruneis Andreas, Hummer Kerstin, Marsman Martijn and Kresse Georg, "Nonlinear behavior of the band gap of Pb1 -x EuxSe (0≤x≤1) from first principles", Phys. Rev. B 78, 165103 (2008).
    [45] A. N. Petrov, A. Yu. Zuev, I. L. Tikchonova and V. I. Voronin, "Crystal and defect structure of the mixed oxides LaMn1 -z Cuz O3±y (0≤z≤0.4)", Solid State Ionics 129, 179 (2000).
    [46] S. L. Yuan, Y. Jiang, G. Li, J. Q. Li, Y. P. Yang, X. Y. Zeng, P. Tang and Z. Huang, "Semiconductor-metal transition and magnetoresistance in La (1+x)/3 Ba (2-x)/3 Cu1-xMn x O3", Phys. Rev. B 61, 3211 (2000).
    [47]刘俊明,王克锋,"稀土掺杂锰氧化物庞磁电阻效应",物理学进展25,82 (2005).
    [48] Elbio DAGOTTO, Takashi HOTTA and Adriana MOREO, "COLOSSAL MAGNETORESISTANT MATERIALS: THE KEY ROLE OF PHASE SEPARATION", Phys. Rep. 344, 1 (2001).
    [49]戴道生,熊光成,吴思诚,"RE1-xTxMnO3氧化物的结构,电磁特性和巨磁电阻",物理学进展17,201 (1997).
    [50] K. H. Kim, M. Uehara, C. Hess, P. A. Sharma and S-W. Cheong, "Thermal and Electronic Transport Properties and Two-Phase Mixtures in La 5/8-xPrxCa 3/8 MnO3", Phys. Rev. Lett. 84, 2961 (2000).
    [51] Young Sun, M. B. Salamon, Wei Tong and Yuheng Zhang, "Magnetism,electronic transport, and colossal magnetoresistance of (La0.7-xGdx)Sr0.3MnO3 (0 < x < 0.6)", Phys. Rev. B 66, 094414 (2002).
    [52] S. L. Yuan, L. J. Zhang, Z. C. Xia, L. F. Zhao, L. Liu, W. Chen, G. H. Zhang, W. Feng, J. Tang, H. Cao, Q. H. Zhong, L. Y. Niu and S. Liu, "Effect of sintering temperature on electronic transport and low-field colossal magnetoresistance in sol-gel prepared polycrystals of nominal La 2/3Ca 1/3 Mn0.96Cu0.04O3", Phys. Rev. B 68, 172408 (2003).
    [53] Seitaro Hirahara, Shinichiro Shiozawa, Kiyotaka Miyoshi and Jun Takeuchi, "Magnetic and Transport Properties of Ln0.5Sr0.5MnO3-δ(Ln = Pr, Nd) Single Crystals: Dependence on Oxygen Content", Low Temperature Physics: 24th International Conference on Low Temperature Physics, 1193 (2006).
    [54] Zhuan Xu, Xiangfan Xu, S. Freitas Rafael, Zhenyi Long, Meng Zhou, David Fobes, Minghu Fang, Peter Schiffer, Zhiqiang Mao and Ying Liu, "Magnetic, electrical transport, and thermoelectric properties of Sr4Ru3 O10: Evidence for a field-induced electronic phase transition at low temperatures", Phys. Rev. B 76, 094405 (2007).
    [55] Panwar Neeraj, Rao Ashok, R. S. Singh, W. K. Syu, N. Kaurav, Y. K. Kuo and S. K. Agarwal, "Magnetotransport, thermoelectric power, thermal conductivity and specific heat of Pr2/3Sr 1/3 MnO3 manganite", J. Appl. Phys. 104, 083906 (2008).
    [56] Fei Gong, Wei Tong, Shun Tan and Yuheng Zhang, "Large effect of small Zn doping on the electric and magnetic properties in LaMn1-xZnxO3", Phys. Rev. B 68, 174410 (2003).
    [57] Ji Qing, Lv Bin, P. F. Wang, H. L. Cai, X. S. Wu, G. H. Liu and G. S. Luo, "Effects of A-site cation disorder on structure and magnetocaloric properties in Y and Sr codoped La 2/3 Ca1/3MnO3 compounds", J. Appl. Phys. 105, 07D713 (2009).
    [58] A. S. Moskvin, "Disproportionation and electronic phase separation in parent manganite LaMnO3 ", Phys. Rev. B 79, 115102 (2009).
    [59] A. G. Gamzatov, A. B. Batdalov, O. V. Melnikov and O. Yu. Gorbenko,"Spin-polarized transport in the manganite La0.85Ag0.15MnO3", Low Temp. Phys. 35, 219 (2009).
    [60] Robert B. Griffiths, "Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet", Phys. Rev. Lett. 23, 17 (1969).
    [61] P. Levy, F. Parisi, L. Granja, E. Indelicato and G. Polla, "Novel Dynamical Effects and Persistent Memory in Phase Separated Manganites", Phys. Rev. Lett. 89, 137001 (2002).
    [62] L. Ghivelder and F. Parisi, "Dynamic phase separation in La 5/8-xPrxCa 3/8 MnO3", Phys. Rev. B 71, 184425 (2005).
    [63] I. G. Deac, R. V. Tetean, M. Miron and E. Burzo, "Dynamic response of magnetic ions in the colossal magnetoresistance manganites La1-xCaxMnO3", physica status solidi (b) 243, 120 (2006).
    [64] J. Gutiérrez, F. J. Bermejo, J. M. Barandiarán, S. P. Cottrell, P. Romano, C. Mondelli, J. R. Stewart, L. Fernández Barquín and A. Pe?a, "Role of disorder and competing ferromagnetic and antiferromagnetic interactions in the magnetic, electrical, and dynamic properties of La0.7Pb0.3Mn1-xFexO3 manganites", Phys. Rev. B 73, 054433 (2006).
    [65] K. De, M. Thakur, A. Manna and S. Giri, "Unusual glassy states in LaMn0.5Fe0.5O3: Evidence of two distinct dynamical freezing processes", J. Appl. Phys. 99, 013908 (2006).
    [66] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido and Y. Tokura, "Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3", Phys. Rev. B 51, 14103 (1995).
    [67] S. L. Yuan, W. Y. Zhao, G. Q. Zhang, F. Tu, G. Peng, J. Liu, Y. P. Yang, G. Li, Y. Jiang, X. Y. Zeng, C. Q. Tang and S. Z. Jin, "Origins of both insulator–metal transition and colossal magnetoresistance in doped manganese perovskites", Appl. Phys. Lett. 77, 4398 (2000).
    [68] V. Podzorov, B. G. Kim, V. Kiryukhin, M. E. Gershenson and S. W. Cheong, "Martensitic accommodation strain and the metal-insulator transition in manganites", Phys. Rev. B 64, 140406 (2001).
    [69] K. H. Ahn, T. Lookman and A. R. Bishop, "Strain-induced metal-insulator phase coexistence in perovskite manganites", Nature 428, 401 (2004).
    [70] Brey Luis, "Electronic phase separation in manganite-insulator interfaces", Phys. Rev. B 75, 104423 (2007).
    [71] Y. Yamato, M. Matsukawa, Y. Murano, R. Suryanarayanan, S. Nimori, M. Apostu, A. Revcolevschi, K. Koyama and N. Kobayashi, "Colossal electroresistance and colossal magnetoresistive step in paramagnetic insulating phase of single crystalline bilayered manganite (La 0.4Pr0.6)1.2Sr1.8Mn 2 O7", Appl. Phys. Lett. 94, 092507 (2009).
    [1] P. Steffens, Y. Sidis, P. Link, K. Schmalzl, S. Nakatsuji, Y. Maeno and M. Braden, "Field-Induced Paramagnons at the Metamagnetic Transition of Ca1 .8Sr0.2RuO4", Phys. Rev. Lett. 99, 217402 (2007).
    [2] Z. W. Ouyang, H. Nojiri and S. Yoshii, "Unusual metamagnetic transitions in Pr0.5Ca0.5Mn0.97Ga0.03O3 studied by pulsed magnetic fields", Phys. Rev. B 78, 104404 (2008).
    [3] A. N. Ulyanov, Y. M. Kang and S. I. Yoo, "Metamagnetic transition and extremely large low field magnetocaloric effect in La0.7Ca0.3MnO3 manganite", J. Appl. Phys. 103, 07B328 (2008).
    [4] Deliang Zhu, Xiaoan Tan, Peijiang Cao, Fang Jia, Xiaocui Ma and Youming Lu, "Influence of A-site size and disorder on metamagnetic transformation in A-site substituted Pr0 .5Ca0.5MnO3", J. Appl. Phys. 105, 063914 (2009).
    [5] F. X. Hu, J. Wang, J. Shen, B. Gao, J. R. Sun and B. G. Shen, "Large magnetic entropy change with small thermal hysteresis near room temperature in metamagnetic alloys Ni51Mn49-xInx", J. Appl. Phys. 105, 07A940 (2009).
    [6] V. K. Sharma, M. K. Chattopadhyay, K. H. B. Shaeb, Anil Chouhan and S. B. Roy, "Large magnetoresistance in Ni50Mn34In16 alloy", Appl. Phys. Lett. 89, 222509 (2006).
    [7] S. Y. Yu, Z. X. Cao, L. Ma, G. D. Liu, J. L. Chen, G. H. Wu, B. Zhang and X. X. Zhang, "Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys", Appl. Phys. Lett. 91, 102507 (2007).
    [8] Jian Liu, Nils Scheerbaum, Julia Lyubina and Oliver Gutfleisch, "Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni–Mn–In–Co", Appl. Phys. Lett. 93, 102512 (2008).
    [9] V. Podzorov, B. G. Kim, V. Kiryukhin, M. E. Gershenson and S-W. Cheong, "Martensitic accommodation strain and the metal-insulator transition in manganites", phys. Rev. B 64, 140406(R) (2001).
    [10] V. Hardy, S. Majumdar, S. J. Crowe, M. R. Lees, D. McK. Paul, L. Hervé, A.Maignan, S. Hébert, C. Martin, C. Yaicle, M. Hervieu and B. Raveau, "Field-induced magnetization steps in intermetallic compounds and manganese oxides: The martensitic scenario", phys. Rev. B 69, 020407(R) (2004).
    [11] I. G. Deac, J. F. Mitchell and P. Schiffer, "Phase separation and low-field bulk magnetic properties of Pr0 .7Ca0.3MnO3", Phys. Rev. B 63, 172408 (2001).
    [12] P. Levy, F. Parisi, L. Granja, E. Indelicato and G. Polla, "Novel Dynamical Effects and Persistent Memory in Phase Separated Manganites", Phys. Rev. Lett. 89, 137001 (2002).
    [13] I. G. Deac, S. V. Diaz, B. G. Kim, S.-W. Cheong and P. Schiffer, "Magnetic relaxation in La0.250Pr0.375Ca0.375MnO3 with varying phase separation", Phys. Rev. B 65, 174426 (2002).
    [14] D. S. Rana, D. G. Kuberkar, M. B. Stone, P. Schiffer and S. K. Malik, "Metamagnetic steps in Eu-based manganite compounds", J. Appl. Phys. 97, 10H710 (2005).
    [15] D. S. Rana, D. G. Kuberkar and S. K. Malik, "Field-induced abrupt change in magnetization of the manganite compounds (LaR)0.45(CaSr)0.55MnO3 (R = Eu and Tb)", Phys. Rev. B 73, 064407 (2006).
    [16] P. Levy, F. Parisi, G. Polla, D. Vega, G. Leyva, H. Lanza, R. S. Freitas and L. Ghivelder, "Controlled phase separation in La0.5Ca0.5MnO3", Phys. Rev. B 62, 6437 (2000).
    [17] V. Hardy, A. Maignan, S. Hébert, C. Yaicle, C. Martin, M. Hervieu, M. R. Lees, G. Rowlands, D. Mc Paul and B. Raveau, "Observation of spontaneous magnetization jumps in manganites", Phys. Rev. B 68, 220402 (2003).
    [18] D. S. Rana and S. K. Malik, "Magnetic avalanchelike behavior in the disordered manganite (Eu0.4La0.1)(Sr0.4Ca0.1)MnO3", Phys. Rev. B 74, 052407 (2006).
    [19] K. H. Kim, M. Uehara, C. Hess, P. A. Sharma and S-W. Cheong, "Thermal and Electronic Transport Properties and Two-Phase Mixtures in La 5/8-xPrxCa 3/8 MnO3", Phys. Rev. Lett. 84, 2961 (2000).
    [20] P. Levy, F. Parisi, M. Quintero, L. Granja, J. Curiale, J. Sacanell, G. Leyva, G. Polla, R. S. Freitas and L. Ghivelder, "Nonvolatile magnetoresistive memory in phase separated La0 .325Pr0.300Ca0.375MnO3", Phys. Rev. B 65, 140401 (2002).
    [21] Y. Q. Ma, W. H. Song, J. M. Dai, R. L. Zhang, J. Yang, B. C. Zhao, Z. G. Sheng, W. J. Lu, J. J. Du and Y. P. Sun, "Effect of electric current on the charge-ordered state in La5 /8-yPryCa3/8MnO3", Phys. Rev. B 70, 054413 (2004).
    [22] M. Quintero, A. G. Leyva, P. Levy, F. Parisi, O. Agüero, I. Torriani, M. G. das Virgens and L. Ghivelder, "Phase coexistence regimes in La 0.325Pr0.300Ca0.375MnO3", Physica B 354, 63 (2004).
    [23] L. Ghivelder and F. Parisi, "Dynamic phase separation in La 5/8-xPrxCa 3/8 MnO3", Phys. Rev. B 71, 184425 (2005).
    [24] Joaquin Sacanell, A. G. Leyva and P. Levy, "Electrical current effect in phase-separated La5/8-yPryCa 3/8 MnO3: Charge order melting versus Joule heating", J. Appl. Phys. 98, 113708 (2005).
    [25] Hong-Ying Zhai, J. X. Ma, D. T. Gillaspie, X. G. Zhang, T. Z. Ward, E. W. Plummer and J. Shen, "Giant Discrete Steps in Metal-Insulator Transition in Perovskite Manganite Wires", Phys. Rev. Lett. 97, 167201 (2006).
    [26] F. Macià, G. Abril, A. Hernández-Mínguez, J. M. Hernandez, J. Tejada and F. Parisi, "Magnetic fingerprints of the very fast jumps of colossal magnetoresistance in the phase-separated manganite La0.225Pr0.40Ca0.375MnO3", Phys. Rev. B 77, 012403 (2008).
    [27] Udai Raj Singh, S. Chaudhuri, Shyam K. Choudhary, R. C. Budhani and Anjan K. Gupta, "Tunneling study of the charge-ordering gap on the surface of La 0.350Pr0.275Ca0.375MnO3 thin films", Phys. Rev. B 77 (1), 014404 (2008).
    [28] Jing Chen, Hong-wei Zhang, Li-gang Zhang, Ji-rong Sun and Bao-gen Shen, "Metamagnetic transition and magnetic phase diagram in NaZn13-type Pr0.2La0.8Fe11.4Al1.6 compound", J. Appl. Phys. 102 (11), 113905 (2007).
    [29] Z. Q. Mao, M. Zhou, J. Hooper, V. Golub and C. J. O'Connor, "Phase Separation in the Itinerant Metamagnetic Transition of Sr4 Ru 3 O10", Phys. Rev. Lett. 96, 077205 (2006).
    [30] Hae-Young Kee, Eugene H. Kim and Chung-Hou Chung, "Signatures of an electronic nematic phase at the isotropic-nematic phase transition", Phys. Rev. B 68, 245109 (2003).
    [31] Qingyou Lu, Chun-Che Chen and Alex de Lozanne, "Observation of Magnetic Domain Behavior in Colossal Magnetoresistive Materials With a Magnetic Force Microscope", Science 276, 2006 (1997).
    [32] S. A. Grigera, R. S. Perry, A. J. Schofield, M. Chiao, S. R. Julian, G. G. Lonzarich, S. I. Ikeda, Y. Maeno, A. J. Millis and A. P. Mackenzie, "Magnetic Field-Tuned Quantum Criticality in the Metallic Ruthenate Sr3Ru2 O7", Science 294, 329 (2001).
    [33] Igor Khavkine, Chung-Hou Chung, Vadim Oganesyan and Hae-Young Kee, "Formation of an electronic nematic phase in interacting fermion systems", Phys. Rev. B 70, 155110 (2004).
    [34] S. A. Grigera, P. Gegenwart, R. A. Borzi, F. Weickert, A. J. Schofield, R. S. Perry, T. Tayama, T. Sakakibara, Y. Maeno, A. G. Green and A. P. Mackenzie, "Disorder-Sensitive Phase Formation Linked to Metamagnetic Quantum Criticality", Science 306, 1154 (2004).
    [35] Hae-Young Kee and Yong Baek Kim, "Itinerant metamagnetism induced by electronic nematic order", Phys. Rev. B 71, 184402 (2005).
    [36] Doh Hyeonjin, Friedman Nir and Kee Hae-Young, "Interplay between parallel and diagonal electronic nematic phases in interacting systems", Phys. Rev. B 73, 125117 (2006).
    [37] Christoph Puetter, Hyeonjin Doh and Hae-Young Kee, "Metanematic transitions in a bilayer system: Application to the bilayer ruthenate", Phys. Rev. B 76, 235112 (2007).
    [38] Hyeonjin Doh and Hae-Young Kee, "Direct probe of electronic nematic order: Symmetry information in scanning tunneling microscope images", Phys. Rev. B 75, 233102 (2007).
    [39] R. A. Borzi, S. A. Grigera, J. Farrell, R. S. Perry, S. J. S. Lister, S. L. Lee, D. A. Tennant, Y. Maeno and A. P. Mackenzie, "Formation of a Nematic Fluid atHigh Fields in Sr 3 Ru2 O7", Science 315, 214 (2007).
    [40] Guixin Cao, Jincang Zhang, Shixun Cao, Chao Jing and Xuechu Shen, "Magnetization step, history-dependence, and possible spin quantum transition in Pr5 /8 Ca3/8MnO3 manganites", Phys. Rev. B 71, 174414 (2005).
    [41] R. Mahendiran, A. Maignan, S. Hébert, C. Martin, M. Hervieu, B. Raveau, J. F. Mitchell and P. Schiffer, "Ultrasharp Magnetization Steps in Perovskite Manganites", Phys. Rev. Lett. 89, 286602 (2002).
    [42] Sunil Nair, A. K. Nigam, A. V. Narlikar, D. Prabhakaran and A. Boothroyd, "Phase separation, memory effects, and magnetization steps in single crystalline La1 .1Sr1.9Mn2O7", Phys. Rev. B 74, 132407 (2006).
    [43] S. Hébert, A. Maignan, V. Hardy, C. Martin, M. Hervieu, B. Raveau, R. Mahendiran and P. Schiffer, "Magnetization and resistivity steps in the phase separated Pr0 .5Ca0.5Mn1 -x NixO3 manganites", Eur. Phys. J. B 29, 419 (2002).
    [1] N. B. Srivastava, L. N. Singh and C. M. Srivastava, "Correlated polaron transport and metal-insulator transition in La1-xSrxMnO3", J. Appl. Phys. 105, 07D704 (2009).
    [2] Myron B. Salamon and Marcelo Jaime, "The physics of manganites: Structure and transport", Rev. Mod. Phys. 73, 583 (2001).
    [3] S. Kolesnik, B. Dabrowski and O. Chmaissem, "Structural and physical properties of SrMn 1-xRuxO3 perovskites", Phys. Rev. B 78, 214425 (2008).
    [4] T. Z. Ward, X. G. Zhang, L. F. Yin, X. Q. Zhang, Liu Ming, P. C. Snijders, S. Jesse, E. W. Plummer, Z. H. Cheng, E. Dagotto and J. Shen, "Time-Resolved Electronic Phase Transitions in Manganites", Phys. Rev. Lett. 102, 087201 (2009).
    [5] M. Egilmez, K. H. Chow, J. Jung, I. Fan, A. I. Mansour and Z. Salman, "Metal-insulator transition, specific heat, and grain-boundary-induced disorder in Sm0 .55Sr0.45MnO3", Appl. Phys. Lett. 92, 132505 (2008).
    [6] K. Takubo, J. Y. Son, T. Mizokawa, N. Takubo and K. Miyano, "Observation of photoinduced phase transition in phase-separated Pr0.55(Ca1-ySry)0.45MnO3 thin films via x-ray photoemission spectroscopy", Phys. Rev. B 75, 052408 (2007).
    [7] Dho Joonghoe, W. S. Kim and N. H. Hur, "Reentrant Spin Glass Behavior in Cr-Doped Perovskite Manganite", Phys. Rev. Lett. 89, 027202 (2002).
    [8] N. Takeshita, C. Terakura, D. Akahoshi, Y. Tokura and H. Takagi, 105"Pressure-induced transition from a spin glass to an itinerant ferromagnet in the half-doped manganite L0.5Ba0.5MnO3 (L = Sm and Nd) with quenched disorder", Phys. Rev. B 69, 180405 (2004).
    [9] E. Granado, R. R. Urbano, C. A. Perez, C. Azimonte, J. W. Lynn, R. A. Souza, N. M. Souza-Neto, A. Y. Ramos, G. L. Bychkov, S. V. Shiryaev and S. N. Barilo, "Strong orbital correlations in a Fe-substituted spin-glass-manganite", Phys. Rev. B 72, 052406 (2005).
    [10] R. M. Pickup, R. Cywinski, C. Pappas, B. Farago and P. Fouquet, "Generalized Spin-Glass Relaxation", Phys. Rev. Lett. 102, 097202 (2009).
    [11] C. Raj Sankar and P. A. Joy, "Magnetic properties of the self-doped lanthanum manganites La 1-xMnO3", Phys. Rev. B 72, 024405 (2005).
    [12] T. Sudyoadsuk, R. Suryanarayanan and P. Winotai, "Enhancement of TC and the re-entrant spin glass transition in La0.86Ca0.14Mn1-yCryO3 (y = 0, 0.1 and 0.2)", J. Phys.: Condens. Matter 16, 3691 (2004).
    [13] S. K. Hasanain, Wiqar Hussain Shah, Arif Mumtaz, M. Nadeem and M. J. Akhtar, "Re-entrant spin freezing behavior in La0.85Ca0.15Mn0.95Fe0.05O3 manganite", J. Magn. Magn. Mater. 271, 79 (2004).
    [14] K. H. Fischer, "Static properties of spin glasses", Phys. Rev. Lett. 34, 1438 (1975).
    [15] D. Sherrington, "Recent developments in the theory of spin glasses", AIP Conf. Proc. 29, 224 (1976).
    [16] T. Shirakura and F. Matsubara, "Low Temperature Phase of Asymmetric Spin Glass Model in Two Dimensions", Phys. Rev. Lett. 79, 2887 (1997).
    [17] P. A. Joy and S. K. Date, "Comparison of the zero-field-cooled magnetization behavior of some ferromagnetic and ferrimagnetic systems", J. Magn. Magn. Mater. 218, 229 (2000).
    [18] Coulon Claude, Clerac Rodolphe, Wernsdorfer Wolfgang, Colin Thierry, Saitoh Ayumi, Motokawa Natsuko and Miyasaka Hitoshi, "Effect of an applied magnetic field on the relaxation time of single-chain magnets", Phys. Rev. B 76, 214422 (2007).
    [19] Y. Qiu, K. Nasu and C. Q. Wu, "Relaxation of ferroelectric domains in photoexcited three-dimensional SrTiO3 ", Phys. Rev. B 75, 064103 (2007).
    [20] K. L. Krycka, B. B. Maranville, J. A. Borchers, F. J. Castano, B. G. Ng, J. C. Perkinson and C. A. Ross, "Magnetic domain formation within patterned NiFe/Cu/Co ellipses", J. Appl. Phys. 105, 07C120 (2009).
    [21] S. Tosima and M. Nishikawa, "Critical field variations for domain-wall motion in ferroelectric/ferroelastic Gd 2 (MoO4 )3", J. Appl. Phys. 48, 3169 (1977).
    [22] B. Willing and J. C. Maan, "Nonlinear transport in semi-insulating GaAs: Critical fields and nucleation of high-field domains", Phys. Rev. B 49, 13995 (1994).
    [23] Petit Dorothee, Jausovec Ana-Vanessa, Read Dan and P. Cowburn Russell, "Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires", J. Appl. Phys. 103, 114307 (2008).
    [24] Czerner Michael, Yavorsky Bogdan Yu and Mertig Ingrid, "Magnetic order in geometrically constrained domain walls", J. Appl. Phys. 103, 07F304 (2008).
    [25] J. E. Garcia, V. Gomis, R. Perez, A. Albareda and J. A. Eiras, "Unexpected dielectric response in lead zirconate titanate ceramics: The role of ferroelectric domain wall pinning effects", Appl. Phys. Lett. 91, 042902 (2007).
    [26] Hara Masahiro, Shibata Junya, Kimura Takashi and Otani Yoshichika, "Control of domain wall pinning by a switchable magnetic gate", Appl. Phys. Lett. 89, 192504 (2006).
    [27] N. M. Dempsey, M. Ghidini, J. P. Nozieres, P. A. I. Smith, B. Gervais and J.M. D. Coey, "Magnetic Hardening of Sm2 Fe17N3 by Radiation Damage", Phys. Rev. Lett. 81, 5652 (1998).
    [28] S. Smith Jesse, J. A. Zan, C. L. Lin and Li Jing, "Electric, thermal, and magnetic properties of CeSix with 1.57 < x≤2.0", J. Appl. Phys. 97, 10A905 (2005).
    [29] R. Montes de Oca, E. Amano and R. Valenzuela, "The thermal behavior of the critical magnetic field in amorphous ribbons", J. Appl. Phys. 63, 3391 (1988).
    [30] P. Gaunt, "Magnetic viscosity and thermal activation energy", J. Appl. Phys. 59, 4129 (1986).
    [31] Kurian Joji and R. Singh, "Electron spin resonance studies of Bi 0.55Ca0.45MnO3 nanoparticles", J. Appl. Phys. 105, 07D718 (2009).
    [32] D. Schrade, R. Mueller, B. X. Xu and D. Gross, "Domain wall pinning by point defects in ferroelectric materials", Proc. SPIE 6526, 65260B (2007).
    [33] Jourdan Thomas, Lancon Frederic and Marty Alain, "Pinning of magnetic domain walls to structural defects in thin layers within a Heisenberg-type model", Phys. Rev. B 75, 094422 (2007).
    [34] Qingyou Lu, Chun-Che Chen and Alex de Lozanne, "Observation of Magnetic Domain Behavior in Colossal Magnetoresistive Materials With a Magnetic Force Microscope", Science 276, 2006 (1997).
    [35] Run-Wei Li, Teruo Kanki, Hide-Aki Tohyama, Jun Zhang, Hidekazu Tanaka, Akihiko Takagi, Takuya Matsumoto and Tomoji Kawai, "Atomic force microscope lithography in perovskite manganite La0.8Ba0.2MnO3 films", J. Appl. Phys. 95, 7091 (2004).
    [36] Yanagisawa Yoshihiko, Hirooka Motoyuki, Tanaka Hidekazu and Kawai Tomoji, "Nanoscale patterning of (La,Pr,Ca)MnO3 thin film using atomic force microscopy lithography and their electrical properties", J. Appl. Phys. 100, 124316 (2006).
    [37] Junwei Huang, Changbae Hyun, Tien-Ming Chuang, Jeehoon Kim, J. B. Goodenough, J.-S. Zhou, J. F. Mitchell and Alex de Lozanne, "Magnetic state of La1.36Sr1.64Mn2 O7 probed by magnetic force microscopy", Phys. Rev. B 77, 024405 (2008).
    [38] N. Kikuchi, S. Okamoto and O. Kitakami, "The critical size between single domain and multidomain in L10-FePt particles", J. Appl. Phys. 103, 07D511 (2008).
    [39] S. H. Ahn, W. W. Jung and S. K. Choi, "Size dependence of initial polarization direction in nanosized epitaxial PbTiO3 islands fabricated by hydrothermal epitaxy below Curie temperature", Appl. Phys. Lett. 86, 172901 (2005).
    [40] Surowiak Zygmunt, G. Fesenko Evgeni, G. Gavrilachenko Vladimir, D. Komarov Vladimir and Czekaj Dionizy, "Phase transitions in PbTiO3 microcrystals of different size", Proc. SPIE 5136, 78 (2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700