用户名: 密码: 验证码:
超声背散射法评价松质骨状况的参数估计及其成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨质疏松症是影响公众健康的重要问题之一。患有骨质疏松时,松质骨的骨矿密度(BMD)下降、骨微结构退化。相比于双能X线吸收法(DXA)、定量CT(OCT)等诊断方法,超声诊断具有无电离辐射、便捷、速度快、价格低廉等优势。传统的超声透射法使用双探头获得人体跟骨处的超声透射信号,以参数宽带超声衰减(BUA)和超声传导速度(SOS)反映BMD信息。而超声背散射方法使用单探头,易于探测跟骨以外的骨组织(例如脊骨、腕骨等),且超声背散射信号中含有全部的骨微结构信息,因而超声背散射法诊断骨质疏松的技术越来越受到研究者的重视。
     本文以松质骨中的超声背散射信号分析、松质骨微结构参数估计、超声背散射参数成像为主线,主要研究了以下内容:
     1.在介绍松质骨超声背散射模型的基础上,实验分析了单圆柱仿体的超声背散射频率特性,从而验证单圆柱模型解释松质骨中超声背散射的可行性,为超声背散射信号中含有松质骨的微结构信息提供理论依据。
     2.在松质骨微结构中,主要的散射元为骨小梁,平均骨小梁间距(MTBS)是松质骨微结构的重要参数之一,患有骨质疏松时MTBS会增大。因此,在以上研究的基础上,本文对直接从超声背散射信号中估计MTBS的算法进行研究。
     (1)提出适合松质骨超声背散射的仿真系统,在系统中将影响MTBS估计的组织特性具体为四个主要参数:MTBS、间距的标准差、弥散散射与规则散射的回波能量比、以及所有散射回波与噪声的能量比。
     (2)提出两种从超声背散射信号中估计MTBS的算法:频率域的改进的倒谱算法和时间域的简易反向滤波跟踪(SIFT)算法。通过仿真、仿体、离体牛胫骨、在体人体跟骨实验将提出的算法与已有的常用算法进行比较。其中,仿真信号由本文提出的适合松质骨超声背散射的仿真系统获得;仿体、离体牛胫骨、在体人体跟骨信号由本文搭建的背散射系统获得。实验结果表明,改进的倒谱方法比传统倒谱方法有更大的有效MTBS估计范围,并对骨小梁间距的变化、弥散散射和噪声有更强的鲁棒性;而提出的时间域的SIFT算法不仅比基于频率域的方法(倒谱法和二次变换法)鲁棒性更强,而且稳定性更好。
     3.由于松质骨的各向异性,松质骨微结构中各点的声特性并不一致,而超声背散射参数成像可直观给出一个区域的松质骨微结构信息。因此,本文对松质骨超声背散射参数成像进行了研究。
     (1)提出基于超声背散射法的超声参数成像方法,对四个超声参数(声特性阻抗(Z_b)、表观背散射系数(BC)、表观积分背散射系数(AIB)、和频谱偏移量(SMS))进行估计,以离体牛胫骨为样本实现了这四个参数成像;
     (2)对四个超声参数与微CT获得的松质骨微结构参数(平均骨小梁厚度(Tb.Th)、平均骨小梁间距(Tb.Sp,微CT使用的MTBS术语)、骨体积分数(BV/TV)、骨表面积体积比(BS/BV)和骨材料密度(BD))作了相关性分析。结果表明,Zb、BC、AIB、SMS参数图像从不同角度给出了松质骨物理特性的分布结果:
     ①Z_b参数与骨微结构无较强相关性(Tb.Th,r=-0.233;Tb.Sp,r=0.257),但与骨材料密度(BD)的相关性较强(r=0.448,p<0.05)。Z_b参数图像表征的是不同位置处松质骨表面的物理特性。
     ②BC和AIB参数与Tb.Sp有较强的负相关关系r=-0.513~0.596,p<0.01),而与Tb.Th呈现正相关(r=0.265~0.339),但相关性并不显著,与BV/TV和BS/BV的相关性也并不明显。BC和AIB参数图像表征的是不同位置处松质骨内部骨小梁网状结构的散射强度。
     ③SMS参数与Tb.Th、Tb.Sp、BV/TV、BS/BV和BD均有较强相关性(Tb.Th,r=-0.699,p<0.01;Tb.Sp,r=0.477,p<0.05;BV/TV,r=-0.675,p<0.01;BS/BV,r=0.663,p<0.01;BD,r=0.663,p<0.01)。SMS参数图像表征的是不同位置处松质骨结构引起超声能量损失的程度。
     ④BC、AIB参数值的标准差与骨结构信息有较为显著(p<0.01)的相关性(Tb.Th,r=-0.550~-0.645;Tb.Sp,r=0.405~0.627;BV/TV,r=-0.572~-0.668;BS/BV,r=0.513~0.640);SMS参数值的标准差也有类似的结果(Tb.Th,r=-0.720;Tb.Sp,r=0.771;BV/TV,r=-0.754;BS/BV,r=0.802),这说明BC、AIB和SMS参数的空间变化量可能有助于骨质疏松的诊断。
     以上研究结果为超声背散射法评价松质骨状况和诊断骨质疏松提供了一定的理论依据。
Osteoporosis (OP) has been becoming a serious public issue. Cancellous bonewith this chronic bone disease has low bone mineral density (BMD) and deterioratedbone microstructure. Compared with DXA, QCT and other diagnostic methods,ultrasound diagnostic technique offers advantages including lack of ionizing radiation,portability, speediness and low cost. Conventional ultrasound diagnostic technique isultrasonic transmission method, in which two transducers are used to acquireultrasonic transmission signals at human calcaneous bone and then ultrasonicparameters (broadband ultrasound attenuation (BUA) and speed of sound (SOS)) arecalculated to represent BMD. The novel ultrasound technique is ultrasonic backscattermethod, which uses only one transducer, thus enabling direct analysis of somecommon fracture sites such as spine and wrist other than the cancaneus. In addition,ultrasonic backscatter can provide additional microstructure information. Thus,currently, researchers have been becoming interested in investigating the potential ofultrasonic backscatter for osteoporosis diagnosis.
     This thesis was organized with the thought of starting from ultrasonic backscattersignal analysis to bone's micro-structural parameter estimation, and ending withultrasonic backscatter parametric imaging of cancellous bone. The contents aresummarized as follows:
     1. Based on the introduction of ultrasonic backscatter theoretical model ofcancellous bone, single-cylindrical phantom experiments were conducted to analyzethe frequency-dependence of ultrasonic backscatter, thus verifying the ability ofsingle-cylindrical model to explain ultrasonic backscatter. This can help providetheoretical foundation for the concept that ultrasonic backscatter signals can offeradditional microstructure information of cancellous bone.
     2. In cancellous bone, trabeculae are considered as major scatterers, and the meanspace of these trabeculae (Mean trabecular Bone Spacing, MTBS) is an importantparameter to characterize cancellous bone. This thesis conducted some researches ondirectly extracting MTBS information from ultrasonic backscatter signals usingseveral signal processing algorithms.
     (1) A simulation system is proposed to generate ultrasonic backscatter simulatedsignals for cancellous bone. In the system, the characterization of quasi-periodicmicrostructures of cancellous bone can almost be represented by four parameters: mean trabecular bone spacing (MTBS), regular+diffuse scattering to white noise SNR(SNR_(wn)), standard deviation of regular spacing (JITTER), and amplitude ratio ofdiffuse scatterers to regular ones (A_d).
     (2) Two algorithms are presented to estimate MTBS from ultrasonic backscattersignals: a frequency-domain based technique named improved AR cepstrum and atime-domain based technique named Simplified Inverse Filter Tracking (SIFT)algorithm. Comparisons were conducted to test the performance of the two proposedmethods using the backscatter data from simulation system, phantom, bovinetrabeculae in vitro, and human calcaneous bone in vivo. The simulated data weregenerated from the proposed simulation system, and the real backscatter data fromphantom and bone samples were acquired by a backscatter measurement system.Experimental results demonstrated that the improved AR cepstrum has a larger MTBSestimation range, and more robustness to the randomness in trabecular spacing,diffuse scattering and noise than the conventional AR cepstrum. On the other hand,the proposed SIFT algorithm outperformed the AR cepstrum technique in all casesand compared well with the quadratic transformation (QT) technique. In addition tostronger robustness, SIFT algorithm possesses better stability than thefrequency-based methods such as AR cepstrum and QT technique.
     3. Acoustic properties are not consistent at different positions of cancellous bonedue to its high anisotropy, while ultrasonic parametric imaging can provide adirect-view of the distribution of bone microstructure information. Thus, researcheswere conducted on ultrasonic parametric imaging of cancellous bone in this thesis.
     (1) Ultrasonic parametric imaging techniques were proposed based on ultrasonicbackscatter method. Four parameters were estimated from backscattered signals,including acoustic characteristic impedance (Z_b), apparent backscatter coefficient(BC), apparent integrated backscatter coefficient (AIB) and spectrum maximum shift(SMS), and parametric images with these four parameters were constructed.
     (2) Correlations were studied between the four parameters and bonemicro-structural parameters obtained from aμ-CT, which are mean trabecularthickness (Tb.Th), mean trabecular spacing (Tb.Sp, the terminology of MTBS used asμ-CT result), bone volume/total volume ratio (BV/TV), bone surface/volume ratio(BS/BV), and bone material density (BD). Results demonstrated that Z_b, BC, AIB,SMS parametric images provide the physical property distributions of cancellous bonein different angles:
     ①Parameter Z_b has no strong correlation with bone microstructure (Tb.Th,r=-0.233; Tb.Sp, r=0.257), but a mediate correlation with bone material density (BD)(r=0.448, p<0.05). The Z_b parametric image can show the physical properties relatedto the upper surface of cancellous bone at different locations.
     ②Parameter BC and AIB have negative correlations with Tb.Sp (r=-0.513~-0.596, p<0.01) and increase with Tb.Th (r=0.265~0.339), but the correlation withTb.Th is not significant as well as the correlations with BV/TV and BS/BV. The BCand AIB parametric images can offer the distribution of backscatter strengths of innerbone microstructure.
     ③Parameter SMS has mediate and significant correlations with all theparameters obtained fromμ-CT (Tb.Th, r=-0.699, p<0.01; Tb.Sp, r=0.477, p<0.05;BV/TV, r=-0.675, p<0.01; BS/BV, r=0.663, p<0.01; BD, r=0.663, p<0.01). The SMSparametric image displays the distribution of ultrasonic energy lost when ultrasoundpenetrates into and propagates inside bone microstructure.
     ④The spatial variation of BC and AIB values was significantly (p<0.01) relatedwith bone micro-structural parameters (Tb.Th, r=-0.550~-0.645; Tb.Sp, r=0.405~0.627; BV/TV, r=-0.572~-0.668; BS/BV, r=0.513~0.640), and the spatial variation ofSMS has the similar result (Tb.Th, r=-0.720; Tb.Sp, r=0.771; BV/TV, r=-0.754;BS/BV, r=0.802), which indicate that the spatial variation of parameters BC, AIB andSMS may help characterize bone quality and osteoporosis diagnosis.
     Research results in this thesis provide theoretical support for ultrasonicbackscatter in evaluating the status of cancellous bone and diagnosing osteoporosis.
引文
1 Reginster JY, Burlet N. Osteoporosis: a still increasing prevalence. Bone, 2006, 38: S4-9.
    2 Nidus Information Services I. Osteoporosis Annual Report. Osteoporosis, 2006: Report #18.
    3 Hoffmeister BK, Jones CI, 3rd, Caldwell GJ, et al. Ultrasonic characterization of cancellous bone using apparent integrated backscatter. Phys Med Biol, 2006, 51: 27155-2727.
    4 Hakulinen MA, Day JS, Toyras J, et al. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range. Phys Med Biol, 2005, 50: 1629-1642.
    5 Borah B, Gross G, Dufresne T, et al. Three-dimensional microimaging (MR I and CT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat Rec (New Anat), 2001, 265: 101-110.
    6 李群伟.骨质疏松症的诊断及早期诊断.哈尔滨医科大学学报, 1996, 30: 589-590.
    7 Ryaby JT. Overview of osteoporosis and current diagnostic techniques. Proceedings of the 18th Annual International Conference of the IEEE, 1996, 5: 2122-2123.
    8 Genant HK, Block JE, Steiger P, et al. Quantitative computed tomography in assessment of osteoporosis. Seminars in Nuclear Medicine, 1987, 17: 316-333.
    9 Laugier P. Quantitative ultrasound of bone: looking ahead. Joint Bone Spine, 2006, 73:125-128.
    10 Padilla F, Jenson F, Bousson V, et al. Relationships of trabecular bone structure with quantitative ultrasound parameters: In vitro study on human proximal femur using transmission and backscatter measurements. Bone, 2008,42: 1193-1202.
    11 Wear KA. Ultrasonic scattering from cancellous bone: a review. IEEE Trans Ultrason Ferroelectr Freq Control, 2008, 55: 1432-1441.
    12 Evans JA, Tavakoli MB. Ultrasonic attenuation and velocity in bone. Phys Med Biol, 1990, 35:1387-1396.
    13 Serpe L, Rho J. The nonlinear transition period of broadband ultrasound attenuation as bone density varies. Journal of biomechanics, 1996, 29: 963-966.
    14 Langton C, Palmer S, Porter R. The measurement of broadband ultrasonic attenuation in cancellous bone. Engineering in medicine, 1984, 13: 89-91.
    15 Laugier P, Droin P, Laval-Jeantet A, et al. In vitro assessment of the relationship between acoustic properties and bone mass density of the calcaneus by comparison of ultrasound parametric imaging and quantitative computed tomography. Bone, 1997, 20: 157-165.
    16 Hans D. Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity.Calcified tissue international, 1999,64: 18-23.
    17 Tavakoli M, Evans J. Dependence of the velocity and attenuation of ultrasound in bone on the mineral content. Phys Med, 1991, 36: 1529-1537.
    18 Trebacz H, Natali A. Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebra and calcaneus. Osteoporosis Int, 1999, 9: 99-105.
    19 Chaffa(i|¨) S, Peyrin F, Nuzzo S, et al. Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure. Bone, 2002, 30: 229-237.
    20 Padilla F, Laugier P. Recent developments in trabecular bone characterization using ultrasound. Current Osteoporosis Reports, 2005, 3: 64-69.
    21 Hans D, Njeh C, Genant H, et al. Quantitative ultrasound in bone status assessment. Revue du rhumatisme(English ed.), 1998, 65: 489-498.
    22 Huang K, Ta DA, Wang WQ, et al. Simplified inverse filter tracking algorithm for estimating the mean trabecular bone spacing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2008, 55: 1453-1464.
    23 他得安,王威琪,汪源源,等.基于自回归倒谱法估计骨小梁间距.仪器仪表学报,2007,28:17-22.
    24 黄凯,他得安,王威琪,等.基于反向滤波器的倒谱法估计平均骨小梁间距.航天医学与医学工程,2007,20:451-454.
    25 黄凯,他得安,王威琪.谱自相关法估计骨小梁间距.声学技术,2007,26:1048-1049.
    26 Wear KA, Laib A. The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: theoretical and experimental results. IEEE Trans Ultrason Ferroelectr Freq Control, 2003, 50: 979-986.
    27 Chaffa(i|¨) S, Padilla F, Berger G, et al. In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: relationships to bone mineral density. J Acoust Soc Am, 2006, 119: 654-663.
    28 Padilla F, Peyrin F, Laugier P. Prediction of frequency-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model. Ultrasound Med Biol., 2003, 29: 455-464.
    29 Wear KA. Frequency dependence of ultrasonic backscatter from human trabecular bone: Theory and experiment. J Acoust Soc Am, 1999, 106: 3659-3664.
    30 Riekkinen O, Hakulinen MA, Toyras J, et al. Spatial variation of acoustic properties is related with mechanical properties of trabecular bone. Phys Med Biol, 2007, 52:6961-6968.
    31 Wear KA, Harris GR. Frequency dependence of backscatter from thin, oblique, finitelength cylinders measured with a focused transducer-with applications in cancellous bone. J Acoust Soc Am, 2008, 124: 3309-3314.
    32 Chaffa(i|¨) S, Roberjot V, Peyrin F, et al. Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results. J Acoust Soc Am, 2000, 108: 2403-2411.
    33 Ta DA, Wang WQ, Huang K, et al. Analysis of frequency dependence ultrasonic backscatter coefficient in cancellous bone. J Acoust Soc Am, 2008, 124: 4083-4090.
    34 Hoffmeister BK, Johnson DP, Janeski JA, et al. Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6-15.0 MHz. IEEE Trans Ultrason Ferroelectr Freq Control, 2008, 55: 1442-1452.
    35 他得安,王威琪,汪源源,等.超声背散射系数评价松质骨状况的可行性研究.航天医学与医学工程,2005,18:365-369.
    36 黄凯,他得安,王威琪.估计骨小梁间距的信号处理方法.国际生物医学工程杂志,2007,30:10-14.
    37 Simon C, J. Shen, R. Seip, et al. A Robust and Computationally Efficient Algorithm for Mean Scatterer spacing estimation. IEEE Trans Ultrason Ferro Freq Cont, 1997, 44: 882-894.
    38 Landini L, Verrazzani L. Spectral characterization of tissues microstructure by ultrasounds: a stochastic approach. IEEE Trans Ultrason Ferroelectr Freq Control, 1990, 37: 448-456.
    39 他得安,王威琪,汪源源,等.基于超声背散射信号分析松质骨中的声阻抗.中国生物医学工程学报,2007,26:487-492.
    40 Laugier P, Foumier B, Berger G. Ultrasound parametric imaging of bone in vivo. IEEE Ultrasonics Symposium, 1995: 1137-1140.
    41 Gomez MA, Defontaine M, Giraudeau B, et al. In vivo performance of a matrix-based quantitative ultrasound imaging device dedicated to calcaneus investigation. Ultrasound Med Biol, 2002, 28: 1285-1293.
    1 Evans JA, Tavakoli MB. Ultrasonic attenuation and velocity in bone. Phys Med Biol, 1990, 35: 1387-1396.
    2 Wear KA. Ultrasonic attenuation in human calcaneus from 0.2 to 0.7 MHz. IEEE Trans Ultrason Ferroelectr Freq Control, 2001, 48: 602-608.
    3 Wear KA. Measurements of phase velocity and group velocity in human calcaneus, ultrasound Med & biol., 2000, 26: 641-646.
    4 Njeh CF, Fuerst T, E D. Is Quantitative Ultrasound Dependent on Bone Structure? A Refection. Osteoporos Int, 2001, 12: 1-15.
    5 Chaffa(i|¨) S, Padilla F, Berger G, et al. In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: relationships to bone mineral density. J Acoust Soc Am, 2006, 119: 654-663.
    6 Dean Ta, Kai Huang, Weiqi Wang, et al. Predict ultrasonic backscatter coefficient in cancellous bone by theory and experiment. Proceedings of the 27th Annual International Conference of the IEEE-EMBS, Shanghai, China, 2005: 1131-1134.
    7 Hoffmeister BK, Johnson DP, Janeski JA, et al. Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6-15.0 MHz. IEEE Trans Ultrason Ferroelectr Freq Control, 2008, 55: 1442-1452.
    8 Riekkinen O, Hakulinen MA, Toyras J, et al. Spatial variation of acoustic properties is related with mechanical properties of trabecular bone. Phys Med Biol, 2007, 52: 6961-6968.
    9 Bossy E, Padilla F, Peyrin F, et al. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography. Phys Med Biol, 2005, 50: 5545-5556.
    10 Wear KA. Frequency dependence of ultrasonic backscatter from human trabecular bone: Theory and experiment. J Acoust Soc Am, 1999, 106: 3659-3664.
    11 Chaffa(i|¨) S, Roberjot V, Peyrin F, et al. Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results. J Acoust Soc Am., 2000, 108: 2403-2411.
    12 Dean Ta, Weiqi Wang, Kai Huang, et al. Analysis of frequency dependence ultrasonic backscatter coefficient in cancellous bone. J Acoust Soc Am, 2008, 124(6): 4083-4090.
    13 黄凯,他得安,王威琪.骨小梁建模及其超声背散射的频率分析.应用声学,2009.
    14 Faran JJ. Sound Scattering by Solid Cylinders and Spheres. J Acoust Soc Am, 1951, 23: 405-418.
    15 Wear KA, Harris GR. Frequency dependence of backscatter from thin, oblique, finitelength cylinders measured with a focused transducer-with applications in cancellous bone. J Acoust Soc Am, 2008, 124: 3309-3314.
    16 MF Insana, Brown D. Acoustic scattering theory applied to soft biological tissues, in Ultrasonic Scattering in Biological Tissues, edited by KK Shung and GA Thieme Eds. BocaRaton FL: CRC Press, pp. 75-124. 1993.
    17 PM M, KU I. Theoretical Acoustics. Princeton University Press, Princeton, 1986. 1986.
    18 K. Kitamura, H. Pan, S. Ueha, et al. Ultrasonic scattering study of cancellous bone for osteoporosis diagnosis. Jpn J Appl Phys, 1996, 35: 3156-3162.
    19 Apostolopoulos KN, DD D. Influence of microarchitecture alterations on ultrasonic backscattering in an experimental simulation of bovine cancellous bone aging. J Acoust Soc Am. 2008; 123(2): 1179-87.
    20 他得安,王威琪,汪源源,等.基于超声背散射信号分析松质骨中的声阻抗.中国生物医学工程学报,2007,26:487-492.
    21 Bilaniuk N, Wong GSK. Speed of sound in pure water as a function of temperature. J Acoust Soc Am, 1993, 93: 1609-1612.
    1 Machado CB, Pereira WCA, Meziri M, et al. Characterization of in vitro healthy and pathological human liver tissue periodicity using backscattered ultrasound signals. Ultrasound Med Biol, 2006, 32: 649-657.
    2 Bigelow T, Oelze M, O_i~-Brien Jr W. Estimation of total attenuation and scatterer size from backscattered ultrasound waveforms. J Acoust Soc Am, 2005, 117: 1431-1439.
    3 他得安,王威琪,汪源源,等.超声背散射系数评价松质骨状况的可行性研究.航天医学与医学工程,2005,18:365-369.
    4 黄凯,他得安,王威琪,等.基于简易反向滤波跟踪算法分析松质骨的微结构特征.中国生物医学工程学报,2008,27:218-223.
    5 Fellingham LL, Sommer FG. Ultrasonic characterization of tissue structure in the in vivo human liver and spleen. IEEE Trans SU, 1984, 31: 418-428.
    6 Landini L, Verrazzani L. Spectral characterization of tissue microstructure by ultrasound: A stochastic approach. IEEE Trans Ultrason Ferro Freq Cont, 1990, 37: 448-456.
    7 Varghese T, Donohue KD. Mean-scatterer spacing estimates with spectral correlation. J Acoust Soc Am, 1994, 96: 3504-3515.
    8 Simon C, Shen J, Seip R, et al. A Robust and Computationally Efficient Algorithm for Mean Scatterer spacing estimation. IEEE Trans Ultrason Ferro Freq Cont, 1997, 44: 882-894.
    9 Bige Y, Hanfeng Z, Rong W. Analysis of microstructural alterations of normal and pathological breast tissue in vivo using the AR cepstrum. Ultrasonics, 2006, 44: 211-215.
    10 黄凯,他得安,王威琪,等.准规则生物组织超声背散射信号的仿真.仪器仪表学报,2008,29:1898-1902.
    11 Narayanan VM, Molthen RC, Shankar PM, et al. Studies on ultrasonic scattering from quasi-periodic structures. IEEE Trans Ultrason Ferro Freq Cont, 1997, 44: 114-124.
    12 他得安,王威琪,汪源源,等.基于自回归倒谱法估计骨小梁间距.仪器仪表学报,2007,28:17-22.
    13 他得安,陈启敏.基于AR倒谱法研究人体脾组织微结构变化.声学技术,2000,19:118-120.
    14 Pereira WCA, Bridal SL, Coron A, et al. Singular spectrum analysis applied to backscattered ultrasound signals from in vitro human cancellous bone specimens. IEEE Trans Ultrason Ferro Freq Cont, 2004, 51: 302-312.
    15 Tsao J, Jiang G. Mean Scatterer Spacing Estimation Using Wavelet Spectrum. IEEE Trans UFFC Joint 50th Anniversary Conference, 2004: 2090-2093.
    16 Bilaniuk N, Wong GSK. Speed of sound in pure water as a function of temperature. J Acoust Soc Am, 1993, 93: 1609-1612.
    1 Hans D, Njeh C, Genant H, et al. Quantitative ultrasound in bone status assessment. Revue du rhumatisme(English ed.), 1998, 65: 489-498.
    2 黄凯,他得安,王威琪,等.准规则生物组织超声背散射信号的仿真.仪器仪表学报,2008,29:1898-1902.
    3 Machado CB, Pereira WCA, Meziri M, et al. Characterzation of in vitro healthy and pathological human liver tissue periodicity using backscattered ultrasound signals. Ultrasound Med. Bio., 2006, 32: 649-657.
    4 Bige Y, Hanfeng Z, Rong W. Analysis of microstructural alterations of normal and pathological breast tissue in vivo using the AR cepstrum. Ultrasonics, 2006, 44: 211-215.
    5 Simon C, Shen J, Seip R, et al. A Robust and Computationally Efficient Algorithm for Mean Scatterer spacing estimation. IEEE Trans Ultrason Ferro Freq Cont, 1997, 44: 882-894.
    6 Wear KA, Wagner RF, Insana MF, et al. Application of autoregressive spectral analysis to cepstral estimation of mean scatterer spacing. IEEE Trans Ultrason Ferro Freq Cont, 1993, 40: 50-58.
    7 Pereira WCA, Bridal SL, Coron A, et al. Singular spectrum analysis applied to backscattered ultrasound signals from in vitro human cancellous bone specimens. IEEE Trans Ultrason Ferro Freq Contr, 2004, 51: 302-312.
    8 Pereira CA, Maciel CD. Performance of ultrasound echo decomposition using singular spectrum analysis. Ultrasound Med & biol., 2001, 27: 1231-1238.
    9 Varghese T, Donohue KD. Mean-scatterer spacing estimates with spectral correlation. J Acoust Soc Am, 1994, 96: 3504-3515.
    10 Huang L, Donohue KD. Frequency correlation analysis for periodic echoes. Proceedings of the IEEE Southeastcon, 2000: 131-138.
    11 Simon C, Seip R, Ebbini E. Estimation of mean scatterer spacing based on autoregressive spectral analysis of pre-filtered echo data. Proceeding of IEEE Ultrasonics Symposium, 1995: 1153-1156.
    12 黄凯,他得安,王威琪,等.基于反向滤波器的倒谱法估计平均骨小梁间距.航天医学与医学工程,2007,20:451-454.
    13 Vautard R, Ghil M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys. D, 1989, 35: 395-424.
    14 Landini L, Verrazzani L. Spectral characterization of tissues microstructure by ultrasounds: a stochastic approach. IEEE Trans Ultrason Ferro Freq Control, 1990, 37: 448-456.
    15 Varghese T, Donohue KD. Estimating mean scatterer spacing with the frequency-smoothed spectral autocorrelation function. IEEE Trans Ultrason Ferro Freq Cont, 1995, 42: 451-463.
    16 他得安,陈启敏.基于AR倒谱法研究人体脾组织微结构变化.声学技术,2000,19:118-120.
    17 Laugier P. Quantitative ultrasound of bone: looking ahead. Joint Bone Spine, 2006, 73: 125-128.
    18 Kai Huang, Dean Ta, Weiqi Wang, et al. Simplified inverse filter tracking algorithm for estimating the mean trabecular bone spacing. IEEE Trans Ultrason Ferro Freq Cont, 2008, 55: 1453-1464.
    1 Reginster JY, Burlet N. Osteoporosis: a still increasing prevalence. Bone, 2006, 38: S4-9.
    2 Siffert RS, Kaufman JJ. Ultrasonic bone assessment: "the time has come". Bone, 2007, 40: 5-8.
    3 Laugier P. Quantitative ultrasound of bone: looking ahead. Joint Bone Spine, 2006,73: 125-128.
    4 Padilla F, Laugier P. Recent developments in trabecular bone characterization using ultrasound. Current Osteoporosis Reports, 2005, 3: 64-69.
    5 他得安,王威琪,汪源源,等.超声背散射系数评价松质骨状况的可行性研究.航天医学与医学工程,2005,18:365-369.
    6 他得安,王威琪,汪源源,等.基于超声背散射信号分析松质骨中的声阻抗.中国生物医学工程学报,2007,26:487-492.
    7 Dean Ta, Kai Huang, Weiqi Wang, et al. Predict ultrasonic backscatter coefficient in cancellous bone by theory and experiment. Proceedings of the 27th Annual International Conference of the IEEE-EMBS, Shanghai, China, 2005: 1131-1134.
    8 黄凯,他得安,王威琪,等.基于反向滤波器的倒谱法估计平均骨小梁间距.航天医学与医学工程,2007,20:451-454.
    9 Wear KA, Wagner RF, Insana MF, et al. Application of autoregressive spectral analysis to cepstral estimation of mean scatterer spacing. IEEE Trans Ultrason Ferro Freq Cont, 1993, 40: 50-58.
    10 Varghese T, Donohue KD. Mean-scatterer spacing estimates with spectral correlation. J Acoust Soc Am, 1994, 96:3504-3515.
    11 Huang L, Donohue KD. Frequency correlation analysis for periodic echoes. Proceedings of the IEEE Southeastcon, 2000: 131-138.
    12 Simon C, Seip R, Ebbini E. Estimation of mean scatterer spacing based on autoregressive spectral analysis of pre-filtered echo data. Proceeding of IEEE Ultrasonics Symposium, 1995: 1153-1156.
    13 Simon C, Shen J, Seip R, et al. A robust and computationally efficient algorithm for mean scatterer spacing estimation. IEEE Trans Ultrason Ferro Freq Cont, 1997,44: 882-894.
    14 Kai Huang, Dean Ta, Weiqi Wang, et al. Simplified inverse filter tracking algorithm for estimating the mean trabecular bone spacing. IEEE Trans Ultrason Ferro Freq Cont, 2008, 55:1453-1464.
    15 T. Varghese, Donohue KD. Estimating mean scatterer spacing with the frequency-smoothed spectral autocorrelation function. IEEE Trans Ultrason Ferro Freq Cont, 1995,42: 451-463.
    16 Landini L, Verrazzani L. Spectral characterization of tissues microstructure by ultrasounds: a stochastic approach. IEEE Trans Ultrason Ferro Freq Cont, 1990, 37:448-456.
    17 Pereira CA, Maciel CD. Performance of ultrasound echo decomposition using singular spectrum analysis. Ultrasound Med & biol, 2001,27: 1231-1238.
    18 Chaffai S, Peyrin F, Nuzzo S, et al. Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure.Bone, 2002, 30: 229-237.
    19 Chaffai S, Padilla F, Berger G, et al. In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: relationships to bone mineral density. J Acoust Soc Am, 2006, 119: 654-663.
    20 Wear KA. The dependencies of phase velocity and dispersion on trabecular thickness and spacing in trabecular bone-mimicking phantoms. J Acoust Soc Am, 2005, 118: 1186-1192.
    1 Du YC, Chen YF, Tsai YT, et al. Assessment of bone property using quantitative ultrasound images based on whole calcaneus. Measurement Science and Technology, 2009, 20: 015801.
    2 Qin YX, Lin W, Xia Y, et al. Non-invasive bone quality assessment using quantitative ultrasound imaging and acoustic parameters. In "Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials," edited by L. Qin and H. Genant. Springer, 2007.
    3 Xia Y, Lin W, Qin YX. Bone surface topology mapping and its role in trabecular bone quality assessment using scanning confocal ultrasound. Osteoporosis Int, 2007, 18: 905-913.
    4 Laugier P. Instrumentation for in vivo ultrasonic characterization of bone strength. IEEE Trans Ultrason Ferro Freq Cont, 2008, 55: 1179-1196.
    5 Padilla F, Jenson F, Bousson V, et al. Relationships of trabecular bone structure with quantitative ultrasound parameters: In vitro study on human proximal femur using transmission and backscatter measurements. Bone, 2008, 42: 1193-1202.
    6 Kaufman J J, Luo G, Siffert RS. Ultrasound simulation in bone. IEEE Trans Ultrason Ferro Freq Cont, 2008, 55: 1205-1218.
    7 Goossens L, Vanderoost J, Jaecques S, et al. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis. IEEE Trans Ultrason Ferro Freq Cont, 2008, 55: 1234-1242.
    8 Njeh CF, Boivin CM, Langton CM. The role of ultrasound in the assessment of osteoporosis: A review. Osteoporosis Int, 1997, 7: 7-22.
    9 Chaffa(i|¨) S, Peyrin F, Nuzzo S, et al. Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure. Bone, 2002, 30: 229-237.
    10 Lasaygues P, Laugier P. Bone Imaging Using Compound Ultrasonic Tomography. New Delhi, India: Anamaya Publishers, 2006.
    11 Gomez MA, Defontaine M, Giraudeau B, et al. In vivo performance of a matrix-based quantitative ultrasound imaging device dedicated to calcaneus investigation. Ultrasound Med Biol, 2002, 28: 1285-1293.
    12 Laugier P, Giat P, Droin P, et al. Ultrasound images of the os calcis-a new method of assessment of bone status. IEEE Ultrasonics Symposium, 1993: 989-992.
    13 Davignon F, Deprez JF, Basset O. A parametric imaging approach for the segmentation of ultrasound data. Ultrasonics, 2005, 43: 789-801.
    14 Laugier P, Foumier B, Berger G. Ultrasound parametric imaging of bone in vivo. IEEE Ultrasonics Symposium, 1995: 1137-1140.
    15 Laugier P, Lefebvre F, Chappard C. Segmentation of quantitative ultrasonographic images of the calcaneus using elastic deformation of the flexible Fourier contour. J Ultrasound Med, 2004, 23: 693-699.
    16 黄凯,他得安,王威琪,等.准规则生物组织超声背散射信号的仿真.仪器仪表学报,2008,29:1898-1902.
    17 他得安,王威琪,汪源源,等 基于自回归倒谱法估计骨小梁间距.仪器仪表学报,2007,28:17-22.
    18 Brandt J, Franke A, Raum K. Acoustic microscopy for detection of osteoporotic bone properties. IEEE Ultrasonics Symposium, 2004, 1: 573-575.
    19 Riekkinen O, Hakulinen MA, Toyras J, et al. Spatial variation of acoustic properties is related with mechanical properties of trabecular bone. Phys Med Biol, 2007, 52: 6961-6968.
    20 Hoffmeister BK, Jones CI, 3rd, Caldwell GJ, et al. Ultrasonic characterization of cancellous bone using apparent integrated backscatter. Phys Med Biol, 2006,51:2715-2727.
    21 Hoffmeister BK, Johnson DP, Janeski JA, et al. Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6-15.0 MHz. IEEE Trans Ultrason Ferro Freq Cont, 2008, 55: 1442-1452.
    22 Dean Ta, Guohui Zhou, Wang Weiqi. Measurement of spectral maximum shift of ultrasonic backscatter signals in cancellous bone. Proc of 27th IEEE-EMBS, 2005: 2703-2706.
    23 王牧.定量骨超声测定与骨质疏松症的诊断.临床医学影像杂志,1997,8:87-89.
    24 Prins S, Jorgensen H, Jorgensen L. The role of quantitative ultrasound in the assessment of bone: a review. Clin Physiol Meas, 1998, 18: 3-17.
    25 Wear KA. Measurements of phase velocity and group velocity in human calcaneus, ultrasound Med & biol, 2000, 26: 641-646.
    26 Hirsekorn S, Pangraz S, Weides G, et al. Measurement of elastic impedance with high spatial resolution using acoustic microscopy. Applied Physics Letters, 1995, 67: 745.
    27 Raum K, Reisshauer J, Brandt J. Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy. J of Biomed Mater Research(Part A), 2004, 71: 430-438.
    28 Regauer M, Jurgens P, Budenhofer U, et al. Quantitative scanning acoustic microscopy compared to microradiography for assessment of new bone formation. Bone, 2006, 38: 564-570.
    29 Leicht S, Raum K. Acoustic impedance changes in cartilage and subchondral bone due to primary arthrosis. Ultrasonics, 2008,48:613-620.
    30 Raum K, Leguemey I, Chandelier F, et al. Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound med & biol, 2005, 31:1225-1235.
    31 Cherin E, Saied A, Laugier P, et al. Evaluation of acoustical parameter sensitivity to age-related and osteoarthritic changes in articular cartilage using 50-MHz ultrasound.Ultrasound Med Biol, 1998,24: 341-354.
    32 Roberjot V, Lori B, Laugier P. Absolute backscatter coefficient over a wide range of frequencies in a tissue-mimicking phantom containing two populations of caterers. IEEE Trans Ultrason Ferro Freq Cont, 1996,43: 970-978.
    33 Roberjot V, Laugier P, Droin P. Measurement of integrated backscatter coefficient of trabecular bone. IEEE Ultrasonics symposium, 1996:1123-1126.
    34 Apostolopoulos K, Deligianni D. Influence of microarchitecture alterations on ultrasonic backscattering in an experimental simulation of bovine cancellous bone aging. J Acoust Soc Am, 2008,123:1179-1187.
    35 Wear KA. Ultrasonic scattering from cancellous bone: a review. IEEE Trans Ultrason Ferro Freq Cont, 2008, 55: 1432-1441.
    36 Bridal SL, Fornes P, Bruneval P, et al. Parametric (integrated backscatter and attenuation) images constructed using backscattered radio frequency signals (25-56 MHz) from human aortae in vitro. Ultrasound Med Biol, 1997,23:215-229.
    37 Simmons CA, Hipp JA. Method-Based Differences in the Automated Analysis of the Three-Dimensional Morphology of Trabecular Bone. J of Bone & Mineral Research, 1997, 12:942-947.
    1 Hakulinen MA, Day JS, Toyras J, et al. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range. Phys Med Biol, 2005, 50: 1629-1642.
    2 Laugier P, Giat P, Droin P, et al. Ultrasound images of the os calcis-a new method of assessment of bone status. IEEE Ultrasonics Symposium, 1993: 989-992.
    3 Laugier P, Foumier B, Berger G. Ultrasound parametric imaging of bone in vivo. IEEE Ultrasonics Symposium, 1995: 1137-1140.
    4 Davignon F, Deprez JF, Basset O. A parametric imaging approach for the segmentation of ultrasound data. Ultrasonics, 2005, 43: 789-801.
    5 Bridal SL, Fornes P, Bruneval P, et al. Parametric ultrasound imaging from backscatter coefficient measurements-Image formation and interpretation. Med Eng Phys, 1990, 23: 215-229.
    6 Bridal SL, Fornes P, Bruneval P, et al. Parametric(integrated backscatter and attenuation) images constructed using backscattered radio frequency signals(25-56 MHz) from human aortae in vitro. Ultrasound Med Biol, 1997, 23: 215-229.
    7 Riekkinen O, Hakulinen MA, Toyras J, et al. Spatial variation of acoustic properties is related with mechanical properties of trabecular bone. Phys Med Biol, 2007, 52: 6961-6968.
    8 Chaffa(i|¨) S, Peyrin F, Nuzzo S, et al. Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure. Bone, 2002, 30: 229-237.
    1 Reginster JY, Burlet N. Osteoporosis: a still increasing prevalence. Bone, 2006,38: S4-9.
    2 Nidus Information Services I. Osteoporosis Annual Report. Osteoporosis, 2006:Report #18.
    3 Huang K, Ta DA, Wang WQ, et al. Simplified inverse filter tracking algorithm for estimating the mean trabecular bone spacing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2008,55:1453-1464.
    4 Chaffa(?) S, Padilla F, Berger G, et al. In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: relationships to bone mineral density. J Acoust Soc Am., 2006,119:654-663.
    5 Dean Ta, Kai Huang, Weiqi Wang, et al. Predict ultrasonic backscatter coefficient in cancellous bone by theory and experiment. Proceedings of the 27th Annual International Conference of the IEEE-EMBS, Shanghai, China, 2005:1131-1134.
    6 Hoffmeister BK, Johnson DP, Janeski JA, et al. Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6-15.0 MHz. IEEE Trans Ultrason Ferroelectr Freq Control, 2008,55:1442-1452.
    7 Riekkinen O, Hakulinen MA, Toyras J, et al. Spatial variation of acoustic properties is related with mechanical properties of trabecular bone. Phys Med Biol, 2007,52:6961-6968.
    8 Bossy E, Padilla F, Peyrin F, et al. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography. Phys Med Biol, 2005,50:5545-5556.
    9 Wear KA. Frequency dependence of ultrasonic backscatter from human trabecular bone:Theory and experiment. J Acoust Soc Am, 1999,106:3659-3664.
    10 Chaffai' S, Roberjot V, Peyrin F, et al. Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results. J Acoust Soc Am,2000,108:2403-2411.
    11 Dean Ta, Weiqi Wang, Kai Huang, et al. Analysis of Frequency Dependence Ultrasonic Backscatter Coefficient in Cancellous Bone. J. Acoust. Soc. Am., 2008,124:4083-4090.
    12 他得安,王威琪,汪源源,等.基于自回归倒普法估计骨小梁间距.仪器仪表学报,2007,28:17-22.
    13 Simon C, J. Shen, R. Seip, et al. A Robust and Computationally Efficient Algorithm for Mean Scatterer spacing estimation. IEEE Trans Ultrason Ferro Freq Cont, 1997,44:882-894.
    14 Laugier P, Giat P, Droin P, et al. Ultrasound images of the os calcis- a new method of assessment of bone status. IEEE Ultrasonics Symposium, 1993:989-992.
    15 Davignon F, Deprez JF, Basset O. A parametric imaging approach for the segmentation of ultrasound data. Ultrasonics, 2005,43:789-801.
    16 Laugier P, Foumier B, Berger G. Ultrasound parametric imaging of bone in vivo. IEEE Ultrasonics Symposium, 1995:1137-1140.
    17 Ta DA, Huang K, Wang WQ, et al. Predict ultrasonic backscatter coefficient in cancellous bone by theory and experiment. Proceedings of the 27th Annual International Conference of the IEEE-EMBS, Shanghai, China, 2005:1131-1134.
    18 Apostolopoulos K, Deligianni D. Influence of microarchitecture alterations on ultrasonic backscattering in an experimental simulation of bovine cancellous bone aging. J Acoust Soc Am., 2008 123:1179-1187.
    19 Brandt J, Franke A, Raum K. Acoustic microscopy for detection of osteoporotic bone properties. IEEE Ultrasonics Symposium, 2004, 573-575.
    20 Hoffmeister BK, Jones CI, 3rd, Caldwell GJ, et al. Ultrasonic characterization of cancellous bone using apparent integrated backscatter. Phys Med Biol, 2006,51: 2715-2727.
    21 Dean Ta, Guo-hui Zhou, Weiqi Wang. Measurement of spectral maximum shift of ultrasonic backscatter signals in cancellous bone. Proc of 27th ffiEE-EMBS, 2005:2703-2706.
    22 Laugier P, Lefebvre F, Chappard C. Segmentation of quantitative ultrasonographic images of the calcaneus using elastic deformation of the flexible Fourier contour. J Ultrasound Med,2004, 23: 693-699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700