用户名: 密码: 验证码:
聚合物/凹凸棒石纳米复合材料制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凹凸棒石(ATT)是一种一维棒状硅酸盐矿物,表面极性强易团聚,在与聚合物加工过程中易破碎,这限制了它的应用。本文采用如下两种方法对ATT进行有机改性,提高ATT在聚合物中的相容性:1)硅烷偶联剂(KH570)改性ATT,并用聚烯烃弹性体(POE)包覆ATT制备母粒;2)机械共混过程中,甲苯-2,4-二异氰酸酯(TDI)原位反应改性ATT。
     首先采用熔融共混法制备聚丙烯(PP)/ATT二元复合材料及PP/ATT/POE三元复合材料,考察了POE/ATT母粒协同增强聚丙烯(PP),系统地研究了复合材料的力学性能、流变性能和结晶性能。力学性能研究结果表明:在PP/ATT二元纳米复合材料中,未改性ATT与ATT-KH570均能提高PP的拉伸强度,但是在相同凹凸棒石含量下,PP/ATT-KH570复合材料的拉伸性能提高更明显;未改性ATT未能提高PP的冲击强度,而PP/ATT-KH570的冲击强度则随着ATT-KH570含量提高先增加后降低,并在ATT-KH570含量为1%时达到最大值。在PP/ATT-KH570/POE三元纳米复合材料中,当固定PP/ATT-KH570比例为100/5时,POE含量达到5%,复合材料冲击强度为8.91KJ/m~2,与未加POE体系相比提高了21.10%;当POE含量增加到15%时,复合材料冲击强度提高了44.80%,并且其拉伸强度基本得到保持,说明POE和ATT-KH570对PP具有明显的协同增韧增强效果。流变性能测试表明,在低的剪切速率下,ATT-KH570对复合材料的流动性能有较好的改善。DSC分析结果表明,POE和ATT-KH570均能有效地促进PP结晶,并且ATT-KH570/POE母粒对PP具有更有效的协同异相成核促进作用。
     论文进一步通过机械共混的方法TDI原位改性ATT,以聚甲基丙烯酸甲酯(PMMA)为基体,成功制备了PMMA/ATT纳米复合材料。原位改性凹凸棒石在PMMA中分散均匀,纳米粒子的形貌(一维棒状)得到保持,纳米复合材料的力学性能、热性能均有大幅提高。傅里叶红外仪和扫描电镜的结果显示,TDI原位改性的ATT有较高TDI表面接枝率。采用透射电镜(TEM)观察纳米复合材料结构时发现,TDI可使ATT在共混过程中原位表面改性,并使ATT在基体中达到均匀分散。随着原位改性凹凸棒石含量从0到6%变化,复合材料的力学性能先增加后减少,并在3%时拉伸强度达到最大值,比纯PMMA提高了19%,在2%时无缺口冲击强度达到最大值,比纯PMMA提高了31%。当在PMMA中加入2%的原位改性凹凸棒石时,因为ATT阻碍了PMMA的链段运动,使其玻璃化转变温度提高了13.20℃,复合材料失重10%的分解温度较纯PMMA提高了73.47℃。
The attapulgite (ATT) clay is a linear hydrated magnesium aluminum silicate. It is easy to aggregate and fracture during the mechanical mixing, which limites its application in polymer composition. In the present work, two approaches were applied for improving the compatibility between ATT and polymer matrix: firstly, a polyolefin elastomer (POE)/ATT masterbach for polypropylene matrix was prepared, and silane coupling agent KH570 was selected for ATT modification; secondly, an in situ modification of ATT clay by toluene-2,4-di-isocyanate (TDI) was employed, therefore polymethylmethacrylate (PMMA)/ATT nanocomposites were prepared by mechanical mixing.
     Polypropylene(PP)/ATT-KH570/POE ternary composites and PP/ATT-KH570 binary composites were prepared by melt blending method, and were systemically investigated, in particular for its mechanical properties, rheological and crystallizing behavior. It was found that both of ATT-KH570 and ATT without modification were able to significantly the tensile strength (σt) of PP, and ATT-KH570 exhibited a higher reinforcement efficiency due to the better dispersion and interfacial bonding. The impact strength of PP/ATT-KH570 was higher than that of neat PP and increased with the addition of ATT-KH570 content from 0 to 1 wt%. However, ATT without modification had a negative effect on the impact strength. For the PP/POE/ATT-KH570 ternary composites, The mechanical property characterization showed that at a fixed weight ratio of ATT-KH570 and PP (5/100), the content of POE dominantly affected the impact strength of the composites. When the content of POE was 5%, the impact strength of composites reached 8.91KJ/m~2 which has around 21.10% enhancement over that of the composites wihtout POE. When the content of POE was increased to 15% , a 44.8% enhancement for the impact strength was observed. More importantly, no tensile strength of PP was sacrificed with the addtion of ATT and POE, which might be attributed to the synergistic effect of these two modifiers. From the rheological curves, we found that the addition of ATT-KH570 obviously decreased the melt fluidity of composites at low shear rate. In addition, POE and ATT-KH570 were effective in promoting the crystallization of PP by the analysis of DSC.
     A novel in-situ modification of ATT by toluene-2,4-di-isocyanate using mechanical mixing with polymethylmethacrylate (PMMA) was exploited. As a consequence, PMMA/organo-modified ATT nanocomposites were prepared, which provided prominent improvements in strength, toughness and thermal stability. High grafting efficiency of TDI on ATT surface was confirmed by FTIR spectra and SEM observations. The uniform dispersion and rod-like texture of in-situ modified ATT nanorods in the PMMA which was clearly visible in the TEM micrographes, influenced the mechanical and thermal properties of the nanocomposites. The tensile strength of nanocomposites first increased and then decreased with the in-situ modified ATT concentration ranging from 0 to 6.0%, and reached the maximum value at 3.0%. For the impact strengh, PMMA/in-situ modified ATT with 2.0% ATT had the maximum value which showed around 31% enhancement than that of pure PMMA. The chain mobility of PMMA was significantly inhibited by the uniformly dispersed fibrous nanoparticles, leading a 13.20℃increase in the glass transition temperature of PMMA/in-situ modified ATT nanocomposite containing 2.0% ATT. The thermal stability of the nanocomposites was enhanced by the presence of ATT. For example, 10% mass loss temperature of PMMA/in-situ modified ATT was 73.47℃higher than that of pristine PMMA.
引文
[1] Supong Arunvisut, Sutthipat Phummanee, Anongnat Somwangthanaroj. Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocomposites[J]. Journal of Applied Polymer Science. 2007, 106: 2210-2217.
    [2] T. Ramanathan1, A. A. Abdala, S. Stankovich et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature nanotechnology. 2008, 3: 327-331.
    [3] E. Bilotti, H. R. Fischer, T. Peijs. Polymer nanocomposites based on needle-like sepiolite clays: effect of functionalized polymers on the dispersion of nanofiller, crystallinity, andmechanical properties[J]. Journal of Applied Polymer Science. 2008, 107: 1116-1123.
    [4]林水东,林木勇,丁马太,肖凤英. PP-g-MAH对云母填充聚丙烯体系增容作用的研究[J]材料工程. 2005, 9: 1359-1362.
    [5] E. M. Moujahid, J.P. Besse, F. Leroux. Synthesis and characterization of a polystyrene sulfonate layered double hydroxide nanocomposite: in-situ polymerization vs polymer incorporation [J]. Mater. Chem. 2002, 12(11): 3324-3330.
    [6] J. I. Weon, K. T. Gam, W. J. Boo, H. J. Sue, C. M. Chan. Impact-toughening mechanisms of calcium carbonate-reinforced polypropylene nanocomposite[J]. Journal of Applied Polymer Science. 2006, 99: 3070-3076.
    [7]周红军,容敏智,章明秋,阮文红.纳米SiO2/聚丙烯复合材料的反应性增容[J].高分子学报. 2007, 2: 158-164.
    [8]郑立允,赵立新等.纳米Al2O3颗粒填充聚酰胺6的摩擦性能研究[J].中国塑料. 2004, 18(9): 30-33.
    [9] Dias Filho, N.L., Do Carmo, D.R.. Study of an organically modified clay: selective adsorption of heavy metal ions and voltammetric determination of mercury (II)[J]. Talanta. 2006, 68: 919-927.
    [10] De Stefanis, A., Tomlinson, A.A.G.. Towards designing pillared clays for catalysis[J]. Catal. Today. 2006, 114: 126-141.
    [11] Bradley. The structure scheme of attapulgite [J].Am Mineral. 1940, 25: 405-410.
    [12] Haden, W.L., Schwint, I. A.. Attapulgite: its properties and applications[J]. Industrial and Engineering Chemistry. 1967, 59(9): 59-65.
    [13] Palan, A.T.,Garcia.Attapulgites as a filler solvent-based polyurethane adhesives[J]. Journal of Adhesive Science:Technology.1998, 12(5): 479-485.
    [14] Wang Lihua, Sheng Jing. A kinetic study on the thermal degradation of polypropylene/ attapulgite nanocomposites[J]. Macromolecular Science Physics. 2006, 45(1): 1-11.
    [15]王平华,徐国永.原位聚合制备LDPE/凹凸棒土纳米复合材料[J].高分子材料科学与工程. 2005, 21(3): 266-269.
    [16] Lu Hongbin, Shen Hongbin, Song Zhenlun, Katherine S. Shing, Tao Wei, Steven Nutt. Rod-Like Silicate-Epoxy Nanocomposites[J]. Macromolecular Rapid Communication. 2005, 26: 1445-1450.
    [17] Pan Bingli, Yue Qunfeng, Ren Junfang, Wang Honggang, Jian Lingqi, Zhang Junyan and Yang Shengrong. Non-Isothermal Crystallization Kinetics of PA6/Attapulgite Composites Prepared by Melt Compounding [J]. Journal of Macromolecular Science: Part B. 2006, 45(6): 1025-1037.
    [18] Yuan Xuepei, Li Chuncheng, Guan Guohu, Liu Xiaoqing, Xiao Yaonan, Zhang Dong. Synthesis and Characterization of Poly(ethyleneterephthalate)/Attapulgite Nanocomposites[J]. Journal of Applied Polymer Science. 2007, 103: 1279-1286.
    [19] Wang Zhiqiang, Zhou Yuming, Sun Yanqing. Preparation, Characterization and Infrared Emissivity Study of Attapulgite @helical Polyurethane Composites[J]. Journal of Inorganic and Organometallic Polymers. 2009, 19: 202-207.
    [20] Liu Peng. Hyperbranched aliphatic polyester grafted attapulgite via a melt polycondensation process[J]. Applied Clay Science. 2007, 35: 11-16.
    [21]伏芬琪,石宗利.聚合物/凹凸棒土纳米复合材料的研究进展[J].表面技术, 2006, 35(5): 48-50.
    [22]陈天虎,王健,庆承松,彭书传,宋垠先,郭燕.热处理对凹凸棒石结构、形貌和表面性质的影响[J].硅酸盐学报. 2006, 34(11): 1406-1410.
    [23]黄健花,王兴国,金青哲,刘元法.超声波处理凹凸棒土的有机改性研究[J].中国油脂. 2005, 30(2): 28-30.
    [24]陈天虎,冯有亮,史晓莉.凹凸棒石与酸反应产物和结构演化的研究[J].硅酸盐学报. 2003, 31(10): 959-963.
    [25]张良,姚超,丁永红,李效棠,李连惠.凹凸棒土有机改性的研究[J].涂料工业. 2007, 37(11): 41-43.
    [26]宋仁峰,杨利营,盛京,沈宁祥,康文韬.纳米凹凸棒土的表面修饰及表征[J].硅酸盐通报. 2003, 3: 36-39.
    [27]王平华等. PP/凹凸棒土纳米复合材料的制备与性能研究[J].工程塑料应用. 2003, 31(12): 12-15.
    [28]高翔.凹凸棒土表面改性及其对聚丙烯力学性能的影响[J].塑料. 2004, 33 (3): 34-40.
    [29]李丽坤,马永梅,官建国,王佛松.聚丙烯/凹凸棒石纳米复合材料的制备与性能研究[J].高分子学报. 2008, 5: 501-506.
    [30] Wang lihua et al. Graft Polymerization and Characterization of Butyl Acrylate onto Silane-Modified Attapulgite[J]. Journal of Macromolecular Science: Part A. 2003, 40(11): 1135-1146.
    [31] Wang lihua et al.Preparation and properties of polypropylene/org-attapulgite nanocomposites[J]. Polymer. 2005, 46: 6243-6249.
    [32] Liu Yushan, Liu Peng, Su Zhixing. Morphological analysis of bead–string shaped and core-shell attapulgite@polystyrene(ATP@PS)particles via emulsion polymerization. Polymer of Advance Technology. 2007, 18: 433-438.
    [33] Shen Liang, Lin Yijian, Du Qiangguo, Zhong Wei, Yang Yuliang. Preparation and rheology of polyamide-6/attapulgite nanocomposites and studies on their percolated structure[J]. Polymer. 2005, 46: 5758-5766.
    [34]高翔,毛立新,马军朋,田明,张立群,金日光.凹凸棒土表面改性及其对聚丙烯力学性能的影响[J].塑料. 2004, 33 (3): 34-40.
    [35]黄健花,刘元法,金青哲,王兴国.加热影响凹凸棒土结构的光谱分析[J].光谱学与光谱分析. 2007, 27(2): 408-410.
    [36]庞晓华.未来15年美国纳米复合材料市场将飞速发展[J].化工科技. 2006, 13(3): 23-28.
    [37]吕召胜,高翔,毛立新.聚丙烯接枝马来酸酐对聚丙烯/凹凸棒石复合体系力学性能的影响[J].塑料工业. 2005, 33: 174-177.
    [38]田明,曲成东,刘力,冯予星,张立群.凹凸棒石/茂金属聚烯烃复合材料的结构与性能[J].中国塑料. 2002, 16(3): 26-28.
    [39]盛淼,杜中杰,荣峻峰,励杭泉. DSC法研究原位聚合聚乙烯/凹凸棒石纳米复合材料的结晶行为[J].高分子材料科学与工程. 2003, 19(3): 168-171.
    [40] Pan Yongzheng, Xu Yue, An Li, Lu Hongbin, Yang Yuliang, Chen Wei, Steven Nutt. Hybrid Network Structure and Mechanical Properties of Rodlike Silicate/Cyanate Ester Nanocomposites[J]. Macromolecules. 2008, 41 (23): 9245-9258.
    [41] Wang Lihua, Sheng Jing. A Kinetic Study on the Thermal Degradation of Polypropylene/Attapulgite Nanocomposites[J]. Journal of Macromolecular Science, Part B. 2006, 45(1): 1-11.
    [42] Zhao Lijuan, Du Qin,Jiang Genjie, Guo Shaoyun. Attapulgite and Ultrasonic Oscillation Induced Crystallization Behavior of Polypropylene[J]. Journal of Polymer Science: Part B: Polymer Physics. 2007, 45: 2300-2308.
    [43]王一中,董华,余鼎声.尼龙6/凹凸棒土纳米复合的合成[J].合成树脂及塑料. 1997, 14(2): 16-18.
    [44] Chandramouleeswaran Subramani, Vijay S. Jamnik, S.T. Mhaske. Effect of Attapulgite Filler on the Properties of Nylon-6[J]. Polymer Composites. 2008, 2: 891-893.
    [45] An Li, Pan Yongzheng, Shen Xiwen, Lu Hongbin, Yang Yuliang. Rod-like attapulgite/polyimide nanocomposites with simultaneously improved strength, toughness, thermal stability and related mechanisms[J]. Journal of Material Chemistry. 2008, 18: 4928-4941.
    [46]高翔,毛立新,田明,张立群,金日光.聚丙烯/三元乙丙胶/凹凸棒土三元复合体系的力学性能与亚微相态[J].高分子材料科学与工程. 2005, 21(4): 197-200.
    [47] Zhang Mengxiang, Mao Lixin. Ternary Polypropylene /Polyolefin Elastomer/Attapulgite Composites[J]. Advanced Materials Research. 2006, 11-12: 477-480.
    [48]钱运华,金叶铃,陈振国.凹凸棒土填充硬质聚氯乙烯塑料[J].塑料. 1998, 2(27): 37-43.
    [49]钱运华,金叶铃,陈振国.凹凸棒粘土填充PP的研究[J].塑料工业. 1998, 1(26): 109-112.
    [50]戴兰宏.凹凸棒土增强聚丙烯复合材料冲击断裂韧性的研究[J].高压物理学报. 1996, 1(10): 63-66.
    [51]舒安,崔鹏,魏风玉.凹凸棒粘土作为聚丙烯塑料成核剂的应用研究[J].安徽化工. 1997, 2: 34-37.
    [52]金叶铃,钱运华,费泽才,严国顺.凹土填充剂在汽车轮胎垫带中的应用[J].化学工程师. 1997, 4: 23-28.
    [53]彭书传,范文元.改性凹凸棒粘土作为橡胶补强剂的研究[J].合肥工业大学学报. 1996, 3: 19-23.
    [54]彭书传.凹凸棒石粘土橡胶填料改性研究[J].非金属矿. 1998, 1: 15-16.
    [55]吴国华,丁文江,罗吉荣.凹凸棒粘土对消失模涂料流变性的影响[J].硅酸盐学报. 2002, 1(30): 81-84.
    [56]金叶铃,谷亚听.凹凸棒石粘土在湿法聚氨酯人造革中的应用[J].非金属矿. 1997, 3: 44-48.
    [1] S.C.Tiong, et a1..Mechanical Behavior of Injection Moldedβ-Crystalline Phase Polypropylene [J]. Polym.Eng.Sci.. 1 996, 36(1): 100-105
    [2] Dias Filho, N.L., Do Carmo, D.R... Study of an organically modified clay: selective adsorption of heavy metal ions and voltammetric determination of mercury (II)[J]. Talanta. 2006, 68: 919-927.
    [3] De Stefanis, A., Tomlinson, A.A.G.. Towards designing pillared clays for catalysis[J]. Catal. Today. 2006, 114: 126-141.
    [4]赵娣芳,周杰,刘宁.凹凸棒石改性机理研究进展[J].硅酸盐通报. 2005, 3: 67-69.
    [5]王平华,徐国永,宋功品. PP/凹凸棒土纳米复合材料的制备与性能研究[J].工程塑料应用. 2003, 31(12): 12-15.
    [6] Pan Yongzheng, Xu Yue, An Li, Lu Hongbin, Yang Yuliang, Chen Wei, Steven Nutt. Hybrid Network Structure and Mechanical Properties of Rodlike Silicate/Cyanate Ester Nanocomposites[J]. Macromolecules. 2008, 41 (23): 9245-9258.
    [7] Rahma F, Fellahi S. Performance evaluation of synthesized acrylic acid grafted polypropylene within CaCO3/polypropylene composites[J]. Polymer Composites. 2000, 21(2):175-186.
    [8]周红军,容敏智,章明秋,阮文红.纳米SiO2/聚丙烯复合材料的反应性增容[J].高分子学报. 2007, 2: 158-164.
    [9] Shen Liang, Lin Yijian, Du Qiangguo, Zhong Wei, Yang Yuliang. Preparation and rheology of PA-6/attapulgite nanocomposites and studies on their percolated structure[J]. Polymer. 2005, 46: 5758~5766.
    [10] Wang Lihua, Sheng Jing. Preparation and properties of polypropylene/org-attapulgitenanocomposites[J]. Polymer. 2005, 46: 6243-6249.
    [11]生瑜,朱德钦,王剑峰,张丽珍,朱振榕. CaCO3表面包覆改性及其对填充PP力学性能的影响[J].高分子学报. 2008, 8: 813-816.
    [12] Molnar S,Pukanszky B, Hammer CO, et al. Impact Fracture Study of Multicomponent Polypropylene Composite[J]. Polymer. 2000, 41(4): 1529-1539.
    [13]刘小林,刘罡,李天明,杨其. PS/POE/纳米CaCO3复合材料的制备与性能研究[J].塑料工业. 2007, 35(10): 18-21.
    [14] Zhao Lijuan, Du Qin,Jiang Genjie, Guo Shaoyun. Attapulgite and Ultrasonic Oscillation Induced Crystallization Behavior of Polypropylene[J]. Journal of Polymer Science: Part B: Polymer Physics. 2007, 45: 2300-2308.
    [15] Pan Bingli, Yue Qunfeng, Ren Junfang, Wang Honggang, Jian Lingqi, Zhang Junyan, Yang Shengrong. Non-Isothermal Crystallization Kinetics of PA6/Attapulgite Composites Prepared by Melt Compounding[J]. Journal of Macromolecular Science, Part B. 2006, 45(6): 1025-1037.
    [16]高翔,毛立新,马军朋,田明,张立群,金日光.凹凸棒土表面改性及其对聚丙烯力学性能的影响[J].塑料. 2004, 3: 32-40.
    [17]王平华,徐国永.聚丙烯/凹凸棒土纳米复合材料的非等温结晶动力学[J].应用化学. 2004, 8: 223-230.
    [18] Liao H T, Wu C S. Synthesis and characterization of polyethylene-octene elastomer/clay/biodegradable starch nanocomposites[J]. Journal of Applied Polymer Science. 2005, 97: 397-404.
    [19] Ma X Y, Liang G Z, Liu H L, et al. Novel intercalated nanocomposites of polypropylene/organicrectorite/polyethylene-octene elastomer: Rheology, crystallization kinetics, and thermal properties[J]. Journal of Applied Polymer Science. 2005, 97(5): 1915-1921.
    [20] Ma X Y, Liang G Z, Lu H J, et al. Novel intercalated nanocomposites of polypropylene, organicrectorite, and poly(ethylene octene) elastomer: Morphology and mechanical properties[J]. Journal of Applied Polymer Science. 2005, 97(5): 1907-1914.
    [1] T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’homme and L. C. Brinson. Functionalized graphene sheets for polymer nanocomposites[J]. Nat. Nanotechnol. 2008, 3: 327-335.
    [2] H. J. Salavagione, G. Martinez and M. A. Gomez. Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties[J]. J Mater Chem. 2009, 19: 5027-5032.
    [3] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff. Beyond carbon nanotubes: functionalized graphene sheets for polymer nanocomposites[J]. Nature. 2006, 442: 282-286.
    [4] Yang Mingjiao, Dan Yi. Preparation of poly(methyl methacrylate)/titanium oxide composite particles via in-situ emulsion polymerization[J]. Journal of Applied Polymer Science. 2006, 101(6): 4056-4063.
    [5] Silva. Adriana A, Dahmouche. Karim, Soares. Bluma G. The effect of addition of acrylic acid and thioglycolic acid on the nanostructure and thermal stability of PMMA-montmorillonite nanocomposites[J]. Applied Clay Science. 2010, 47(3-4): 414-420.
    [6] P. M. Ajayan, L. S. Schadler, C. Giannaris and A. Rubio. Single-walled carbon nanotube-polymer composites: Strength and weakness[J]. Adv. Mater. 2000, 12: 750-753.
    [7] S. H. Kim, W. I. Lee and J. M. Park. Assessment of dispersion in carbon nanotube reinforced composites using differential scanning calorimetry[J]. Carbon. 2009, 47: 2699-2703.
    [8] Ph. Dubois, and M. Alexandre. Performant clay/carbon nanotube polymer nanocomposites[J]. Adv. Eng. Mater. 2006, 8: 147-154.
    [9] H. Miyagawa, M. Misra and A. K. Mohanty. Mechanical properties of carbon nanotubes and their polymer nanocomposites[J]. J. Nanosci. Nanotechnol. 2005, 5: 1593-1615.
    [10] X. L. Xie, Y. W. Mai and X. P. Zhou. Dispersion and alignment of carbon nanotubes in polymer matrix: A review[J]. Mater. Sci. Eng. R. 2005, 49: 89-112.
    [11] L. Shen, Y. J. Lin, Q. G. Du, W. Zhong and Y. L. Yang. Preparation and rheology of polyamide-6/attapulgite nanocomposites and studies on their percolated structure[J]. Polymer. 2005, 46: 5758-5766.
    [12]陈光明,马永梅,漆宗能.甲苯-2,4-二异氰酸酯修饰蒙脱土及聚苯乙烯/蒙脱土纳米复合材料的制备与表征[J].高分子学报. 2000, 5: 599-602.
    [13]陈天虎,王健,庆承松,彭书传,宋垠先,郭燕.热处理对凹凸棒石结构、形貌和表面性质的影响[J].硅酸盐学报. 2006, 34(11): 1406-1410.
    [14] Wang Zhiqiang, Zhou Yuming, Sun Yanqing. Preparation, characterization and infrared emissivity study of attapulgite@helical polyurethane composites[J]. J. Inorg. Organomet. Polym. 2008, 10: 1007-1011.
    [15]周杰,刘宁,李云.凹凸棒石粘土显微结构特征[J].硅酸盐通报. 1999, (6): 50-54.
    [16]张洁. HAAKE转矩流变仪及其应用[J].塑料科技. 2003, 5: 41-43.
    [17] L. An, Y. Z. Pan, X. W. Shen, H. B. Lu and Y. L. Yang. Rod-like attapulgite/polyimide nanocomposites with simultaneously improved strength, toughness, thermal stability and related mechanisms[J]. J. Mater. Chem. 2008, 18: 4928-4941.
    [18] X. Y. Shang, Z. K. Zhu, J. Yin and X. D. Ma. Compatibility of soluble polyimide/silica hybrids induced by a coupling agent[J]. Chem. Mater. 2002, 14: 71-77.
    [19] L. H. Wang and J. Sheng. Preparation and properties of polypropylene/org-attapulgite nanocomposites[J]. Polymer. 2005, 46: 6243-6249.
    [20] J. Y. Lee, Q. L. Zhang, T. Emrick and A. J. Crosby. Nanoparticle alignment and repulsion during failure of glassy polymer nanocomposites[J]. Macromolecules. 2006, 39: 7392-7396.
    [21] J. F. Wang, S. J. Severtson and A. Stein. Significant and concurrent enhancement of stiffness, strength, and toughness for paraffin wax through organoclay addition[J]. Adv. Mater. 2006, 18: 1585-1588.
    [22] E. J. Garboczi, K. A. Snyder and J. F. Douglas. Geometrical percolation threshold of overlapping ellipsoids[J]. Phys. Rev. E. 1995, 52: 819-828.
    [23] Usuki, A., Hasegawa, N. & Kato, M. Polymer-clay nanocomposites[J]. Adv. Polym. Sci. 2005, 179: 135-195.
    [24] S. C. Tjong. Structural and mechanical properties of polymer nanocomposites[J]. Mater. Sci. Eng. R. 2006, 53: 73-197.
    [25] O. Becker, G. P. Simon. Epoxy layered silicate nanocomposites[J]. Adv. Polym. Sci. 2005, 179: 29-82.
    [26] M. Moniruzzaman and K. I. Winey. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules. 2006, 39: 5194-5205.
    [27]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社, 2000.
    [28]闰明涛,姚晨光,宋洪赞,王迎进. PEN短纤维增强PTT复合材料的流变性能及力学性能[J].高分子材料科学与工程. 2008, 24(2): 67-70.
    [29] Reid CG, Greenberg AR. Influence of silica reinforcement upon the glass-transition behavior of acrylic polymers[J]. J. Appl. Polym. Sci. 1990, 39: 995.
    [30] Manson A, Sperling LH. Polymer blends and composites[J]. Prog. Org. Coat. 1973, 2: 237.
    [31] Hirata T., Kashiwagi T., Brown J. E. Thermal and oxidative degradation of poly(methylmethacrylate): weight loss[J]. Macromolecules. 1985, 18(7): 1410-1418.
    [32]宋建兰,苏胜培.低聚物插层水滑石及其与PP制备的纳米复合材料的性能研究[J].塑料工业. 2008, 36(1): 106-109.
    [33]张毅,闵惠玲,于俊荣等. P(MMA-MA)/OMMT纳米复合材料的制备及表征[J].东华大学学报(自然科学版). 2008, 34(06): 652-656.
    [34]钟敏,赵高凌,韩高荣.有机-无机纳米复合材料的制备与界面特性[J].功能材料与器件学报. 2002, 8(4): 421-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700