用户名: 密码: 验证码:
Nd-Fe-B基纳米复合永磁材料的制备及矫顽力的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用熔体快淬、高能球磨、热压的方法制备出纳米复合磁体(Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6/FeCo,研究了磁体软磁相质量百分比、晶粒尺寸与磁性能的关系,对晶化相变过程的热力学性质、反磁化过程的形核、自钉扎作用以及弱交换耦合作用进行了分析讨论。
     高能球磨使粉末颗粒细化和均匀化,同时增加系统的能量,在晶化过程中提高了晶化的形核率,热压也具有提高晶化形核率的作用并抑制原子的长程扩散,这两者使晶粒更为细小,晶粒尺寸分布更为集中。虽然高能球磨热压纳米晶(Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6单相磁体晶粒之间的交换耦合作用较强,一定程度地使磁体矫顽力下降,但磁体晶粒尺寸分布集中,晶粒界面相对较多,磁体仍能保持高的矫顽力,达到1631kA/m,与未经过高能球磨热压的(Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6磁体的矫顽力1616kA/m相当。随着(Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6/FeCo复合磁体中FeCo质量百分比的增加,磁体饱和磁化强度提高,矫顽力下降。通过讨论分析,在(Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6/FeCo纳米复合磁体中软磁相质量百分比小于20%时,反磁化过程中自钉扎作用较为突出,复合磁体矫顽力高,在FeCo的质量百分比为10%和20%时,(Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6/FeCo复合磁体的矫顽力分别达到1357kA/m和801kA/m;当软磁相质量百分比较大于30%时,磁偶极作用比较突出,反磁化过程以在软磁相晶粒内形核机制为主,复合磁体矫顽力低,当FeCo质量百分比为40%时,复合磁体的矫顽力仅为(Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6单相磁体的9.1%。复合磁体软磁相α-Fe的晶粒尺寸偏大,在40nm~70nm之间,比硬磁相Nd_2Fe_(14)B的晶粒尺寸大,这是由于Nd_2Fe_(14)B和α-Fe在从非晶向纳米晶相变过程中热力学特性的差异决定的,α-Fe先于Nd_2Fe_(14)B形核晶化,导致α-Fe晶粒生长时间长,晶粒尺寸比较大,这也是复合磁体矫顽力低的一个主要原因。
     Nd-Fe-B基纳米复合磁体的软、硬磁相晶粒界面附近存在的缺陷会减弱晶粒之间的交换耦合作用,从而造成复合磁体矫顽力下降。为从根本上提高纳米复合磁体的磁性能,应探索新的方法以减弱Nd_2Fe_(14)B和α-Fe在相变过程中热力学特性差异对复合磁体晶粒尺寸的影响,将软磁相α-Fe的晶粒尺寸控制在小于硬磁相晶粒尺寸的范围内,同时减少晶粒之间界面中原子空位等缺陷。
(Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6/FeCo magnets were prepared using the procedure of high energy ballmilling, hot pressing following melt spinning. The dependence of magnetic properties on weightpercent of soft magnetic phase and grain size has been studied. The nucleation and self-pinningduring the process of demagnetization, the phase transition thermodynamics ofα-Fe and Nd_2Fe_(14)Band weakened exchange coupling between soft and hard magnetic phase grains have beendiscussed.
     High energy ball milling (HEBM) makes the powder particles much refine and homogeneous,increases the energy of system, thus improves nucleation rate of nanograins during the period ofcrystallization. Hot pressing also improves nucleation rate of nanograins and suppresses the longrange diffusion of atoms. Owing to the effects of both HEBM and hot pressing on grain size, thenanograins of (Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6 magnets are much finer and its grain size distribution is muchmore centralized. In the nanocrystalline (Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6 magnets with HEBM and hotpressing, where the exchange coupling between grains is much stronger and would make theircoercivities decrease, but it keep the coercivity value up to 1631kA/m, almost equal to that ofnanocrystalline (Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6 magnets without HEBM and hot pressing, 1616kA/m,because of its grain size distribution more centralized and the amount of grain interface relativelymuch greater than the latter. With increasing the weight percent of FeCo, the saturationmagnetization of nanocomposite magnets (Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6/FeCo increases but the coercivitydecreases. In this paper on the (Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6/FeCo nanocomposite magnets with a limitedamount ofα-Fe phase no more than 20 weight percent, the self-pinning is dominant during theprocess of demagnetization with relatively high coercivity value. In the(Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6/FeCo nanocomposite magnets with 10% and 20% of weight percent ofFeCo, the coercivity value is 1357kA/m and 801kA/m respectively. While in the(Nd_(10.5)Pr_(2.5))Fe_(80)Nb_1B_6/FeCo nanocomposite magnets withα-Fe phase more than 30 weight percent,the role of dipolar reaction will play an important role and the nucleation mechanism is dominantduring the process of demagnetization, thus the coercivity of nanocomposite magnets decreasesabruptly. And the coercivity value of nanocomposite magnets with 40 weight percent of FeCo isonly 9.1% of that of nanocrystalline single phase magnets. In the prepared nanocomposite magnets,the grain size of soft magnetic phaseα-Fe, in the range of 40nm to 70nm, is more than that of hard magnetic phase Nd_2Fe_(14)B. This is owed to the big difference of thermodynamics betweenNd_2Fe_(14)B andα-Fe during the period of phase crystallisation, which forcesα-Fe to crystallizefirstly, thusα-Fe grains have much longer time to grow. This is an important reason contributing tothe poor coercivity of nanocomposite magnets especially with higher percent ofα-Fe phase.The defects near grain boundary could weaken the effect of exchange coupling betweengrains, resulting in a decreased coercivity of nanocomposite magnets. To fundamentally improvethe magnetic properties, new methods should been explored to weaken the effects of difference ofthermodynamics between Nd_2Fe_(14)B andα-Fe on the grain size of nanocomposite magnets, thus tokeep the grain size of soft magnetic phase less than the range of hard magnetic one. And newmethods should been taken to reduce the amount of defects, such as structure free volumes nearinterface between grains.
     Key Words: nanocomposite magnets, melt spinning, high energy ball milling, hotpressing,thermodynamics, coercivity, exchange coupling
引文
[1] Coehoorn R, De Mooij D B, Duchateau J P W B et al. Novel permanent magnetic materials byrapid quenching[J]. J. Phys, 1988, 49(C8), 669~670
    [2] Skomski R and Coey J M D. Giant energy product in nanostructured two-phase magnets[J].Physical Review B, 1993, 48(21), 15812~15816
    [3] Manaf A, Buckley R A, Davis H A. New nanocrystalline high-remanence Nd-Fe-B alloys byrapid solidification[J]. Journal of Magnetism and Magnetic Materials, 1993, 128(3), 302~306
    [4] Shan-dong Li, Wen-sheng Sun and Ming-xiu Quan. Crystallization and magnetic properties ofmelt-spun two-phase nanocrystalline Nd-Fe-B alloy[J]. Materials Letters, 1997, 30(5-6), 351~355
    [5] Kramer M J, Lewis L H, Fabietti L M et al. Solidification, microstructural refinement andmagnetism in Nd_2Fe_(14)B[J]. Journal of Magnetism and Magnetic Materials, 2002, 241 (1), 144~155
    [6] Neu V, Crespo P, Schafer R et al. High remanence Nd-Fe-B-X (X = Cu, Si, Nb3Cu, Zr)powders by mechanical alloying[J]. Journal of Magnetism and Magnetic Materials, 1996, 157-158,61~62
    [7] Neu V, Crespo P and Sch?fer R et al. Remanence enhancement in mechanically alloyed twophaseNd-Fe-B magnetic material[J]. Materials Letters, 1996, 26(3), 167~170
    [8] Gutfleisch O, Bollero A and Handstein A et al. Nanocrystalline high performance permanentmagnets[J]. Journal of Magnetism and Magnetic Materials, 2002, 242-245(PART II), 1277~1283
    [9] Tomida T, Sano N and Hanafusa K et al. Intermediate hydrogenation phase in thehydrogenation-disproportionation-desorption-recombination process of Nd_2Fe_(14)B-basedanisotropic magnets[J]. Acta Materialia, 1999, 47(3), 875~885
    [10] Ao Q, Zhang W and Wu J. Perpendicular magnetic anisotropy in nanocomposite Nd-Fe-B/FeCo bilayer films[J]. Scripta Materialia, 2005, 52(12), 1247~1251
    [11] Cui B Z and O'Shea M J. Exchange coupling and magnetic properties of Nd_2Fe_(14)B/Conanocomposite thin films[J]. Journal of Magnetism and Magnetic Materials, 2003, 256(1-3),348~354
    [12] Bauer J, Seeger M and Zern A et al. Nanocrystalline FeNdB permanent magnets withenhanced remanence[J]. Journal of Applied Physics, 1996, 80(3), 1667~1673
    [13] W F Miao, J Ding, P G McCormick and R Street. Effect of mechanical milling on thestructure and magnetic properties of Nd16Fe76B8[J]. J. Phys. D: Appl. Phys. 1996, 29, 2370~2375
    [14] Schultz L, Wecker J and Hellstern E. Formation and properties of NdFeB prepared bymechanical alloying and solid-state reaction[J]. Journal of Applied Physics, 1987, 61(8),3583~3585
    [15] Zeng Q, Xiao Y F and Liu X B et al. Comparative study of mechanical alloying andmechanical milling of Nd8Fe88B4[J]. Journal of Materials Engineering and Performance, 1999, 8(3),305~308
    [16] Neu V and Schultz L. Two-phase high-performance Nd-Fe-B powders prepared bymechanical milling[J]. Journal of Applied Physics, 2001, 90(3), 1540~1544
    [17] Yandong Gao, Shaoqing Zhang, Bocao Liu. Crystallization behavior of melt-spunNd7Fe86Nb1B6 ribbons under different heating rates[J]. Journal of Magnetism and MagneticMaterials, 2000, 208, 158~162
    [18] WU Wei, LI Hui, XIE Yanwu et al. Effect of high pressure on microstructure of crystallizingamorphous Nd9Fe85B6 alloy[J]. Journal of Rare Earths, Oct. 2008, Vol. 26, No. 5, 741
    [19] Wei Li, Lanlan Li, Yun Nan et al. Nanocrystallization and magnetic properties of amorphousNd9Fe85B6subjected to high-pressure torsion deformation upon annealing[J]. Journal of AppliedPhysics, 2008, 104, 023912
    [20] Liu Y, Xu L and Wang Q et al. Bulkα-Fe/Nd_2Fe_(14)B nanocomposite magnets prepared by thephase transition of amorphous Nd9Fe81Co3Nb1B6 under high pressure[J]. Materials Letters, 2008,62(23), 3890~3892
    [21] Pan J, Liu X and Cai C et al. Microstructure characteristics of hot-pressing Pr-Fe-B-Cu[J].Journal of Applied Physics, 2003, 93(103), 8677~8679
    [22] Kojima A, Makino A and Inoue A. Hard magnetic properties of nanocrystalline Fe-rich Fe-Nb-Nd-B bulk alloys produced by consolidating amorphous powders[J]. Nanostructured Materials,1997, 8(8), 1015~1024
    [23] Ono H, Waki N and Shimada M et al. Isotropic bulk exchange-spring magnets with 134 kJ/m3prepared by spark plasma sintering method[J]. IEEE Transactions on Magnetics, 2001, 37(4I),2552~2554
    [24] Saito T, Takeuchi T and Kageyama H. Production of bulk amorphous and nanocompositeNd4Fe77.5B18.5materials by spark plasma sintering method[J]. IEEE Transactions on Magnetics,2004, 40(4 II), 2880~2882
    [25] Guo P(郭鹏举), Liu X(刘新才),Pan J(潘晶) et al. Recent progress of nanocompositemagnet by hot deformation. Rare Metal Materials and Engineering(稀有金属材料与工程) [J].2008, 37(3), 377~381
    [26] Yue M, Niu P L and Li Y L et al. Structure and magnetic properties of bulk isotropic andanisotropic Nd_2Fe_(14)B/α-Fe nanocomposite permanent magnets with differentα-Fe contents[J].Journal of Applied Physics, 2008, 103(7), 07E101
    [27] Davies H A. Nanocrystalline exchange-enhanced hard magnetic alloys[J]. Journal ofMagnetism and Magnetic Materials, 1996, 157-158, 11~14
    [28] Fischer R, Kronmüller H. The role of the exchange interaction in nanocrystalline isotropicNd_2Fe_(14)B-magnets[J]. Journal of Magnetism and Magnetic Materials, 1999, 191(1-2): 225~233
    [29] Herzer G. Grain size dependence of coercivity and permeability in nanocrystallineferromagnets[J]. IEEE Transactions on Magnetics, 1990, 26(5): 1397~1402
    [30] Gao R W, Feng W C, Liu H Q et al. Exchange-coupling nteraction, effective anisotropy andcoercivity in nanocomposite permanent materials[J]. Journal of Applied Physics, 2003, 94(1):664~668
    [31] Rong Chuan-Bing(荣传兵), Zhang Hong-Wei(张宏伟), Chen Ren-Jie(陈仁杰) et al.Investigation of intergrain exchange coupling interaction of nanocrystalline permanent magnets bynumerical simulation[J]. Acta Physica Sinica(物理学报), 2004, 53(12): 4353~4358
    [32] Kelly P E, O'Grady K, Mayo P I et al. Switching mechanisms in cobalt-phosphorus thinfilms[J]. IEEE Transactions on Magnetics, 1989, 25(5): 3881~3883
    [33] Li S, Gu B, Bi H et al. Role of amorphous grain boundaries in nanocomposite NdFeBpermanent magnets[J]. Journal of Applied Physics, 2002, 92(12): 7514~7518
    [34] Li W, Li X, Li L et al. Enhancement of the maximum energy product ofα-Fe/Nd_2Fe_(14)Bnanocomposite magnets by interfacial modification[J]. Journal of Applied Physics, 2006, 99(12):126103-1~3
    [35] Kim E C, Kim S J, Baek J K et al. M?ssbauer study of intergranular phase in Nd8Fe86-xNbxB6(x=0,1,2,3) nanocomposite magnet[J]. Hyperfine Interactions, 2008, 183:1~6
    [36] Ohkubo T, Miyoshi T, Hirosawa S et al. Effects of C and Ti additions on the microstructuresof Nd9Fe77B14 nanocomposite magnets[J]. Materials Science and Engineering, 2007, A 448-451:435~439
    [37] Sun Y, Han G B, Liu M et al. Intergranular phase dependence of anisotropy and coercivity innanoscaled permanent magnets[J]. Materials Letters, 2007, 61(21): 4294~4296
    [38]姜寿亭,李卫.凝聚态磁性物理,科学出版社. 2003. 278页
    [39] Liu X, Xu F, Pan J, Guo P. Isothermal crystallization behaviors and coercivity ofNd10.5Pr2.5Fe75Nb1B6 amorphous melt-spun ribbons[J]. Journal of the Chinese Rare Earth Society,2008, 26(5): 652~655
    [40] Xu H, Zhang S Y and Tan X H et al. Effect of Nb on the magnetic properties andmicrostructure for nanocomposite Nd_2Fe_(14)B/α-Fe alloys by three-dimensional atom probe[J].Journal of Applied Physics, 2008, 103(7), art.no.07E117
    [41]肖军,潘晶,刘新才.高能球磨法及其在纳米晶磁性材料制备中的应用(一)[J].磁性材料及器件, 2005年01期
    [42] Li X H, Guan Y, Li W, Zhang J W, Zhang X Y. Study of the formation of crystal texture inα-Fe/Nd_2Fe_(14)B nanocomposite magnets prepared by controlled melt-spinning[J]. Materials Letters,2007, 61(13), 2728~2730
    [43]黄昆,韩汝琦.固体物理学.第一版.高等教育出版社, 2004. 551页
    [44] Zhang X Y, Zhang F X and Zhang J W et al. Influence of pressures on the crystallizationprocess of an amorphous Fe73.5Cu1Nb3Si13.5B9 alloy[J]. Journal of Applied Physics, 1998, 84(4),1918~1923
    [45] Zhanyong W, Wenqing L and Bangxin Z et al. High coercivity Nd_2Fe_(14)B/α-Fe nanocompositemagnets[J]. Physica B: Condensed Matter,2009,404(8-11), 1321~1325
    [46] Lee D, Bauser S, Higgins A et al. Bulk anisotropic composite rare earth magnets[J]. Journal ofApplied Physics, 2006, 99(8), art. no. 08B516
    [47] Gabay A M, Marinescu M, Hadjipanayis G C. Enhanced Mr and (BH)max in anisotropicR2Fe14B/α-Fe composite magnets via intergranular magnetostatic coupling[J]. Journal of AppliedPhysics, 2006, 99(8), art. no. 08B506
    [48] Zhao G P, Zhao M G, Lim H S et al. From nucleation to coercivity[J]. Applied Physics Letters,2005, 87(16): 162513-1~3
    [49] Zhao G P, Wang X L, Yang C et al. Self-pinning: Dominant coercivity mechanism inexchange-coupled permanent/composite magnets[J]. Journal of Applied Physics, 2007, 101(9):09K102-1~3
    [50] Zhao G P, Zhang H W, Feng Y P et al. Nucleation or pinning: Dominant coercivitymechanism in exchange-coupled permanent/composite magnets[J]. Computational MaterialsScience, 2008, 44(1): 122~126
    [51] Bauer J, Seeger M, Zern A et al. Nanocrystalline FeNdB permanent magnets with enhancedremanence[J]. Journal of Applied Physics, 1996, 80(3): 1667~1673
    [52] Rong C B, Zhang H W, Chen R J et al. Journal of Magnetism and Magnetic Materials[J].2006, 302(1): 126~136
    [53]周寿曾.超强永磁体.第二版.冶金工业出版社, 2004. 86页
    [54] C Wang, M Yan, W Y Zhang. Effects of Nb and Zr additions on crystallization behavior,microstructure and magnetic properties of melt-spun(Nd,Pr)2Fe14B/a-Fe alloys[J]. Journal ofMagnetism and Magnetic Materials, 2006, 306,195~198
    [55]刘建华,张朋越,杨丽等.非晶Pr8Fe86B6合金的晶化动力学. 2002年3月,第8卷第1期
    [56] Akinori Kojima, Akihiro Makino, Akihisa Inoue. Rapid-annealing effect on themicrostructure and magnetic properties of the Fe-rich nanocomposite magnets[J]. Journal ofApplied Physics, 2000, 87(9 III), 6576~6578
    [57] Zhao G P, Wang X L, Feng Y P, Huang C W. Coherent rotation and effective anisotropy [J].IEEE Transactions on Magnetics, 2007, 43(6): 2908~2910
    [58] Zhang X Y, Guan Y, Zhang J W. Study of interface structure ofα-Fe/Nd_2Fe_(14)Bnanocomposite magnets [J]. Applied Physics Letters, 2002, 80(11): 1966
    [59] Zhang X Y, Guan Y, Zhang J W et al. Evolution of interface structure ofα-Fe/Nd_2Fe_(14)Bnanocomposites prepared by crystallization from the amorphous alloy [J]. Physical Review B:Condensed Matter and Materials Physics, 2002, 66(21), art. No. 212103: 2121031~2121034
    [60]戴道生,钱昆明.铁磁学.科学出版社, 1987. 204页
    [61] Yao Q, Liu W, Zhang Z D. Effective anisotropy field in anisotropic nanostructuredferromagnetic materials[J]. Physica Status Solidi(B) Basic Research, 2009, 246(7): 1709~1715
    [62] Li W, Li X, Li L et al. Enhancement of the maximum energy product ofα-Fe/Nd_2Fe_(14)Bnanocomposite magnets by interfacial modification[J]. Journal of Applied Physics, 2006, 99(12),art.no.126103
    [63] Choi Y, Jiang J S, Ding Y et al. Role of diffused Co atoms in improving effective exchangecoupling in Sm-Co Fe spring magnets[J]. Physical Review B: Condensed Matter and MaterialsPhysics, 2007, 75(10), art. No. 104432

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700